Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

The Antibacterial Activity of Quinazoline and Quinazolinone Hybrids

Author(s): Zhenghua Li, Li Zhao, Yunqiang Bian, Yu Li, Jie Qu and Feng Song*

Volume 22, Issue 12, 2022

Published on: 11 April, 2022

Page: [1035 - 1044] Pages: 10

DOI: 10.2174/1568026622666220307144015

Price: $65

Open Access Journals Promotions 2
Abstract

Bacterial infections cause substantial morbidity and mortality across the world and pose serious threats to humankind. Drug resistance, especially multidrug resistance resulting from different defensive mechanisms in bacteria, is the leading cause of the failure of chemotherapy, making it an urgent need to develop more effective antibacterials. Quinazoline and quinazolinone frameworks have received considerable attention due to their diversified therapeutic potential. In particular, quinazoline/quinazolinone hybrids can exert antibacterial activity through various mechanisms and are useful scaffolds for the discovery of novel antibacterials. This review principally emphasizes the antibacterial potential, structure-activity relationships (SARs), and mechanism of action of quinazoline and quinazolinone hybrids, covering articles published between 2017 and 2021.

Keywords: Quinazoline, Quinazolinone, Hybrids, Antibacterial, Drug resistance, Structure-activity relationship.

Graphical Abstract
[1]
Garland, M.; Loscher, S.; Bogyo, M. Chemical strategies to target bacterial virulence. Chem. Rev., 2017, 117(5), 4422-4461.
[http://dx.doi.org/10.1021/acs.chemrev.6b00676] [PMID: 28234447]
[2]
Dong, X.; Zhang, C.Y.; Jin, G.; Wang, Z. Targeting of nanotherapeutics to infection sites for antimicrobial therapy. Adv. Ther. (Weinh.), 2019, 2(11), e1900095.
[http://dx.doi.org/10.1002/adtp.201900095] [PMID: 33313384]
[3]
Deusenbery, C.; Wang, Y.; Shukla, A. Recent innovations in bacterial infection detection and treatment. ACS Infect. Dis., 2021, 7(4), 695-720.
[http://dx.doi.org/10.1021/acsinfecdis.0c00890] [PMID: 33733747]
[4]
Li, M.; Mai, B.; Wang, A.; Gao, Y.; Wang, X.; Liu, X.; Song, S.; Liu, Q.; Wei, S.; Wang, P. Photodynamic antimicrobial chemotherapy with cationic phthalocyanines against Escherichia coli planktonic and biofilm cultures. RSC Advances, 2017, 7(65), 40734-40744.
[http://dx.doi.org/10.1039/C7RA06073D]
[5]
Varela, M.F.; Stephen, J.; Lekshmi, M.; Ojha, M.; Wenzel, N.; Sanford, L.M.; Hernandez, A.J.; Parvathi, A.; Kumar, S.H. Bacterial re-sistance to antimicrobial agents. Antibiotics (Basel), 2021, 10(5), e593.
[http://dx.doi.org/10.3390/antibiotics10050593] [PMID: 34067579]
[6]
Khan, R.; Kumar, A. Overview of antibiotic resistance. J. Pharm. Res., 2017, 11(6), 703-711.
[7]
Hameed, A.; Al-Rashida, M.; Uroos, M.; Ali, S.A. Arshia; Ishtiaq, M.; Khan, K.M. Quinazoline and quinazolinone as important medic-inal scaffolds: A comparative patent review (2011-2016). Expert Opin. Ther. Pat., 2018, 28(4), 281-297.
[http://dx.doi.org/10.1080/13543776.2018.1432596] [PMID: 29368977]
[8]
Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazoli-none skeletons: The advances continue. Eur. J. Med. Chem., 2015, 90, 124-169.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.084] [PMID: 25461317]
[9]
Jafari, E.; Khajouei, M.R.; Hassanzadeh, F.; Hakimelahi, G.H.; Khodarahmi, G.A. Quinazolinone and quinazoline derivatives: Recent structures with potent antimicrobial and cytotoxic activities. Res. Pharm. Sci., 2016, 11(1), 1-14.
[PMID: 27051427]
[10]
Khan, I.; Zaib, S.; Batool, S.; Abbas, N.; Ashraf, Z.; Iqbal, J.; Saeed, A. Quinazolines and quinazolinones as ubiquitous structural frag-ments in medicinal chemistry: An update on the development of synthetic methods and pharmacological diversification. Bioorg. Med. Chem., 2016, 24(11), 2361-2381.
[http://dx.doi.org/10.1016/j.bmc.2016.03.031] [PMID: 27112448]
[11]
Auti, P.S.; George, G.; Paul, A.T. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Advances, 2020, 10(68), 41353-41392.
[http://dx.doi.org/10.1039/D0RA06642G]
[12]
Saadeh, H.A.; Mubarak, M.S. Hybrid drugs as potential combatants against drug-resistant microbes: A review. Curr. Top. Med. Chem., 2017, 17(8), 895-906.
[http://dx.doi.org/10.2174/1568026616666160927155251] [PMID: 27697051]
[13]
Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov. Today, 2017, 22(10), 1572-1581.
[http://dx.doi.org/10.1016/j.drudis.2017.05.014] [PMID: 28676407]
[14]
Strzelecka, M. Świątek, P. 1,2,4-Triazoles as important antibacterial agents. Pharmaceuticals (Basel), 2021, 14(3), e224.
[http://dx.doi.org/10.3390/ph14030224] [PMID: 33799936]
[15]
Xu, Z. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem., 2020, 206, 112686.
[http://dx.doi.org/10.1016/j.ejmech.2020.112686] [PMID: 32795773]
[16]
Ge, X.; Xu, Z. 1,2,4-Triazole hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus. Arch. Pharm. (Weinheim), 2021, 354(1), e2000223.
[http://dx.doi.org/10.1002/ardp.202000223] [PMID: 32985011]
[17]
Gatadi, S.; Gour, J.; Shukla, M.; Kaul, G.; Das, S.; Dasgupta, A.; Malasala, S.; Borra, R.S.; Madhavi, Y.V.; Chopra, S.; Nanduri, S. Syn-thesis of 1,2,3-triazole linked 4(3H)-Quinazolinones as potent antibacterial agents against multidrug-resistant Staphylococcus aureus. Eur. J. Med. Chem., 2018, 157, 1056-1067.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.070] [PMID: 30176536]
[18]
Gatadi, S.; Gour, J.; Shukla, M.; Kaul, G.; Dasgupta, A.; Madhavi, Y.V.; Chopra, S.; Nanduri, S. Synthesis and evaluation of new quinazolin-4(3H)-one derivatives as potent antibacterial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tu-berculosis. Eur. J. Med. Chem., 2019, 175, 287-308.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.067] [PMID: 31096152]
[19]
GłGowacka, I.E.; Grzonkowski, P.; Lisiecki, P.; Kalinowski, Ł.; Piotrowska, D.G. Synthesis and antimicrobial activity of novel 1,2,3-triazole-conjugates of quinazolin-4-ones. Arch. Pharm. (Weinheim), 2019, 352(3), e1800302.
[http://dx.doi.org/10.1002/ardp.201800302] [PMID: 30698294]
[20]
Maddali, N.K.; Viswanath, I.V.K.; Murthy, Y.L.N.; Bera, R.; Takhi, M.; Rao, N.S.; Gudla, V. Design, synthesis and molecular docking studies of quinazolin-4-ones linked to 1,2,3-triazol hybrids as Mycobacterium tuberculosis H37Rv inhibitors besides antimicrobial activi-ty. Med. Chem. Res., 2019, 28(4), 559-570.
[http://dx.doi.org/10.1007/s00044-019-02313-9]
[21]
Finiuk, N.; Klyuchivska, O.; Manko, N.; Matiychuk, V.; Obushak, M.; Pokhodylo, N.; Stoika, R. Primary discovery of 1-aryl-5-substituted-1H-1,2,3-triazole-4-carboxamides as promising antimicrobial agents. J. Mol. Struct., 2021, 1246, e131146.
[http://dx.doi.org/10.1016/j.molstruc.2021.131146]
[22]
Kazemi, S.S.; Keivanloo, A.; Nasr-Isfahani, H.; Amin, A.H. Synthesis and antibacterial evaluation of 1,2,3-triazole-based quinazolines using click chemistry in the presence of salophen Schiff base ligand. J. Heterocycl. Chem., 2018, 55(7), 1651-1657.
[http://dx.doi.org/10.1002/jhet.3200]
[23]
Kumar Pandey, S.; Yadava, U.; Upadhyay, A.; Sharma, M.L. Synthesis, biological evaluation and molecular docking studies of novel quinazolinones as antitubercular and antimicrobial agents. Bioorg. Chem., 2021, 108, 104611.
[http://dx.doi.org/10.1016/j.bioorg.2020.104611] [PMID: 33484939]
[24]
Zeydi, M.M.; Montazeri, N.; Fouladi, M. Synthesis and evaluation of novel [1,2,4]triazolo[1,5-c]quinazoline derivatives as antibacterial agents. J. Heterocycl. Chem., 2017, 54(6), 3549-3553.
[http://dx.doi.org/10.1002/jhet.2979]
[25]
Antypenko, L.M.; Kovalenko, S.I.; Los’, T.S.; Rebec’, O.L. Synthesis and characterization of novel N-(phenyl, benzyl, hetaryl)-2-([1,2,4]triazolo[1,5-c]quinazolin-2-ylthio)acetamides by spectral data, antimicrobial activity, molecular docking and QSAR studies. J. Heterocycl. Chem., 2017, 54(2), 1267-1278.
[http://dx.doi.org/10.1002/jhet.2702]
[26]
Gadhave, R.V.; Kuchekar, B.S. Design, synthesis and biological evaluation of novel benzothiazole based [1,2,4]triazolo[4,3-c]quinazoline derivatives. Asian J. Chem., 2020, 32(3), 580-586.
[http://dx.doi.org/10.14233/ajchem.2020.22453]
[27]
Kishbaugh, T.L.S. Pyridines and imidazopyridines with medicinal significance. Curr. Top. Med. Chem., 2016, 16(28), 3274-3302.
[http://dx.doi.org/10.2174/1568026616666160506145141] [PMID: 27150370]
[28]
Basha, J.; Goudgaon, N.M. A comprehensive review on pyrimidine analogs-versatile scaffold with medicinal and biological potential. J. Mol. Struct., 2021, 1246, e131168.
[http://dx.doi.org/10.1016/j.molstruc.2021.131168]
[29]
Siddiqui, N.; Ahsan, W.; Shamsher, A.; Andalip, A.; Azad, B.; Jawaid, A. Newer biologically active pyridines: A potential review. Res. J. Pharm. Technol., 2011, 4(12), 1918-1932.
[30]
Zhuang, J.; Ma, S. Recent development of pyrimidine-containing antimicrobial agents. ChemMedChem, 2020, 15(20), 1875-1886.
[http://dx.doi.org/10.1002/cmdc.202000378] [PMID: 32797654]
[31]
Ankireddy, A.R.; Syed, R.; Gundla, R.; Manasa, K.L.; Reddy, C.V.R.; Yatam, S.; Paidikondala, K. Kumada cross coupling reaction for the synthesis of quinazoline derivatives, evaluation of their antibacterial activity and docking studies. Russ. J. Gen. Chem., 2019, 89(12), 2544-2557.
[http://dx.doi.org/10.1134/S107036321912034X]
[32]
Jiang, Z.; Hong, W.D.; Cui, X.; Gao, H.; Wu, P.; Chen, Y.; Shen, D.; Zhao, S.; Zhang, K. Synthesis and structure-activity relationship of N4-benzylamine-N2-isopropyl-quinazoline-2,4-diamines derivatives as potential antibacterial agents. RSC Advances, 2017, 7(82), 52227-52237.
[http://dx.doi.org/10.1039/C7RA10352B]
[33]
Kumar, N.R.; Swaroop, D.K.; Punna, N.; Sirisha, K.; Ganapathi, T.; Kumar, C.G.; Narsaiah, B. Synthesis of novel pyri-do[2′,3′:3,4]pyrazolo[1,5-a]quinazoline derivatives, their biological evaluation and molecular modelling studies. ChemistrySelect, 2018, 3(27), 7813-7821.
[http://dx.doi.org/10.1002/slct.201801186]
[34]
Eweas, A.F.; Abdallah, Q.M.A.; Elbadawy, M.F. Synthesis and biological evaluation of some new 2-pyridylquinazoline derivatives. Curr. Chem. Lett., 2021, 10(4), 459-470.
[http://dx.doi.org/10.5267/j.ccl.2021.4.005]
[35]
Poudapally, S.; Gurram, V.; Garlapati, R.; Tulluri, C.; Addepally, U.; Vidya, K.; Sharma, S.; Sen, S.; Pottabathini, N. Cu-free Sonogashira type cross-coupling of 6-halo-2-cyclopropyl-3-(pyridyl-3-ylmethyl) quinazolin-4(3H)-ones as potential antimicrobial agents. J. Heterocycl. Chem., 2017, 54(4), 2272-2286.
[http://dx.doi.org/10.1002/jhet.2815]
[36]
Zeid, I.F.; Kassem, E.M.; Mohamed, N.A.; Salman, A.A.; Shalaby, A.S.G. Enhancement of different biomedical activities of newly syn-thesized quinazoline derivatives. J. Heterocycl. Chem., 2018, 55(6), 1280-1290.
[http://dx.doi.org/10.1002/jhet.3147]
[37]
Desai, N.C.; Jadeja, K.A.; Jadeja, D.J.; Khedkar, V.M.; Jha, P.C. Design, synthesis, antimicrobial evaluation, and molecular docking study of some 4-thiazolidinone derivatives containing pyridine and quinazoline moiety. Synth. Commun., 2021, 51(6), 952-963.
[38]
Rasapalli, S.; Murphy, Z.F.; Sammeta, V.R.; Golen, J.A.; Weig, A.W.; Melander, R.J.; Melander, C.; Macha, P.; Vasudev, M.C. Synthesis and biofilm inhibition studies of 2-(2-amino-6-arylpyrimidin-4-yl)quinazolin-4(3H)-ones. Bioorg. Med. Chem. Lett., 2020, 30(23), 127550.
[http://dx.doi.org/10.1016/j.bmcl.2020.127550] [PMID: 32927027]
[39]
Kaur, R.; Palta, K.; Kumar, M.; Bhargava, M.; Dahiya, L. Therapeutic potential of oxazole scaffold: A patent review (2006-2017). Expert Opin. Ther. Pat., 2018, 28(11), 783-812.
[http://dx.doi.org/10.1080/13543776.2018.1526280] [PMID: 30239247]
[40]
Verma, R.; Verma, S.K.; Rakesh, K.P.; Girish, Y.R.; Ashrafizadeh, M.; Sharath Kumar, K.S.; Rangappa, K.S. Pyrazole-based analogs as potential antibacterial agents against methicillin-resistance Staphylococcus aureus (MRSA) and its SAR elucidation. Eur. J. Med. Chem., 2021, 212, 113134.
[http://dx.doi.org/10.1016/j.ejmech.2020.113134] [PMID: 33395624]
[41]
Cascioferro, S.; Parrino, B.; Carbone, D.; Schillaci, D.; Giovannetti, E.; Cirrincione, G.; Diana, P. Thiazoles, their benzofused systems, and thiazolidinone derivatives: Versatile and promising tools to combat antibiotic resistance. J. Med. Chem., 2020, 63(15), 7923-7956.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01245] [PMID: 32208685]
[42]
Patel, A.B. Investigation of the antibacterial activity of new quinazoline derivatives against methicillin and quinolone resistant Staphylo-coccus aureus. J. Chem. Res., 2020, 44(5-6), 315-321.
[http://dx.doi.org/10.1177/1747519819895887]
[43]
Desai, N.; Shihory, N.; Khasiya, A.; Pandit, U.; Khedkar, V. Quinazoline clubbed thiazole and 1,3,4-oxadiazole heterocycles: Synthesis, characterization, antibacterial evaluation, and molecular docking studies. Phosphorus Sulfur Silicon Relat. Elem., 2021, 196(6), 569-577.
[http://dx.doi.org/10.1080/10426507.2021.1871732]
[44]
Hantsu, S.H.; Gupta, V.; Narang, R. Synthesis and antibacterial activity of novel 3-[5-(4-substituted) phenyl-1,3,4-oxadiazole-2yl]-2-styrylquinazolin-4(3H)-ones. J. Pharm. Res., 2017, 11(9), 1122-1126.
[45]
Kumar, A.S.; Kudva, J.; Kumar, S.M.; Vishwanatha, U.; Kumar, V.; Naral, D. Synthesis, characterization, crystal structure, Hirshfeld interaction and bio-evaluation studies of 4-amino quinazoline sulfonamide derivatives. J. Mol. Struct., 2018, 1167, 142-153.
[http://dx.doi.org/10.1016/j.molstruc.2018.04.055]
[46]
El-Shenawy, A.I. Synthesis, characterization and biological activity of new 3(4H)-quinazolinone derivatives. Russ. J. Gen. Chem., 2017, 87(9), 2067-2072.
[http://dx.doi.org/10.1134/S1070363217090237]
[47]
El-Shenawy, A.I. Synthesis and in vitro antibacterial evaluation of some novel annulated quinazolinone derivatives. Russ. J. Gen. Chem., 2018, 88(8), 1712-1719.
[http://dx.doi.org/10.1134/S107036321808025X]
[48]
Mahmoud, M.R.; Abdelwahab, S.S.; Saied, K.F. Synthesis of novel 2, 3-disubstituted quinazolin-4-(3H)-ones and their antibacterial activity on the ultra-structure of some pathogenic microorganisms. Egypt. J. Chem., 2017, 60(6), 1059-1066.
[49]
Mallikarjuna, L.R.; Lavanya, G.; Teja, G.L.; Padmaja, A.; Padmavathi, V. Synthesis and antibacterial activity of sulfur-linked bis and tris heterocycles. J. Heterocycl. Chem., 2017, 54(5), 2755-2766.
[http://dx.doi.org/10.1002/jhet.2878]
[50]
Pisal, P.; Deodhar, M.; Kale, A.; Nigade, G.; Pawar, S. Design, synthesis, docking studies and biological evaluation of 2-phenyl-3-(substituted benzo[d]thiazol-2-ylamino)-quinazoline-4(3H)-one derivatives as antimicrobial agents. Int. J. Pharm. Pharm. Sci., 2018, 10(10), 57-61.
[http://dx.doi.org/10.22159/ijpps.2018v10i10.28480]
[51]
Nandwana, N.K.; Singh, R.P.; Patel, O.P.S.; Dhiman, S.; Saini, H.K.; Jha, P.N.; Kumar, A. Design and synthesis of imid-azo/benzimidazo[1,2-c]quinazoline derivatives and evaluation of their antimicrobial activity. ACS Omega, 2018, 3(11), 16338-16346.
[http://dx.doi.org/10.1021/acsomega.8b01592] [PMID: 31458269]
[52]
Korrapati, S.B.; Yedla, P.; Pillai, G.G.; Mohammad, F.; Reddy, Ch.V.R.; Bhamidipati, P.; Amanchy, R.; Syed, R.; Kamal, A. In-silico driven design and development of spirobenzimidazo-quinazolines as potential DNA gyrase inhibitors. Biomed. Pharmacother., 2021, 134, e111132.
[http://dx.doi.org/10.1016/j.biopha.2020.111132]
[53]
Hasan, H.A.; Abdulmalek, E.; Saleh, T.A.; Abdul Rahman, M.B.; Shaari, K.B.; Yamin, B.M.; Chan, K.W. Synthesis of novel 6-substituted-5,6-dihydrobenzo[4,5]imidazo[1,2-c]quinazoline compounds and evaluation of their properties. J. Mol. Struct., 2019, 1193, 482-494.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.111]
[54]
Malasala, S.; Ahmad, M.N.; Akunuri, R.; Shukla, M.; Kaul, G.; Dasgupta, A.; Madhavi, Y.V.; Chopra, S.; Nanduri, S. Synthesis and evaluation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Eur. J. Med. Chem., 2021, 212, 112996.
[http://dx.doi.org/10.1016/j.ejmech.2020.112996] [PMID: 33190958]
[55]
Sahoo, C.R.; Sahoo, J.; Mahapatra, M.; Lenka, D.; Sahu, P.K.; Dehury, B.; Padhy, R.N.; Paidesetty, S.K. Coumarin derivatives as promis-ing antibacterial agent(s). Arab. J. Chem., 2021, 14(2), e102922.
[http://dx.doi.org/10.1016/j.arabjc.2020.102922]
[56]
Hu, Y.Q.; Zhang, S.; Xu, Z.; Lv, Z.S.; Liu, M.L.; Feng, L.S. 4-Quinolone hybrids and their antibacterial activities. Eur. J. Med. Chem., 2017, 141, 335-345.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.050] [PMID: 29031077]
[57]
Jia, Y.; Zhao, L. The antibacterial activity of fluoroquinolone derivatives: An update (2018-2021). Eur. J. Med. Chem., 2021, 224, 113741.
[http://dx.doi.org/10.1016/j.ejmech.2021.113741] [PMID: 34365130]
[58]
Hemdan, M.M.; Youssef, A.S.A.; El-Mariah, F.A.; Hashem, H.E. Synthesis and antimicrobial assessments of some quinazolines and their annulated systems. J. Chem. Res., 2017, 41(2), 106-111.
[http://dx.doi.org/10.3184/174751917X14858862342269]
[59]
Norouzbahari, M. Salarinejad, S.; Güran, M.; Şanlıtürk, G.; Emamgholipour, Z.; Bijanzadeh, H.R.; Toolabi, M.; Foroumadi, A. Design, synthesis, molecular docking study, and antibacterial evaluation of some new fluoroquinolone analogues bearing a quinazolinone moie-ty. Daru, 2020, 28(2), 661-672.
[http://dx.doi.org/10.1007/s40199-020-00373-6] [PMID: 33030668]
[60]
Rajput, R. Synthesis and pharmacological evaluation of some novel 1,2,3,4-tetrahydroquinazolinone derivatives. Int. J. Pharm. Sci. Res., 2020, 11(8), 3912-3922.
[61]
Khan, F.A.; Mushtaq, S.; Naz, S.; Farooq, U.; Zaidi, A.; Bukhari, S.M.; Rauf, A.; Mubarak, M.S. Sulfonamides as potential bioactive scaffolds. Curr. Org. Chem., 2018, 22(8), 818-830.
[http://dx.doi.org/10.2174/1385272822666180122153839]
[62]
Ovung, A.; Bhattacharyya, J. Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions. Biophys. Rev., 2021, 13(2), 259-272.
[http://dx.doi.org/10.1007/s12551-021-00795-9] [PMID: 33936318]
[63]
Kumar Verma, S.; Verma, R.; Xue, F.; Kumar Thakur, P.; Girish, Y.R.; Rakesh, K.P. Antibacterial activities of sulfonyl or sulfonamide containing heterocyclic derivatives and its structure-activity relationships (SAR) studies: A critical review. Bioorg. Chem., 2020, 105, 104400.
[http://dx.doi.org/10.1016/j.bioorg.2020.104400] [PMID: 33128966]
[64]
Petkar, P.A.; Jagtap, J.R. A review on antimicrobial potential of sulfonamide scaffold. Int. J. Pharm. Sci. Res., 2021, 12(5), 2535-2547.
[65]
Qian, Y.; Allegretta, G.; Janardhanan, J.; Peng, Z.; Mahasenan, K.V.; Lastochkin, E.; Gozun, M.M.N.; Tejera, S.; Schroeder, V.A.; Wolter, W.R.; Feltzer, R.; Mobashery, S.; Chang, M. Exploration of the structural space in 4(3H)-quinazolinone antibacterials. J. Med. Chem., 2020, 63(10), 5287-5296.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00153] [PMID: 32343145]
[66]
Ghorab, M.M.; Alqahtani, A.S.; Soliman, A.M.; Askar, A.A. Novel N-(substituted) thioacetamide quinazolinone benzenesulfonamides as antimicrobial agents. Int. J. Nanomedicine, 2020, 15, 3161-3180.
[http://dx.doi.org/10.2147/IJN.S241433] [PMID: 32440116]
[67]
Leggott, A.; Clarke, J.E.; Chow, S.; Warriner, S.L.; O’Neill, A.J.; Nelson, A. Activity-directed expansion of a series of antibacterial agents. Chem. Commun. (Camb.), 2020, 56(58), 8047-8050.
[http://dx.doi.org/10.1039/D0CC02361B] [PMID: 32538401]
[68]
Nasab, R.R.; Hassanzadeh, F.; Khodarahmi, G.A.; Rostami, M.; Mirzaei, M.; Jahanian-Najafabadi, A.; Mansourian, M. Docking study, synthesis and antimicrobial evaluation of some novel 4-anilinoquinazoline derivatives. Res. Pharm. Sci., 2017, 12(5), 425-433.
[http://dx.doi.org/10.4103/1735-5362.213988] [PMID: 28974981]
[69]
Chen, H.; Hou, B.; Liu, J.; Liu, L.; Ma, X.; Wang, C.; Wang, J.; Wang, R.; Wang, Y.; Zheng, X. Synthesis of substituted tryptanthrin via aryl halides and amines as antitumor and anti-MRSA agents. Tetrahedron, 2019, 75(48), e130351.
[http://dx.doi.org/10.1016/j.tet.2019.05.030]
[70]
Barreiro, S.; Freitas-Silva, J.; Kijjoa, A.; Long, S.; Martins Da Costa, P.; Palmeira, A.; Pereira-Terra, P.; Sousa, E.; Tiritan, M.E. New marine-derived indolymethyl pyrazinoquinazoline alkaloids with promising antimicrobial profiles. RSC Advances, 2020, 10(52), 31187-31204.
[http://dx.doi.org/10.1039/D0RA05319H]
[71]
Ullas, B.J.; Rakesh, K.P.; Shivakumar, J.; Gowda, D.C.; Chandrashekara, P.G. Multi-targeted quinazolinone-Schiff’s bases as potent bio-therapeutics. Results Chem., 2020, 2, e100067.
[http://dx.doi.org/10.1016/j.rechem.2020.100067]
[72]
Rakesh, K.P.; Kumara, H.K.; Ullas, B.J.; Shivakumara, J.; Channe Gowda, D. Amino acids conjugated quinazolinone-Schiff’s bases as potential antimicrobial agents: Synthesis, SAR and molecular docking studies. Bioorg. Chem., 2019, 90, 103093.
[http://dx.doi.org/10.1016/j.bioorg.2019.103093] [PMID: 31288137]
[73]
Dixit, A.; Pathak, D.; Sharma, G.K. Synthesis, antibacterial and antioxidant activity of novel 12-(N-arylmethaniminyl)indolo[1,2-c]quinazolines. J. Pharm. Res., 2019, 23(3), 584-595.
[74]
Ramkissoon, A.; Seepersaud, M.; Maxwell, A.; Jayaraman, J.; Ramsubhag, A. Isolation and antibacterial activity of indole alkaloids from Pseudomonas aeruginosa UWI-1. Molecules, 2020, 25(16), e3744.
[http://dx.doi.org/10.3390/molecules25163744] [PMID: 32824432]
[75]
Pulipati, Y.; Gurram, V.; Laxmi, S.V.; Satyanarayana, Y.; Singh, K.; Kumar, V.; Sharma, S.; Pottabathini, N.; Iska, V.B.R. Suzuki-Miyaura coupling of quinazolines containing an unprotected NH2 group: Synthesis and biological testing of quinazoline derivatives. Synth. Commun., 2017, 47(12), 1142-1150.
[http://dx.doi.org/10.1080/00397911.2017.1315672]
[76]
Guo, J.; Chen, B.; Yu, Y.; Cheng, B.; Ju, Y.; Tang, J.; Cai, Z.; Gu, Q.; Xu, J.; Zhou, H. Structure-guided optimization and mechanistic study of a class of quinazolinone-threonine hybrids as antibacterial ThrRS inhibitors. Eur. J. Med. Chem., 2020, 207, 112848.
[http://dx.doi.org/10.1016/j.ejmech.2020.112848] [PMID: 32980741]
[77]
Hrast, M.; Rožman, K. Jukič, M.; Patin, D.; Gobec, S.; Sova, M. Synthesis and structure-activity relationship study of novel quinazoli-none-based inhibitors of MurA. Bioorg. Med. Chem. Lett., 2017, 27(15), 3529-3533.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.064] [PMID: 28579123]
[78]
Saleeb, M.; Sundin, C.; Aglar, Ö.; Pinto, A.F.; Ebrahimi, M.; Forsberg, Å.; Schüler, H.; Elofsson, M. Structure-activity relationships for inhibitors of Pseudomonas aeruginosa exoenzyme S ADP-ribosyltransferase activity. Eur. J. Med. Chem., 2018, 143, 568-576.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.036] [PMID: 29207339]
[79]
Hamid, A.M.A.; Shehta, W. Utility of 2-furan-2-yl-4-mercapto-6-methylpyrimidine-5-carbonitrile as a precursor for the synthesis of some novel pyrimidines: Antibacterial activity. J. Iran. Chem. Soc., 2018, 15(12), 2771-2779.
[http://dx.doi.org/10.1007/s13738-018-1464-2]
[80]
Nasrullaev, A.O.; Islamova, Z.I.; Élmuradov, B.Z.; Bektemirov, A.M.; Osipova, S.O.; Khushbaktova, Z.A.; Syrov, V.N.; Shakhidoyatov, K.M. Synthesis and antimicrobial activity of tricyclic quinazolinethiones. Pharm. Chem. J., 2017, 51(5), 355-360.
[http://dx.doi.org/10.1007/s11094-017-1614-3]
[81]
Asadi, P.; Khodarahmi, G.; Jahanian-Najafabadi, A.; Saghaie, L.; Hassanzadeh, F. Biologically active heterocyclic hybrids based on quinazolinone, benzofuran and imidazolium moieties: Synthesis, characterization, cytotoxic and antibacterial evaluation. Chem. Biodivers., 2017, 14(4), E1600411.
[http://dx.doi.org/10.1002/cbdv.201600411] [PMID: 28002645]
[82]
Asadi, P.; Khodarahmi, G.; Jahanian-Najafabadi, A.; Saghaie, L.; Hassanzadeh, F. Synthesis, characterization, molecular docking studies and biological evaluation of some novel hybrids based on quinazolinone, benzofuran and imidazolium moieties as potential cytotoxic and antimicrobial agents. Iran. J. Basic Med. Sci., 2017, 20(9), 975-989.
[PMID: 29085591]
[83]
Qureshi, S.I.; Chaudhari, H.K. Design, synthesis, in-silico studies and biological screening of quinazolinone analogues as potential anti-bacterial agents against MRSA. Bioorg. Med. Chem., 2019, 27(12), 2676-2688.
[http://dx.doi.org/10.1016/j.bmc.2019.05.012] [PMID: 31103406]
[84]
Zayed, M.F.; Ibrahim, S.R.M.; Habib, E.E.; Hassan, M.H.; Ahmed, S.; Rateb, H.S. Design, synthesis, antimicrobial and anti-biofilm eval-uation, and molecular docking of newly substituted fluoroquinazolinones. Med. Chem., 2019, 15(6), 659-675.
[http://dx.doi.org/10.2174/1573406414666181109092944] [PMID: 30411687]
[85]
Manhas, N.; Singh, P.; Mocktar, C.; Singh, M.; Koorbanally, N. Cytotoxicity and antibacterial evaluation of O-alkylated/acylated quinazolin-4-one Schiff bases. Chem. Biodivers., 2021, 18(5), e2100096.
[http://dx.doi.org/10.1002/cbdv.202100096] [PMID: 33724670]
[86]
Dhokale, S.R.; Thakar, S.R.; Bansode, D.A.; Mahadik, K.R. Synthesis, screening of novel 1-substituted-3-(4-oxo-2-phenylquinazolin-3(4H)-yl) urea and thiourea analogues as potent antibacterials. Int. J. Pharm. Pharm. Sci., 2019, 11(11), 38-42.
[http://dx.doi.org/10.22159/ijpps.2019v11i11.35461]
[87]
Dwivedi, J.; Kishore, D.; Misra, A.; Sharma, S.; Shukla, S. Bacterial cell leakage potential of newly synthesized quinazoline derivatives of 1,5-benzodiazepines analogue. J. Heterocycl. Chem., 2020, 57(4), 1545-1558.
[http://dx.doi.org/10.1002/jhet.3879]
[88]
Dinari, M.; Gharahi, F.; Asadi, P. Synthesis, spectroscopic characterization, antimicrobial evaluation and molecular docking study of novel triazine-quinazolinone based hybrids. J. Mol. Struct., 2018, 1156, 43-50.
[http://dx.doi.org/10.1016/j.molstruc.2017.11.087]
[89]
Wang, H.X.; Liu, H.Y.; Li, W.; Zhang, S.; Wu, Z.; Li, X.; Li, C.W.; Liu, Y.M.; Chen, B.Q. Design, synthesis, antiproliferative and antibac-terial evaluation of quinazolinone derivatives. Med. Chem. Res., 2019, 28(2), 203-214.
[http://dx.doi.org/10.1007/s00044-018-2276-8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy