Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Discussion on the Structural Modification and Anti-tumor Activity of Flavonoids

Author(s): Zhu-Gui Zhou, Dong-Dong Li, Ying Chen, Xi Chen and Ruo-Jun Man*

Volume 22, Issue 7, 2022

Published on: 25 April, 2022

Page: [561 - 577] Pages: 17

DOI: 10.2174/1568026622666220308162049

Price: $65

Open Access Journals Promotions 2
Abstract

Flavonoids are secondary metabolites of plants. In general,most flavonoids are combined with glucosides and have extremely complex molecular structures. In nature, these flavonoids have a variety of biological activities, such as anti-oxidation,anti-virus, anti-tumor, scavenging free radicals, etc.; however,due to poor solubility and stability of flavonoids,their bioavailability is limited. The drug design method is used to modify the structure of flavonoids to give them special properties. At present, flavonoids have shown broad application prospects in treating tumors, inhibiting proliferation, migration, invasion, angiogenesis, and multi-drug resistance of tumors and have become a research hotspot.

Keywords: Flavonoids, Structural modification, Drug design, Anti-tumor activity, Mechanisms, Apoptosis.

Graphical Abstract
[1]
Bandele, O.J.; Osheroff, N. Bioflavonoids as poisons of human topoisomerase II alpha and II β. Biochemistry, 2007, 46(20), 6097-6108.
[http://dx.doi.org/10.1021/bi7000664] [PMID: 17458941]
[2]
Morimoto, M.; Tanimoto, K.; Nakano, S.; Ozaki, T.; Nakano, A.; Komai, K. Insect antifeedant activity of flavones and chromones against Spodoptera litura. J. Agric. Food Chem., 2003, 51(2), 389-393.
[http://dx.doi.org/10.1021/jf025627a] [PMID: 12517100]
[3]
Xiao, Z.P.; Peng, Z.Y.; Peng, M.J.; Yan, W.B.; Ouyang, Y.Z.; Zhu, H.L. Flavonoids health benefits and their molecular mechanism. Mini Rev. Med. Chem., 2011, 11(2), 169-177.
[http://dx.doi.org/10.2174/138955711794519546] [PMID: 21222576]
[4]
Marin, L.; Miguelez, E.M.; Villar, I.C.J. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Res. Int., 2014, 2014(11), 905.
[PMID: 25802870]
[5]
Lv, X.H.; Liu, H.; Ren, Z.L.; Wang, W.; Tang, F.; Cao, H.Q. Design, synthesis and biological evaluation of novel flavone Mannich base derivatives as potential antibacterial agents. Mol. Divers., 2019, 23(2), 299-306.
[http://dx.doi.org/10.1007/s11030-018-9873-9] [PMID: 30168050]
[6]
Geleijnse, J.M.; Hollman, P.Ch. Flavonoids and cardiovascular health: Which compounds, what mechanisms? Am. J. Clin. Nutr., 2008, 88(1), 12-13.
[http://dx.doi.org/10.1093/ajcn/88.1.12] [PMID: 18614717]
[7]
Jo, D.H.; Kim, J.H.; Kim, K.W.; Suh, Y.G.; Kim, J.H. Allosteric regulation of pathologic angiogenesis: Potential application for angiogenesis-related blindness. Arch. Pharm. Res., 2014, 37(3), 285-298.
[http://dx.doi.org/10.1007/s12272-013-0324-y] [PMID: 24395531]
[8]
Fens, M.H A M.; Storm, G.; Schiffelers, R.M. Tumor vasculature as target for therapeutic intervention. Expert Opin. Investig. Drugs, 2010, 19(11), 1321-1338.
[http://dx.doi.org/10.1517/13543784.2010.524204] [PMID: 20946091]
[9]
Eichholz, A.; Merchant, S.; Gaya, A.M. Anti-angiogenesis therapies: Their potential in cancer management. OncoTargets Ther., 2010, 3, 69-82.
[PMID: 20616958]
[10]
Fabian, K.L.; Storkus, W.J. Immunotherapeutic targeting of tumor-associated blood vessels.Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy; Springer International Publishing: Cham, 2017, 1036, pp. 191-211.
[http://dx.doi.org/10.1007/978-3-319-67577-0_13]
[11]
Wang, S.; Alseekh, S.; Fernie, A.R.; Luo, J. The structure and function of major plant metabolite modifications. Mol. Plant, 2019, 12(7), 899-919.
[http://dx.doi.org/10.1016/j.molp.2019.06.001] [PMID: 31200079]
[12]
Liu, H.R.; Huang, X.Q.; Lou, D.H.; Liu, X.J.; Liu, W.K.; Wang, Q.A. Synthesis and acetylcholinesterase inhibitory activity of Mannich base derivatives flavokawain B. Bioorg. Med. Chem. Lett., 2014, 24(19), 4749-4753.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.087] [PMID: 25205193]
[13]
Ding, F.; Peng, W. Biological activity of natural flavonoids as impacted by protein flexibility: An example of flavanones. Mol. Biosyst., 2015, 11(4), 1119-1133.
[http://dx.doi.org/10.1039/C4MB00662C] [PMID: 25673513]
[14]
Verma, A.K.; Pratap, R. Chemistry of biologically important flavones. Tetrahedron, 2012, 68(41), 8523-8538.
[http://dx.doi.org/10.1016/j.tet.2012.06.097]
[15]
Saleh, A.; Leonardo, P.S.; Maria, B.A. lisdair, R.F. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry, 2020, (174), 112.
[16]
Ravishankar, D.; Salamah, M.; Akimbaev, A.; Williams, H.F.; Albadawi, D.A.I.; Vaiyapuri, R.; Greco, F.; Osborn, H.M.I.; Vaiyapuri, S. Impact of specific functional groups in flavonoids on the modulation of platelet activation. Sci. Rep., 2018, 8(1), 9528.
[http://dx.doi.org/10.1038/s41598-018-27809-z] [PMID: 29934595]
[17]
Ponzo, V.; Goitre, I.; Fadda, M.; Gambino, R.; De Francesco, A.; Soldati, L.; Gentile, L.; Magistroni, P.; Cassader, M.; Bo, S. Dietary flavonoid intake and cardiovascular risk: A population-based cohort study. J. Transl. Med., 2015, 13(1), 218.
[http://dx.doi.org/10.1186/s12967-015-0573-2] [PMID: 26152229]
[18]
Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem., 2015, 22(1), 132-149.
[http://dx.doi.org/10.2174/0929867321666140916113443] [PMID: 25245513]
[19]
Luo, W.; Su, Y.B.; Hong, C.; Tian, R.G.; Su, L.P.; Wang, Y.Q.; Li, Y.; Yue, J.J.; Wang, C.J. Design, synthesis and evaluation of novel 4-dimethylamine flavonoid derivatives as potential multi-functional anti-Alzheimer agents. Bioorg. Med. Chem., 2013, 21(23), 7275-7282.
[http://dx.doi.org/10.1016/j.bmc.2013.09.061] [PMID: 24148835]
[20]
Cruz, I.; Puthongking, P.; Cravo, S.; Palmeira, A.; Cidade, H.; Pinto, M.; Sousa, E. Xanthone and flavone derivatives as dual agents with acetylcholinesterase inhibition and antioxidant activity as potential anti-Alzheimer agents. J. Chem., 2017, 1-16.
[http://dx.doi.org/10.1155/2017/8587260]
[21]
Batra, P.; Sharma, A.K. Anti-cancer potential of flavonoids: Recent trends and future perspectives. Biotech, 2013, 3(6), 439-459.
[http://dx.doi.org/10.1007/s13205-013-0117-5] [PMID: 28324424]
[22]
Romagnolo, D.F.; Selmin, O.I. Flavonoids and cancer prevention: A review of the evidence. J. Nutr. Gerontol. Geriatr., 2012, 31(3), 206-238.
[http://dx.doi.org/10.1080/21551197.2012.702534] [PMID: 22888839]
[23]
Hazafa, A.; Rehman, K.U.; Jahan, N.; Jabeen, Z. The role of polyphenol (flavonoids) compounds in the treatment of cancer cells. Nutr. Cancer, 2020, 72(3), 386-397.
[http://dx.doi.org/10.1080/01635581.2019.1637006] [PMID: 31287738]
[24]
Pang, X.; Zhang, X.; Jiang, Y.; Su, Q.; Li, Q.; Li, Z. Autophagy: Mechanisms and therapeutic potential of flavonoids in cancer. Biomolecules, 2021, 11(2), 135.
[http://dx.doi.org/10.3390/biom11020135] [PMID: 33494431]
[25]
Tiwari, P.; Mishra, K.P. Flavonoids sensitize tumor cells to radiation: Molecular mechanisms and relevance to cancer radiotherapy. Int. J. Radiat. Biol., 2020, 96(3), 360-369.
[http://dx.doi.org/10.1080/09553002.2020.1694193] [PMID: 31738629]
[26]
Calzada, F.; Juárez, T.; García-Hernández, N.; Valdes, M.; Ávila, O.; Mulia, L.Y.; Velázquez, C. Antiprotozoal, antibacterial and antidiarrheal properties from the flowers of Chiranthodendron pentadactylon and isolated flavonoids. Pharmacogn. Mag., 2017, 13(50), 240-244.
[http://dx.doi.org/10.4103/0973-1296.204564] [PMID: 28539715]
[27]
Tian, C.; Zhang, Z.; Wang, H.; Guo, Y.; Zhao, J.; Liu, M. Extraction technology, component analysis, and in vitro antioxidant and antibacterial activities of total flavonoids and fatty acids from Tribulus terrestris L. fruits. Biomed. Chromatogr., 2019, 33(4), e4474.
[http://dx.doi.org/10.1002/bmc.4474] [PMID: 30577068]
[28]
Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytother. Res., 2019, 33(1), 13-40.
[http://dx.doi.org/10.1002/ptr.6208] [PMID: 30346068]
[29]
Min, N.; Leong, P.T.; Lee, R.C.H.; Khuan, J.S.E.; Chu, J.J.H. A flavonoid compound library screen revealed potent antiviral activity of plant-derived flavonoids on human enterovirus A71 replication. Antiviral Res., 2018, 150, 60-68.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.003] [PMID: 29233744]
[30]
Akher, F.B.; Farrokhzadeh, A.; Ramharack, P.; Shunmugam, L.; Van Heerden, F.R.; Soliman, M.E.S. Discovery of novel natural flavonoids as potent antiviral candidates against hepatitis C virus NS5B polymerase. Med. Hypotheses, 2019, 132, 109359.
[http://dx.doi.org/10.1016/j.mehy.2019.109359] [PMID: 31466018]
[31]
Ghanem, K.; Ramadan, M.; Ghanem, H.; Fadel, M. Improving the production of unsaturated fatty acid esters and flavonoids from date palm pollen and their effects as anti-breast-cancer and antiviral agents: An in-vitro study. J. Arab Soc. Med. Res., 2015, 10(2), 47-55.
[http://dx.doi.org/10.4103/1687-4293.175555]
[32]
Zhao, R.; Li, Q.W.; Long, L.; Li, J.; Yang, R.J.; Gao, D.W. Antidiabetic activity of flavone from Ipomoea Batatas leaf in non-insulin dependent diabetic rats. Intl. Food Sci. Tech., 2007, 42(1), 80-85.
[http://dx.doi.org/10.1111/j.1365-2621.2006.01215.x]
[33]
Kim, Y.C.; Jun, M.; Jeong, W.S.; Chung, S.K.J. Production of flavonoid O-glucoside using sucrose synthase and flavonoid O-glucosyltransferase fusion protein. Shipin Kexue, 2005, 70(9), 575.
[34]
Ayhan-Kilcigil, G.; Coban, T.; Tunçbilek, M.; Can-Eke, B.; Bozdağ-Dündar, O.; Ertan, R.; Iscan, M. Antioxidant properties of flavone-6(4′)-carboxaldehyde oxime ether derivatives. Arch. Pharm. Res., 2004, 27(6), 610-614.
[http://dx.doi.org/10.1007/BF02980158] [PMID: 15283461]
[35]
Sadik, C.D.; Sies, H.; Schewe, T. Inhibition of 15-lipoxygenases by flavonoids: Structure-activity relations and mode of action. Biochem. Pharmacol., 2003, 65(5), 773-781.
[http://dx.doi.org/10.1016/S0006-2952(02)01621-0] [PMID: 12628491]
[36]
Hibatallah, J.; Carduner, C.; Poelman, M.C. In-vivo and in-vitro assessment of the free-radical-scavenger activity of Ginkgo flavone glycosides at high concentration. J. Pharm. Pharmacol., 1999, 51(12), 1435-1440.
[http://dx.doi.org/10.1211/0022357991777083] [PMID: 10678500]
[37]
Candeias, L.P.; Everett, S.A.; Wardman, P. Free radical intermediates in the oxidation of flavone-8-acetic acid: Possible involvement in its antitumour activity. Free Radic. Biol. Med., 1993, 15(4), 385-394.
[http://dx.doi.org/10.1016/0891-5849(93)90038-V] [PMID: 8225020]
[38]
Zhao, C.; Wang, F.; Lian, Y.; Xiao, H.; Zheng, J. Biosynthesis of citrus flavonoids and their health effects. Crit. Rev. Food Sci. Nutr., 2020, 60(4), 566-583.
[http://dx.doi.org/10.1080/10408398.2018.1544885] [PMID: 30580548]
[39]
Mahmoud, A.M.; Hernández Bautista, R.J.; Sandhu, M.A.; Hussein, O.E.; Iuliano, L. Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. Oxid. Med. Cell. Longev., 2019, 2019, 5484138.
[http://dx.doi.org/10.1155/2019/5484138] [PMID: 30962863]
[40]
Jeong, J.C.; Kim, M.S.; Kim, T.H.; Kim, Y.K. Kaempferol induces cell death through ERK and Akt-dependent down-regulation of XIAP and survivin in human glioma cells. Neurochem. Res., 2009, 34(5), 991-1001.
[http://dx.doi.org/10.1007/s11064-008-9868-5] [PMID: 18949556]
[41]
Luo, H.; Daddysman, M.K.; Rankin, G.O.; Jiang, B.H.; Chen, Y.C. Kaempferol enhances cisplatin’s effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cMyc. Cancer Cell Int., 2010, 10, 16.
[http://dx.doi.org/10.1186/1475-2867-10-16] [PMID: 20459793]
[42]
Guo, H.; Ren, F.; Zhang, L.; Zhang, X.; Yang, R.; Xie, B.; Li, Z.; Hu, Z.; Duan, Z.; Zhang, J. Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway. Mol. Med. Rep., 2016, 13(3), 2791-2800.
[http://dx.doi.org/10.3892/mmr.2016.4845] [PMID: 26847723]
[43]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[44]
Horáková, L. Flavonoids in prevention of diseases with respect to modulation of Ca-pump function Interdiscipl. 2011, 114-124.
[45]
Saito, K.; Yonekura-Sakakibara, K.; Nakabayashi, R.; Higashi, Y.; Yamazaki, M.; Tohge, T.; Fernie, A.R. The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity. Biochem. Plant Physiol. Biochem, 2013, 72, 21-34.
[http://dx.doi.org/10.1016/j.plaphy.2013.02.001] [PMID: 23473981]
[46]
da Silva, A.B.; Cerqueira Coelho, P.L. das Neves Oliveira, M.; Oliveira, J.L.; Oliveira Amparo, J.A.; da Silva, K.C.; Soares, J.R.P.; Pitanga, B.P.S.; Dos Santos Souza, C.; de Faria Lopes, G.P.; da Silva, V.D.A.; de Fátima Dias Costa, M.; Junier, M.P.; Chneiweiss, H.; Moura-Neto, V.; Costa, S.L. The flavonoid rutin and its aglycone quercetin modulate the microglia inflammatory profile improving antiglioma activity. Brain Behav. Immun., 2020, 85, 170-185.
[http://dx.doi.org/10.1016/j.bbi.2019.05.003] [PMID: 31059805]
[47]
Verdan, A.M.; Wang, H.C.; García, C.R.; Henry, W.P.; Brumaghim, J.L. Iron binding of 3-hydroxychromone, 5-hydroxychromone, and sulfonated morin: Implications for the antioxidant activity of flavonols with competing metal binding sites. Inorg. Biochem, 2011, 105(10), 1314-1322.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.07.006] [PMID: 21864809]
[48]
Chen, L. Anti-inflammatory and antioxidant activities of red pepper (Capsicum annuum L.) stalk extracts: Comparison of pericarp and placenta extracts. Funct. Food, 2013, 5, 1724-1731.
[http://dx.doi.org/10.1016/j.jff.2013.07.018]
[49]
Rodríguez-García, C.; Sánchez-Quesada, C.; J Gaforio, J. Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants, 2019, 8(5), 137.
[http://dx.doi.org/10.3390/antiox8050137] [PMID: 31109072]
[50]
Çelik, H.; Koşar, M. Inhibitory effects of dietary flavonoids on purified hepatic NADH-cytochrome b5 reductase: Structure-activity relationships. Biol. Interact, 2012, 197(2-3), 103-109.
[http://dx.doi.org/10.1016/j.cbi.2012.04.003] [PMID: 22542668]
[51]
Chen, L.; Teng, H.; Xie, Z.; Cao, H.; Cheang, W.S.; Skalicka-Woniak, K.; Georgiev, M.I.; Xiao, J. Modifications of dietary flavonoids towards improved bioactivity: An update on structure-activity relationship. Crit. Rev. Food Sci. Nutr., 2018, 58(4), 513-527.
[http://dx.doi.org/10.1080/10408398.2016.1196334] [PMID: 27438892]
[52]
Siwak, J.; Lewinska, A.; Wnuk, M.; Bartosz, G. Protection of flavonoids against hypochlorite-induced protein modifications. Food Chem., 2013, 141(2), 1227-1241.
[http://dx.doi.org/10.1016/j.foodchem.2013.04.018] [PMID: 23790908]
[53]
Perez de Souza, L.; Garbowicz, K.; Brotman, Y.; Tohge, T.; Fernie, A.R. The acetate pathway supports flavonoid and lipid biosynthesis in Arabidopsis. Plant Physiol., 2020, 182(2), 857-869.
[http://dx.doi.org/10.1104/pp.19.00683] [PMID: 31719153]
[54]
Qiu, T.; Wu, D.; Yang, L.; Ye, H.; Wang, Q.; Cao, Z.; Tang, K. Exploring the mechanism of flavonoids through systematic bioinformatics analysis. Front. Pharmacol., 2018, 9, 918.
[http://dx.doi.org/10.3389/fphar.2018.00918] [PMID: 30158870]
[55]
Moorkoth, S.; Srinivasan, K.K.; Kutty, N.G. Synthesis and evaluation of a series of novel imidazolidinone analogues of 6-aminoflavone as anticancer and anti-inflammatory agents. Med. Chem. Res., 2013, 22(10), 5066-5075.
[http://dx.doi.org/10.1007/s00044-013-0486-7]
[56]
Khanapur, M.; Pinna, N.K.; Badiger, J. Synthesis and anti-inflammatory in vitro, in silico, and in vitro studies of flavone analogues. Med. Chem. Res., 2015, 24(6), 2656-2669.
[http://dx.doi.org/10.1007/s00044-015-1317-9]
[57]
Abu-Aisheh, M.N.; Mustafa, M.S.; El-Abadelah, M.M.; Naffa, R.G.; Ismail, S.I.; Zihlif, M.A.; Taha, M.O.; Mubarak, M.S. Synthesis and biological activity assays of some new N1-(flavon-7-yl)amidrazone derivatives and related congeners. Eur. J. Med. Chem., 2012, 54, 65-74.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.028] [PMID: 22677031]
[58]
Habashneh, A.Y.; El-Abadelah, M.M.; Zihlif, M.A.; Imraish, A.; Taha, M.O. Synthesis and antitumor activities of some new N1-(flavon-6-yl)amidrazone derivatives. Arch. Pharm. (Weinheim), 2014, 347(6), 415-422.
[http://dx.doi.org/10.1002/ardp.201300326] [PMID: 24615985]
[59]
Liu, R.; Zhao, B.; Wang, D.E.; Yao, T.; Pang, L.; Tu, Q.; Ahmed, S.M.; Liu, J.J.; Wang, J. Nitrogen-containing apigenin analogs: Preparation and biological activity. Molecules, 2012, 17(12), 14748-14764.
[http://dx.doi.org/10.3390/molecules171214748] [PMID: 23519250]
[60]
Verghese, J.; Nguyen, T.; Oppegard, L.M.; Seivert, L.M.; Hiasa, H.; Ellis, K.C. Flavone-based analogues inspired by the natural product simocyclinone D8 as DNA gyrase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(21), 5874-5877.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.094] [PMID: 24060488]
[61]
Yan, G.H.; Li, X.F.; Ge, B.C.; Shi, X.D.; Chen, Y.F.; Yang, X.M.; Xu, J.P.; Liu, S.W.; Zhao, P.L.; Zhou, Z.Z.; Zhou, C.Q.; Chen, W.H. Synthesis and anticancer activities of 3-arylflavone-8-acetic acid derivatives. Eur. J. Med. Chem., 2015, 90, 251-257.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.030] [PMID: 25461325]
[62]
Han, Y.; Ding, Y.; Xie, D.; Hu, D.; Li, P.; Li, X.; Xue, W.; Jin, L.; Song, B. Design, synthesis, and antiviral activity of novel rutin derivatives containing 1, 4-pentadien-3-one moiety. Eur. J. Med. Chem., 2015, 92, 732-737.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.017] [PMID: 25618020]
[63]
Kamal, A.; Murty, J.N.; Viswanath, A.; Sujitha, P.; Ganesh Kumar, C. Synthesis, biological evaluation of 5-carbomethoxyme- thyl-7-hydroxy-2-pentylchromone, 5-carboethoxymethyl-4′7-dihydroxyflavone and their analogues. Bioorg. Med. Chem. Lett., 2012, 22(14), 4891-4895.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.007] [PMID: 22677320]
[64]
Das, S.; Mitra, I.; Batuta, S.; Niharul Alam, M.; Roy, K.; Begum, N.A. Design, synthesis and exploring the quantitative structure-activity relationship of some antioxidant flavonoid analogues. Bioorg. Med. Chem. Lett., 2014, 24(21), 5050-5054.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.028] [PMID: 25278230]
[65]
Rubio, S.; León, F.; Quintana, J.; Cutler, S.; Estévez, F. Cell death triggered by synthetic flavonoids in human leukemia cells is amplified by the inhibition of extracellular signal-regulated kinase signaling. Eur. J. Med. Chem., 2012, 55, 284-296.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.028] [PMID: 22867530]
[66]
Ma, D.; Zhang, H.; Yang, T. Isoflavone intake inhibits the development of 7 2-dimethylbenz (a) anthracene (DMBA)-induced mammary tumors in normal and ovariectomized rats. J. Clin. Biochem. Nutr., 2014, 54(1), 31-38.
[http://dx.doi.org/10.3164/jcbn.13-33] [PMID: 24426188]
[67]
Zhong, J.Q.; Li, B.; Jia, Q. Research progress of structure-activity relationship of natural flavonoids and their derivatives. J. Pharm. Sci., 2011, 46(6), 622-630.
[PMID: 21882520]
[68]
Zhang, J.; Shen, P.; Lu, T. Quantitative structure of flavonoids inhibiting MMP-9 Theoretical study on activity relationship and structural modification. Acta Chimi. Sin., 2011, 69(4), 383-392.
[69]
Son, M.H.; Kim, B.G.; Kim, D.H.; Jin, M.; Kim, K.; Ahn, J.H. Production of flavonoid o-glucoside using sucrose synthase and flavonoid o-glucosyltransferase fusion protein. J. Microbiol. Biotechnol., 2009, 19(7), 709-712.
[PMID: 19652519]
[70]
Shimoda, K.; Hamada, H.; Hamada, H. Glycosylation of hesperetin by plant cell cultures. Phytochemistry, 2008, 69(5), 1135-1140.
[http://dx.doi.org/10.1016/j.phytochem.2007.11.008] [PMID: 18160083]
[71]
Ren, L.; Zhang, H.B.; Hu, X.Q. Study on synthesis of quercetin glucoside based on transglycosylation of dextran sucrase. J. Biol., 2014, 31(5), 93-98.
[72]
Park, H.Y.; Choi, H.D.; Eom, H.; Choi, I. Enzymatic modification enhances the protective activity of citrus flavonoids against alcohol-induced liver disease. Food Chem., 2013, 139(1-4), 231-240.
[http://dx.doi.org/10.1016/j.foodchem.2013.01.044] [PMID: 23561100]
[73]
Zhao, Y.; Liu, J.; Wang, C.S. Research progress of microbial synthesis of flavonoids. Chinese J. Bioeng., 2014, 34(4), 110-117.
[74]
Santos, C.N.; Koffas, M.; Stephanopoulos, G. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab. Eng., 2011, 13(4), 392-400.
[http://dx.doi.org/10.1016/j.ymben.2011.02.002] [PMID: 21320631]
[75]
Leonard, E.; Lim, K.H.; Saw, P.N.; Koffas, M.A. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl. Environ. Microbiol., 2007, 73(12), 3877-3886.
[http://dx.doi.org/10.1128/AEM.00200-07] [PMID: 17468269]
[76]
Zhu, S.; Wu, J.; Du, G.; Zhou, J.; Chen, J. Efficient synthesis of eriodictyol from L-tyrosine in Escherichia coli. Appl. Environ. Microbiol., 2014, 80(10), 3072-3080.
[http://dx.doi.org/10.1128/AEM.03986-13] [PMID: 24610848]
[77]
Moradzadeh, M.; Tabarraei, A.; Sadeghnia, H.R.; Ghorbani, A.; Mohamadkhani, A.; Erfanian, S.; Sahebkar, A. Kaempferol increases apoptosis in human acute promyelocytic leukemia cells and inhibits multidrug resistance genes. J. Cell. Biochem., 2018, 119(2), 2288-2297.
[http://dx.doi.org/10.1002/jcb.26391] [PMID: 28865123]
[78]
Granato, M.; Rizzello, C.; Gilardini Montani, M.S.; Cuomo, L.; Vitillo, M.; Santarelli, R.; Gonnella, R.; D’Orazi, G.; Faggioni, A.; Cirone, M. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J. Nutr. Biochem., 2017, 41, 124-136.
[http://dx.doi.org/10.1016/j.jnutbio.2016.12.011] [PMID: 28092744]
[79]
Duo, J.; Ying, G.G.; Wang, G.W.; Zhang, L. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation. Mol. Med. Rep., 2012, 5(6), 1453-1456.
[PMID: 22447039]
[80]
Okada, H.; Mak, T.W. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat. Rev. Cancer, 2004, 4(8), 592-603.
[http://dx.doi.org/10.1038/nrc1412] [PMID: 15286739]
[81]
Ren, K.; Zhang, W.; Wu, G.; Ren, J.; Lu, H.; Li, Z.; Han, X. Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells. Biomed. Pharmacother., 2016, 84, 1748-1759.
[http://dx.doi.org/10.1016/j.biopha.2016.10.111] [PMID: 27876206]
[82]
Zhang, L.; Cheng, X.; Gao, Y.; Zheng, J.; Xu, Q.; Sun, Y.; Guan, H.; Yu, H.; Sun, Z. Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells. Food Funct., 2015, 6(11), 3464-3472.
[http://dx.doi.org/10.1039/C5FO00671F] [PMID: 26292725]
[83]
Kasala, E.R.; Bodduluru, L.N.; Madana, R.M.; Athira, K.V.; Gogoi, R.; Barua, C.C. Chemopreventive and therapeutic potential of chrysin in cancer: Mechanistic perspectives. Toxicol. Lett., 2015, 233(2), 214-225.
[84]
Ryu, S.; Lim, W.; Bazer, F.W.; Song, G. Chrysin induces death of prostate cancer cells by inducing ROS and ER stress. J. Cell. Physiol., 2017, 232(12), 3786-3797.
[http://dx.doi.org/10.1002/jcp.25861] [PMID: 28213961]
[85]
Masuelli, L.; Benvenuto, M.; Mattera, R.; Di Stefano, E.; Zago, E.; Taffera, G.; Tresoldi, I.; Giganti, M.G.; Frajese, G.V.; Berardi, G.; Modesti, A.; Bei, R. In vitro and in vitro anti-tumoral effects of the flavonoid apigenin in malignant mesothelioma. Front. Pharmacol., 2017, 8, 373.
[http://dx.doi.org/10.3389/fphar.2017.00373] [PMID: 28674496]
[86]
de Dicastillo, C.L.; Pezo, D.; Nerín, C.; Carballo, G.L.; Catalá, R.; Gavara, R.; Muñoz, P.H. Reducing oxidation of foods through antioxidant active packaging based on ethyl vinyl alcohol and natural flavonoids. Packag. Technol. Sci., 2012, 25(8), 246-257.
[87]
Atala, E.; Fuentes, J.; Wehrhahn, M.J.; Speisky, H. Quercetin and related flavonoids conserve their antioxidant properties despite undergoing chemical or enzymatic oxidation. Food Chem., 2017, 234(2), 479-485.
[http://dx.doi.org/10.1016/j.foodchem.2017.05.023] [PMID: 28551264]
[88]
Wang, M.E.; Lin, H.M. Protection from metabolic dysregulation, obesity, and atherosclerosis by citrus flavonoids: Activation of hepatic pgc1α-mediated fatty acid oxidation. PPAR Res., 2012, 2012, 654-667.
[89]
Sloley, B.D.; Urichuk, L.J.; Morley, P.; Durkin, J.; Shan, J.J.; Pang, P.K.; Coutts, R.T. Identification of kaempferol as a monoamine oxidase inhibitor and potential Neuroprotectant in extracts of Ginkgo biloba leaves. J. Pharm. Pharmacol., 2000, 52(4), 451-459.
[http://dx.doi.org/10.1211/0022357001774075] [PMID: 10813558]
[90]
Huh, G.W.; Park, J.H.; Kang, J.H.; Jeong, T.S.; Kang, H.C.; Baek, N.I. Flavonoids from Lindera glauca Blume as low-density lipoprotein oxidation inhibitors. Nat. Prod. Res., 2014, 28(11), 831-834.
[http://dx.doi.org/10.1080/14786419.2013.879583] [PMID: 24499267]
[91]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[92]
Jiang, Z.Q.; Li, M.H.; Qin, Y.M.; Jiang, H.Y.; Zhang, X.; Wu, M.H. Luteolin inhibits tumorigenesis and induces apoptosis of non-small cell lung cancer cells via regulation of microrna-34a-5p. Int. J. Mol. Sci., 2018, 19(2), 447.
[http://dx.doi.org/10.3390/ijms19020447] [PMID: 29393891]
[93]
Tay, W.M.; da Silva, G.F.; Ming, L.J. Metal binding of flavonoids and their distinct inhibition mechanisms toward the oxidation activity of Cu2+-β-amyloid: Not just serving as suicide antioxidants! Inorg. Chem., 2013, 52(2), 679-690.
[http://dx.doi.org/10.1021/ic301832p] [PMID: 23301941]
[94]
Somers-Edgar, T.J.; Scandlyn, M.J.; Stuart, E.C.; Le Nedelec, M.J.; Valentine, S.P.; Rosengren, R.J. The combination of epigallocatechin gallate and curcumin suppresses ER alpha-breast cancer cell growth in vitro and in vivo. Int. J. Cancer, 2008, 122(9), 1966-1971.
[http://dx.doi.org/10.1002/ijc.23328] [PMID: 18098290]
[95]
Mertens-Talcott, S.U.; Bomser, J.A.; Romero, C.; Talcott, S.T.; Percival, S.S. Ellagic acid potentiates the effect of quercetin on p21waf1/cip1, p53, and MAP-kinases without affecting intracellular generation of reactive oxygen species in vitro. J. Nutr., 2005, 135(3), 609-614.
[http://dx.doi.org/10.1093/jn/135.3.609] [PMID: 15735102]
[96]
Mertens-Talcott, S.U.; Percival, S.S. Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cells. Cancer Lett., 2005, 218(2), 141-151.
[http://dx.doi.org/10.1016/j.canlet.2004.06.007] [PMID: 15670891]
[97]
Suganuma, M.; Okabe, S.; Kai, Y.; Sueoka, N.; Sueoka, E.; Fujiki, H. Synergistic effects of epigallocatechin gallate with (--)-epicatechin, sulindac, or tamoxifen on cancer-preventive activity in the human lung cancer cell line PC-9. Cancer Res., 1999, 59(1), 44-47.
[PMID: 9892181]
[98]
Suganuma, M.; Kurusu, M.; Suzuki, K.; Tasaki, E.; Fujiki, H. Green tea polyphenol stimulates cancer preventive effects of celecoxib in human lung cancer cells by upregulation of GADD153 gene. Int. J. Cancer, 2006, 119(1), 33-40.
[http://dx.doi.org/10.1002/ijc.21809] [PMID: 16463383]
[99]
Adhami, V.M.; Malik, A.; Zaman, N.; Sarfaraz, S.; Siddiqui, I.A.; Syed, D.N.; Afaq, F.; Pasha, F.S.; Saleem, M.; Mukhtar, H. Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo. Clin. Cancer Res., 2007, 13(5), 1611-1619.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2269] [PMID: 17332308]
[100]
Stearns, M.E.; Wang, M. Synergistic effects of the green tea extract epigallocatechin-3-gallate and taxane in eradication of malignant human prostate tumors. Transl. Oncol., 2011, 4(3), 147-156.
[http://dx.doi.org/10.1593/tlo.10286] [PMID: 21633670]
[101]
Stearns, M.E.; Amatangelo, M.D.; Varma, D.; Sell, C.; Goodyear, S.M. Combination therapy with epigallocatechin-3-gallate and doxorubicin in human prostate tumor modeling studies: Inhibition of metastatic tumor growth in severe combined immunodeficiency mice. Am. J. Pathol., 2010, 177(6), 3169-3179.
[http://dx.doi.org/10.2353/ajpath.2010.100330] [PMID: 20971741]
[102]
Mertens-Talcott, S.U.; Talcott, S.T.; Percival, S.S. Low concentrations of quercetin and ellagic acid synergistically influence proliferation, cytotoxicity and apoptosis in MOLT-4 human leukemia cells. J. Nutr., 2003, 133(8), 2669-2674.
[http://dx.doi.org/10.1093/jn/133.8.2669] [PMID: 12888656]
[103]
Plati, J.; Bucur, O.; Khosravi-Far, R. Apoptotic cell signaling in cancer progression and therapy. Integr. Biol., 2011, 3(4), 279-296.
[http://dx.doi.org/10.1039/c0ib00144a] [PMID: 21340093]
[104]
Mason, E.F.; Rathmell, J.C. Cell metabolism: An essential link between cell growth and apoptosis. Biochim. Biophys. Acta, 2011, 1813(4), 645-654.
[http://dx.doi.org/10.1016/j.bbamcr.2010.08.011] [PMID: 20816705]
[105]
Soengas, M.S.; Lowe, S.W. Apoptosis and melanoma chemoresistance. Oncogene, 2003, 22(20), 3138-3151.
[http://dx.doi.org/10.1038/sj.onc.1206454] [PMID: 12789290]
[106]
Estévez, S.; Marrero, M.T.; Quintana, J.; Estévez, F. Eupatorin-induced cell death in human leukemia cells is dependent on caspases and activates the mitogen-activated protein kinase pathway. PLoS One, 2014, 9(11), e112536.
[http://dx.doi.org/10.1371/journal.pone.0112536] [PMID: 25390937]
[107]
orrenti, V.; Vanella, L.; Acquaviva, R.; Cardile, V.; Giofrè, S.; Di Giacomo, C. Cyanidin induces apoptosis and differentiation in prostate cancer cells. Int. J. Oncol., 2015, 47, 1303-1310.
[http://dx.doi.org/10.3892/ijo.2015.3130]
[108]
Tang, J.; Oroudjev, E.; Wilson, L.; Ayoub, G. Delphinidin and cyanidin exhibit antiproliferative and apoptotic effects in mcf-7 human breast cancer cells. Integr. Cancer Sci. Ther., 2015, 2, 82-86.
[109]
Buruleanu, L.C.; Radulescu, C.; Georgescu, A.A.; Dulama, I.D.; Nicolescu, C.M.; Olteanu, R.L.; Stanescu, S.G. Chemometric assessment of the interactions between the metal contents, antioxidant activity, total phenolics, and flavonoids in mushrooms. Anal. Lett., 2019, 52(8), 1195-1214.
[http://dx.doi.org/10.1080/00032719.2018.1528268]
[110]
Ivalina, T.; Judith, M.; Denitsa, M.; Ralitsa, C.; Hristina, L.; Georgi, M.; Margarita, P. Antioxidant activity and modified release profiles of morin and hesperetin flavonoids loaded in Mg- or Ag-modified SBA-16 carriers. Mater. Today Commun., 2020, (3), 12-22.
[111]
Wang, B.; Qu, J.; Luo, S.; Feng, S.; Li, T.; Yuan, M.; Huang, Y.; Liao, J.; Yang, R.; Ding, C. Optimization of ultrasound-assisted extraction of flavonoids from olive (Olea europaea) leaves, and evaluation of their antioxidant and anticancer activities. Molecules, 2018, 23(10), 2513.
[http://dx.doi.org/10.3390/molecules23102513] [PMID: 30274358]
[112]
Li, M.; Qi, Z.; Hao, Y.; Lv, C.; Jia, L.; Wang, J.; Lu, J. New adducts of iriflophene and flavonoids isolated from Sedum aizoon L. with potential antitumor activity. Molecules, 2017, 22(11), 1859.
[http://dx.doi.org/10.3390/molecules22111859] [PMID: 29099046]
[113]
Xu, T.; Wang, Z.; Lei, T.; Lv, C.; Wang, J.; Lu, J. New flavonoid glycosides from Sedum aizoon L. Fitoterapia, 2015, 101, 125-132.
[http://dx.doi.org/10.1016/j.fitote.2014.12.014] [PMID: 25562804]
[114]
Loung, C.Y.; Fernando, W.; Rupasinghe, H.P.V.; Hoskin, D.W. Apple peel flavonoid fraction 4 suppresses breast cancer cell growth by cytostatic and cytotoxic mechanisms. Molecules, 2019, 24(18), 3335.
[http://dx.doi.org/10.3390/molecules24183335] [PMID: 31540221]
[115]
Li, Y.; Duan, S.; Jia, H.; Bai, C.; Zhang, L.; Wang, Z. Flavonoids from tartary buckwheat induce G2/M cell cycle arrest and apoptosis in human hepatoma HepG2 cells. Acta Biochim. Biophys. Sin. (Shanghai), 2014, 46(6), 460-470.
[http://dx.doi.org/10.1093/abbs/gmu023] [PMID: 24760952]
[116]
Nagappan, A.; Lee, H.J.; Saralamma, V.V.; Park, H.S.; Hong, G.E.; Yumnam, S.; Raha, S.; Charles, S.N.; Shin, S.C.; Kim, E.H.; Lee, W.S.; Kim, G.S. Flavonoids isolated from Citrus platymamma induced G2/M cell cycle arrest and apoptosis in A549 human lung cancer cells. Oncol. Lett., 2016, 12(2), 1394-1402.
[http://dx.doi.org/10.3892/ol.2016.4793] [PMID: 27446443]
[117]
Zehra, T.; Ayar, K.H. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed. Pharmacother., 2019, 116, 109.
[118]
Nicolini, F.; Burmistrova, O.; Marrero, M.T.; Torres, F.; Hernández, C.; Quintana, J.; Estévez, F. Induction of G2/M phase arrest and apoptosis by the flavonoid tamarixetin on human leukemia cells. Mol. Carcinog., 2014, 53(12), 939-950.
[http://dx.doi.org/10.1002/mc.22055] [PMID: 23765509]
[119]
Hwang, Y.J.; Lee, E.J.; Kim, H.R.; Hwang, K.A. Molecular mechanisms of luteolin-7-O-glucoside-induced growth inhibition on human liver cancer cells: G2/M cell cycle arrest and caspase-independent apoptotic signaling pathways. BMB Rep., 2013, 46(12), 611-616.
[http://dx.doi.org/10.5483/BMBRep.2013.46.12.133] [PMID: 24257119]
[120]
Peter, K.; Tomáš, B.; Jan, H.; Karel, S.; Müller, Z.V.; Shushan, A.; Rabih, T.; Karel, S.; Pavel, S.; Aleš, H. Prenylated flavonoids from morus alba l. cause inhibition of G1/S transition in THP-1 human leukemia cells and prevent the lipopolysaccharide-induced inflammatory response. Evid. Based Complement. Alternat. Med., 2013, 201, 350.
[121]
Cao, Q.; Qin, L.; Huang, F.; Wang, X.; Yang, L.; Shi, H.; Wu, H.; Zhang, B.; Chen, Z.; Wu, X. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson’s disease model mice through PI3K/Akt and ERK signaling pathways. Toxicol. Appl. Pharmacol., 2017, 319(5), 80-90.
[http://dx.doi.org/10.1016/j.taap.2017.01.019] [PMID: 28185818]
[122]
Choi, J.S.; Choi, Y.J.; Shin, S.Y.; Li, J.; Kang, S.W.; Bae, J.Y.; Kim, D.S.; Ji, G.E.; Kang, J.S.; Kang, Y.H. Dietary flavonoids differentially reduce oxidized LDL-induced apoptosis in human endothelial cells: Role of MAPK- and JAK/STAT-signaling. J. Nutr., 2008, 138(6), 983-990.
[http://dx.doi.org/10.1093/jn/138.6.983] [PMID: 18492823]
[123]
Lim, H.; Park, H.; Kim, H.P. Effects of flavonoids on matrix metalloproteinase-13 expression of interleukin-1β-treated articular chondrocytes and their cellular mechanisms: Inhibition of c-Fos/AP-1 and JAK/STAT signaling pathways. J. Pharmacol. Sci., 2011, 116(2), 221-231.
[http://dx.doi.org/10.1254/jphs.11014FP] [PMID: 21606625]
[124]
Jeon, Y.J.; Jung, S.N.; Yun, J.; Lee, C.W.; Choi, J.; Lee, Y.J.; Han, D.C.; Kwon, B.M. Ginkgetin inhibits the growth of DU-145 prostate cancer cells through inhibition of signal transducer and activator of transcription 3 activity. Cancer Sci., 2015, 106(4), 413-420.
[http://dx.doi.org/10.1111/cas.12608] [PMID: 25611086]
[125]
Han, L.; Fang, S.; Li, G.; Wang, M.; Yu, R. Total flavonoids suppress lung cancer growth via the COX-2-mediated Wnt/β-catenin signaling pathway. Oncol. Lett., 2020, 19(3), 1824-1830.
[http://dx.doi.org/10.3892/ol.2020.11271] [PMID: 32194676]
[126]
Kumar, S.; Pathania, A.S.; Saxena, A.K.; Vishwakarma, R.A.; Ali, A.; Bhushan, S. The anticancer potential of flavonoids isolated from the stem bark of Erythrina suberosa through induction of apoptosis and inhibition of STAT signaling pathway in human leukemia HL-60 cells. Chem. Biol. Interact., 2013, 205(2), 128-137.
[http://dx.doi.org/10.1016/j.cbi.2013.06.020] [PMID: 23850732]
[127]
Lingming, K.; Peng, L.; Mingjun, Z.; Zhongpeng, W.; Yang, G.; Keke, L.; Huaitao, W.; Xiaodong, T. The miR-1224-5p/ELF3 axis regulates malignant behaviors of pancreatic cancer via PI3K/AKT/Notch signaling pathways. OncoTargets Ther., 2020, 13, 112-120.
[128]
Han, M.H.; Lee, W.S.; Nagappan, A.; Hong, S.H.; Jung, J.H.; Park, C.; Kim, H.J.; Kim, G.Y.; Kim, G.; Jung, J.M.; Ryu, C.H.; Shin, S.C.; Hong, S.C.; Choi, Y.H. Flavonoids isolated from flowers of Lonicera japonica thunb. inhibit inflammatory responses in bv2 microglial cells by suppressing TNF-α and IL-β Through PI3K/Akt/NF-kb signaling pathways. Phytother. Res., 2016, 30(11), 1824-1832.
[http://dx.doi.org/10.1002/ptr.5688] [PMID: 27534446]
[129]
Huang, D.H.; Jian, J.; Li, S.; Zhang, Y.; Liu, L.Z. TPX2 silencing exerts anti-tumor effects on hepatocellular carcinoma by regulating the PI3K/AKT signaling pathway. Int. J. Mol. Med., 2019, 44(6), 2113-2122.
[http://dx.doi.org/10.3892/ijmm.2019.4371] [PMID: 31638175]
[130]
Isabel, C.; Ángeles, M.M.; Luis, G.; Sonia, R. Cocoa flavonoids attenuate high glucose-induced insulin signalling blockade and modulate glucose uptake and production in human HepG2 cells. Food Chem. Toxicol., 2014, 64, 10-19.
[131]
Hong-Wei, Z.; Jin-Jiao, H.; Ruo-Qiu, F.; Xin, L.; Yan-Hao, Z.; Jing, L.; Lei, L.; Yu-Nong, L.; Qin, D.; Qing-Song, L.; Qin, O.; Ning, G. Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Kγ mediated PI3K/AKT/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells. Sci. Rep., 2018, 8(1), 1255.
[PMID: 29352241]
[132]
Okabe, S.; Tauchi, T.; Tanaka, Y.; Kitahara, T.; Kimura, S.; Maekawa, T.; Ohyashiki, K. Efficacy of the dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with nilotinib against BCR-ABL-positive leukemia cells involves the ABL kinase domain mutation. Cancer Biol. Ther., 2014, 15(2), 207-215.
[http://dx.doi.org/10.4161/cbt.26725] [PMID: 24100660]
[133]
Lee, W.J.; Wu, L.F.; Chen, W.K.; Wang, C.J.; Tseng, T.H. Inhibitory effect of luteolin on hepatocyte growth factor/scatter factor-induced HepG2 cell invasion involving both MAPK/ERKs and PI3K-Akt pathways. Chem. Biol. Interact., 2006, 160(2), 123-133.
[http://dx.doi.org/10.1016/j.cbi.2006.01.002] [PMID: 16458870]
[134]
Cheng, H.; Jiang, X.; Zhang, Q.; Ma, J.; Cheng, R.; Yong, H.; Shi, H.; Zhou, X.; Ge, L.; Gao, G. Naringin inhibits colorectal cancer cell growth by repressing the PI3K/AKT/mTOR signaling pathway. Exp. Ther. Med., 2020, 19(6), 3798-3804.
[http://dx.doi.org/10.3892/etm.2020.8649] [PMID: 32346444]
[135]
Wang, M.; Liu, Y.; Pan, R.L.; Wang, R.Y.; Ding, S.L.; Dong, W.R.; Sun, G.B.; Ye, J.X.; Sun, X.B. Protective effects of Myrica rubra flavonoids against hypoxia/reoxygenation-induced cardiomyocyte injury via the regulation of the PI3K/Akt/GSK3β pathway. Int. J. Mol. Med., 2019, 43(5), 2133-2143.
[http://dx.doi.org/10.3892/ijmm.2019.4131] [PMID: 30864694]
[136]
Choi, E.O.; Hwang, H.J.; Choi, Y.H. Induction of apoptosis Scutellaria baicalensis georgi root extract by inactivation of the phosphatidyl inositol 3-kinase/akt signaling pathway in human leukemia U937 cells. J. Cancer Prev., 2019, 24(1), 11-19.
[http://dx.doi.org/10.15430/JCP.2019.24.1.11] [PMID: 30993090]
[137]
Xiao, D.P.; Jun, S.X.; Yu, M.Z.; Feng, L.; Zhao, C.X.; Fu, P.G.; Yan, J.; Lu, L.; Lihe, J. Oenothein B induced human non-small cell lung cancer A549 cell death by ROS-mediated PI3K/Akt/NF-κB signaling pathway. Chem. Biol. Interact., 2018, (6), 327-340.
[138]
Lim, W.; Song, G. Inhibitory effects of delphinidin on the proliferation of ovarian cancer cells via PI3K/AKT and ERK 1/2 MAPK signal transduction. Oncol. Lett., 2017, 14(1), 810-818.
[http://dx.doi.org/10.3892/ol.2017.6232] [PMID: 28693237]
[139]
Ediriweera, M.K.; Tennekoon, K.H.; Samarakoon, S.R. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin. Cancer Biol., 2019, 59, 147-160.
[http://dx.doi.org/10.1016/j.semcancer.2019.05.012] [PMID: 31128298]
[140]
Xu, X.; Yu, Y.; Zong, K.; Lv, P.; Gu, Y. Up-regulation of IGF2BP2 by multiple mechanisms in pancreatic cancer promotes cancer proliferation by activating the PI3K/Akt signaling pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 497-504.
[http://dx.doi.org/10.1186/s13046-019-1470-y] [PMID: 31852504]
[141]
Li, H.; Chen, J.; Xiong, C.; Wei, H.; Yin, C.; Ruan, J. Apoptosis induction by the total flavonoids from Arachniodes exilis in HepG2 cells through reactive oxygen Species-Mediated Mitochondrial Dysfunction Involving MAPK Activation. Evid. Based Complement. Alternat. Med., 2014, 2014, 906941.
[http://dx.doi.org/10.1155/2014/906941] [PMID: 24976852]
[142]
Tomlinson, M.L.; Butelli, E.; Martin, C.; Carding, S.R. Flavonoids from engineered tomatoes inhibit gut barrier pro-inflammatory cytokines and chemokines, via SAPK/JNK and p38 MAPK pathways. Front. Nutr., 2017, 4, 61.
[http://dx.doi.org/10.3389/fnut.2017.00061] [PMID: 29326940]
[143]
Hong, J.H.; Cao, S.W.; Xiang, S.J.; Ruan, S.F.; An, B.C.; Wang, Z.X.; Wu, W.F.; Chen, H.J.; Weng, L.D.; Zhang, L.; Liu, L.; Chen, Y.Y.; Shen, Q.; Zhu, H.X.; Liu, Q. Glycyrrhiza flavonoids and its major component, licochalcone A, inhibit melanogenesis through MAPK/ERK pathway by activating ERK phosphorylation. J. Dermatol. Sci., 2018, 2(91), 222-225.
[http://dx.doi.org/10.1016/j.jdermsci.2018.04.016] [PMID: 29730172]
[144]
Xue, H.Z.; Yu, H.W.; Wan, L.S.; Shang, Z.M.; Wen, C.; Rong, Q. Rosa rugosa flavonoids alleviate myocardial ischemia reperfusion injury in mice by suppressing JNK and p38 MAPK. Microcirculation, 2017, 24(7)
[http://dx.doi.org/10.1111/micc.12385]
[145]
Ebegboni, V.J.; Balahmar, R.M.; Dickenson, J.M.; Sivasubramaniam, S.D. The effects of flavonoids on human first trimester trophoblast spheroidal stem cell self-renewal, invasion and JNK/p38 MAPK activation: Understanding the cytoprotective effects of these phytonutrients against oxidative stress. Biochem. Pharmacol., 2019, 164, 289-298.
[http://dx.doi.org/10.1016/j.bcp.2019.04.023] [PMID: 31022396]
[146]
Tian, C.; Chen, X.; Chang, Y.; Wang, R.; Ning, J.; Cui, C.; Liu, M. The regulatory effect of flavonoids extracted from Abutilon theophrasti leaves on gene expression in LPS-induced ALI mice via the NF-κB and MAPK signaling pathways. Pharm. Biol., 2019, 57(1), 514-518.
[http://dx.doi.org/10.1080/13880209.2019.1648523] [PMID: 31401916]
[147]
De, M.S. Apigenin causes G2/M arrest associated with the modulation of p21Cip1 and Cdc2 and activates p53-dependent apoptosis pathway in human breast cancer SK-BR-3 cells. Nutr. Biochem, 2009, 20, 285-290.
[http://dx.doi.org/10.1016/j.jnutbio.2008.03.005]
[148]
Liu, B.; Zhang, M.; Liu, S.; Ying, J.; Zhang, J.; Kurihara, H.; Zheng, W.; He, R.R.; Zhu, R. Diosmetin, a potential p53 activator, performs anticancer effect by regulating cell cycling and cell proliferation in HepG2 cells. Protein Pept. Lett., 2017, 24(5), 413-418.
[http://dx.doi.org/10.2174/0929866524666170223094634] [PMID: 28240165]
[149]
Androutsopoulos, V.P.; Spandidos, D.A. The flavonoids diosmetin and luteolin exert synergistic cytostatic effects in human hepatoma HepG2 cells via CYP1A-catalyzed metabolism, activation of JNK and ERK and P53/P21 up-regulation. J. Nutr. Biochem., 2013, 24(2), 496-504.
[http://dx.doi.org/10.1016/j.jnutbio.2012.01.012] [PMID: 22749133]
[150]
Park, H.J.; Kim, M.M. Flavonoids in Ginkgo biloba fallen leaves induce apoptosis through modulation of p53 activation in melanoma cells. Oncol. Rep., 2015, 33(1), 433-438.
[http://dx.doi.org/10.3892/or.2014.3602] [PMID: 25394497]
[151]
Yang, S.H.; Liao, P.H.; Pan, Y.F.; Chen, S.L.; Chou, S.S.; Chou, M.Y. The novel p53-dependent metastatic and apoptotic pathway induced by vitexin in human oral cancer OC2 cells. Phytother. Res., 2013, 27(8), 1154-1161.
[http://dx.doi.org/10.1002/ptr.4841] [PMID: 22976055]
[152]
Fu, S.; Yang, Y.; Liu, D.; Luo, Y.; Ye, X.; Liu, Y.; Chen, X.; Wang, S.; Wu, H.; Wang, Y.; Hu, Q.; You, P. Flavonoids and tannins from Smilax china L. rhizome induce apoptosis via mitochondrial pathway and MDM2-p53 signaling in human lung adenocarcinoma cells. Am. J. Chin. Med., 2017, 45(2), 369-384.
[http://dx.doi.org/10.1142/S0192415X17500239] [PMID: 28231749]
[153]
Chen, M.; Wang, J.T.; Wu, Z.N.; Hu, M.Y.; Gao, H.W. Effect of total flavonoids in Scutellaria barbata in mediating autophagy in tumor cells via PI3K/AKT/mTOR pathway. Zhongguo Zhongyao Zazhi, 2017, 42(7), 1358-1364.
[PMID: 29052399]
[154]
Jhen-Jia, F.; Wen-Hsien, H.; Kuen-Haur, L.; Ku-Chung, C.; Cheng-Wei, L. A, L.Y.; Tzu-Ping, K.; Lang-Ta, L.; Ming-Ting, L.; Mau-Sun, C.; Chia-Hsiung, C. Dietary flavonoids luteolin and quercetin inhibit migration and invasion of squamous carcinoma through reduction of Src/Stat3/S100A7 signaling. Antioxidants (Basel, Switzerland), 2019, 8(11), 557.
[155]
Phromnoi, K.; Yodkeeree, S.; Anuchapreeda, S.; Limtrakul, P. Inhibition of MMP-3 activity and invasion of the MDA-MB-231 human invasive breast carcinoma cell line by bioflavonoids. Acta Pharmacol. Sin., 2009, 30(8), 1169-1176.
[http://dx.doi.org/10.1038/aps.2009.107] [PMID: 19617894]
[156]
Hong, G.E.; Lee, H.J.; Kim, J.A.; Yumnam, S.; Raha, S.; Venkatarame Gowda Saralamma, V.; Heo, J.D.; Lee, S.J.; Kim, E.H.; Won, C.K.; Kim, G.S. Korean Byungkyul - Citrus platymamma Hort.et Tanaka flavonoids induces cell cycle arrest and apoptosis, regulating MMP protein expression in Hep3B hepatocellular carcinoma cells. Int. J. Oncol., 2017, 50(2), 575-586.
[http://dx.doi.org/10.3892/ijo.2016.3816] [PMID: 28035361]
[157]
Kang, Y.; Jang, G.; Ahn, S.; Lee, Y.; Shim, S.Y.; Yoon, Y. Regulation of AKT activity by inhibition of the pleckstrin homology domain-PtdIns(3,4,5)P3 interaction using flavonoids. J. Microbiol. Biotechnol., 2018, 28(8), 1401-1411.
[http://dx.doi.org/10.4014/jmb.1804.04051] [PMID: 30301316]
[158]
Tian, S.S.; Jiang, F.S.; Zhang, K.; Zhu, X.X.; Jin, B.; Lu, J.J.; Ding, Z.S. Flavonoids from the leaves of Carya cathayensis Sarg. inhibit vascular endothelial growth factor-induced angiogenesis. Fitoterapia, 2014, 92, 34-40.
[http://dx.doi.org/10.1016/j.fitote.2013.09.016] [PMID: 24096161]
[159]
Kumazawa, S.; Kubota, S.; Yamamoto, H.; Okamura, N.; Sugiyamab, Y.; Kobayashia, H.; Nakanishi, M.; Ohta, T. Antiangiogenic activity of flavonoids from Melia azedarach. Nat. Prod. Commun., 2013, 8(12), 1719-1720.
[http://dx.doi.org/10.1177/1934578X1300801215] [PMID: 24555281]
[160]
Yu, M.; Yang, S.J.; Ji, Y.B. Research advances in the Anti-tumor angiogenesis of flavonoids. Appl. Mech. Mater., 2013, 536, 27-32.
[161]
Wang, C.; Chen, X.; Yu, T.; Shu, C.; Fan, C.; Yang, J. Structure-based virtual screening and biological evaluation of the flavonoids that target CYP4A and angiogenesis. Drug Metab. Pharmacokinet., 2017, 32(1), 673-689.
[http://dx.doi.org/10.1016/j.dmpk.2016.10.098]
[162]
Lee, L.T.; Huang, Y.T.; Hwang, J.J.; Lee, A.Y.; Ke, F.C.; Huang, C.J.; Kandaswami, C.; Lee, P.P.; Lee, M.T. Transinactivation of the epidermal growth factor receptor tyrosine kinase and focal adhesion kinase phosphorylation by dietary flavonoids: Effect on invasive potential of human carcinoma cells. Biochem. Pharmacol., 2004, 67(11), 2103-2114.
[http://dx.doi.org/10.1016/j.bcp.2004.02.023] [PMID: 15135307]
[163]
Panchal, N.K.; Sabina, E.P. A serine/threonine protein PIM kinase as a biomarker of cancer and a target for anti-tumor therapy. Life Sci., 2020, 255, 117866.
[http://dx.doi.org/10.1016/j.lfs.2020.117866] [PMID: 32479955]
[164]
Schlaepfer, D.D.; Hauck, C.R.; Sieg, D.J. Signaling through focal adhesion kinase. Prog. Biophys. Mol. Biol., 1999, 71(3-4), 435-478.
[http://dx.doi.org/10.1016/S0079-6107(98)00052-2] [PMID: 10354709]
[165]
Nelson, L.J.; Wright, H.J.; Dinh, N.B.; Nguyen, K.D.; Razorenova, O.V.; Heinemann, F.S. Src kinase is biphosphorylated at Y416/Y527 and activates the CUB-domain containing protein 1/protein kinase C δ pathway in a subset of triple-negative Breast Cancers. Am. J. Pathol., 2020, 190(2), 484-502.
[http://dx.doi.org/10.1016/j.ajpath.2019.10.017] [PMID: 31843498]
[166]
Li, Y.; Wang, Z.; Jin, J.; Zhu, S.X.; He, G.Q.; Li, S.H.; Wang, J.; Cai, Y. Quercetin pretreatment enhances the radiosensitivity of colon cancer cells by targeting Notch-1 pathway. Biochem. Biophys. Res. Commun., 2020, 523(4), 947-953.
[http://dx.doi.org/10.1016/j.bbrc.2020.01.048] [PMID: 31964531]
[167]
Yang, Y.; Wang, T.; Chen, D.; Ma, Q.; Zheng, Y.; Liao, S.; Wang, Y.; Zhang, J. Quercetin preferentially induces apoptosis in KRAS-mutant colorectal cancer cells via JNK signaling pathways. Cell Biol. Int., 2019, 43(2), 117-124.
[http://dx.doi.org/10.1002/cbin.11055] [PMID: 30203888]
[168]
Lee, S.M.; Chiang, S.H.; Wang, H.Y.; Wu, P.S.; Lin, C.C. Curcumin enhances the production of major structural components of elastic fibers, elastin, and fibrillin-1, in normal human fibroblast cells. Biosci. Biotechnol. Biochem., 2014, 79(2), 247-252.
[169]
Bachmeier, B.E.; Iancu, C.M.; Killian, P.H.; Kronski, E.; Mirisola, V.; Angelini, G.; Jochum, M.; Nerlich, A.G.; Pfeffer, U. Overexpression of the ATP binding cassette gene ABCA1 determines resistance to Curcumin in M14 melanoma cells. Mol. Cancer, 2009, 8(1), 129.
[http://dx.doi.org/10.1186/1476-4598-8-129] [PMID: 20030852]
[170]
Satoh, Y.; Matsuo, Y.; Kuba, T.; Yamashita, K.; Sawano, M.; Tozaka, S.; Yamazaki, H.; Sonoda, D.; Mikubo, M.; Naito, M.; Matsui, Y.; Shiomi, K.; Yoshida, T.; Murakumo, Y. EGFR mutation genotyping and ALK status determination in liquid-based cytology samples of non-small cell lung cancer. Eur. J. Pathol., 2020, 476(5), 753-762.
[http://dx.doi.org/10.1007/s00428-019-02692-9] [PMID: 31823000]
[171]
Yu, J.J.; Zhou, D.D.; Cui, B.; Zhang, C.; Tan, F.W.; Chang, S.; Li, K.; Lv, X.X.; Zhang, X.W.; Shang, S.; Xiang, Y.J.; Chen, F.; Yu, J.M.; Liu, S.S.; Wang, F.; Hu, Z.W.; Hua, F. Disruption of the EGFR-SQSTM1 interaction by a stapled peptide suppresses lung cancer via activating autophagy and inhibiting EGFR signaling. Cancer Lett., 2020, 474, 23-35.
[http://dx.doi.org/10.1016/j.canlet.2020.01.004] [PMID: 31931029]
[172]
Sheen, Y.S.; Lin, M.H.; Tzeng, W.C.; Chu, C.Y. Purpuric drug eruptions induced by EGFR tyrosine kinase inhibitors are associated with IQGAP1-mediated increase in vascular permeability. J. Pathol., 2020, 250(4), 452-463.
[http://dx.doi.org/10.1002/path.5393] [PMID: 32030757]
[173]
Shen, S.C.; Chen, Y.C.; Hsu, F.L.; Lee, W.R. Differential apoptosis-inducing effect of quercetin and its glycosides in human promyeloleukemic HL-60 cells by alternative activation of the caspase 3 cascade. J. Cell. Biochem., 2003, 89(5), 1044-1055.
[http://dx.doi.org/10.1002/jcb.10559] [PMID: 12874837]
[174]
Ma, X.; Liu, J.; Yang, X.; Fang, K.; Zheng, P.; Liang, X.; Liu, J. Mesenchymal stem cells maintain the stemness of colon cancer stem cells via interleukin-8/mitogen-activated protein kinase signaling pathway. Exp. Biol. Med. (Maywood), 2020, 245(6), 562-575.
[http://dx.doi.org/10.1177/1535370220910690] [PMID: 32122165]
[175]
Luo, M.; Liang, C. LncRNA LINC00483 promotes gastric cancer development through regulating MAPK1 expression by sponging miR-490-3p. Biol. Res., 2020, 53(1), 14.
[http://dx.doi.org/10.1186/s40659-020-00283-6] [PMID: 32293550]
[176]
Pedrosa, A.R.; Bodrug, N.; Gomez-Escudero, J.; Carter, E.P.; Reynolds, L.E.; Georgiou, P.N.; Fernandez, I.; Lees, D.M.; Kostourou, V.; Alexopoulou, A.N.; Batista, S.; Tavora, B.; Serrels, B.; Parsons, M.; Iskratsch, T.; Hodivala-Dilke, K.M. Tumor angiogenesis is differentially regulated by phosphorylation of endothelial cell focal adhesion kinase tyrosines-397 and -861. Cancer Res., 2019, 79(17), 4371-4386.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3934] [PMID: 31189647]
[177]
Marzec, E.; Świtalska, M.; Winiewska-Szajewska, M.; Wójcik, J.; Wietrzyk, J.; Maciejewska, A.M.; Poznański, J.; Mieczkowski, A. The halogenation of natural flavonoids, baicalein and chrysin, enhances their affinity to human protein kinase CK2. IUBMB Life, 2020, 72(6), 1250-1261.
[http://dx.doi.org/10.1002/iub.2298] [PMID: 32364671]
[178]
Sieg, D.J.; Hauck, C.R.; Ilic, D.; Klingbeil, C.K.; Schaefer, E.; Damsky, C.H.; Schlaepfer, D.D. FAK integrates growth-factor and integrin signals to promote cell migration. Nat. Cell Biol., 2000, 2(5), 249-256.
[http://dx.doi.org/10.1038/35010517] [PMID: 10806474]
[179]
Cui, J.; Liu, X.; Chow, L.M.C. Flavonoids as P-gp Inhibitors: A systematic review of SARs. Curr. Med. Chem., 2019, 26(25), 4799-4831.
[http://dx.doi.org/10.2174/0929867325666181001115225] [PMID: 30277144]
[180]
Wesołowska, O.; Wiśniewski, J.; Sroda, K.; Krawczenko, A.; Bielawska-Pohl, A.; Paprocka, M.; Duś, D.; Michalak, K. 8-Prenylnaringenin is an inhibitor of multidrug resistance-associated transporters, P-glycoprotein and MRP1. Eur. J. Pharmacol., 2010, 644(1-3), 32-40.
[http://dx.doi.org/10.1016/j.ejphar.2010.06.069] [PMID: 20633549]
[181]
Xiang, J.; Xing, W.; Jie, Q.; Xuejun, M.; Guoyin, K.; Faliang, A.; Yanhua, L. 2',4'-Dihydroxy-6'-methoxy-3',5'-dimethylchalcone induced apoptosis and G1 cell cycle arrest through PI3K/AKT pathway in BEL-7402/5-FU cells. Food Chem. Toxicol., 2019, 131, 110-125.
[182]
Wesołowska, O.; Wiśniewski, J.; Sroda-Pomianek, K.; Bielawska-Pohl, A.; Paprocka, M.; Duś, D.; Duarte, N.; Ferreira, M.J.; Michalak, K. Multidrug resistance reversal and apoptosis induction in human colon cancer cells by some flavonoids present in citrus plants. J. Nat. Prod., 2012, 75(11), 1896-1902.
[http://dx.doi.org/10.1021/np3003468] [PMID: 23137376]
[183]
Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as important molecules of plant interactions with the environment. Molecules, 2014, 19(10), 16240-16265.
[http://dx.doi.org/10.3390/molecules191016240] [PMID: 25310150]
[184]
Sekher Pannala, A.; Chan, T.S.; O’Brien, P.J.; Rice-Evans, C.A. Flavonoid B-ring chemistry and antioxidant activity: Fast reaction kinetics. Biochem. Biophys. Res. Commun., 2001, 282(5), 1161-1168.
[http://dx.doi.org/10.1006/bbrc.2001.4705] [PMID: 11302737]
[185]
Li, Q.; Zhai, Y.; Luo, W.; Zhu, Z.; Zhang, X.; Xie, S.; Hong, C.; Wang, Y.; Su, Y.; Zhao, J.; Wang, C. Synthesis and biological properties of polyamine modified flavonoids as hepatocellular carcinoma inhibitors. Eur. J. Med. Chem., 2016, 121, 110-119.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.031] [PMID: 27236067]
[186]
González-Paramás, A.M.; Ayuda-Durán, B.; Martínez, S.; González-Manzano, S.; Santos-Buelga, C. The mechanisms behind the biological activity of flavonoids. Curr. Med. Chem., 2019, 26(39), 6976-6990.
[http://dx.doi.org/10.2174/0929867325666180706104829] [PMID: 29984643]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy