Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Research Article

Poloxamer based Urapidil Loaded Chitosan Microparticle in Approach to Improve the Mechanical Strength by Tensile Strength and Entrapment Determination

Author(s): Harekrishna Roy, Bhabani Shankar Nayak and Sisir Nandi*

Volume 17, Issue 1, 2022

Published on: 31 March, 2022

Page: [56 - 70] Pages: 15

DOI: 10.2174/1574885517666220307120643

Price: $65

Open Access Journals Promotions 2
Abstract

Background: The literature review has highlighted the issues related to the poor mechanical strength of chitosan-based microparticles. In an attempt to resolve the drawbacks, the microparticles were prepared with a suitable combination of poloxamer-188 (pluronic) and chitosan-based hydrogels.

Objective: The current study dealt with urapidil-loaded chitosan microparticles incorporating chitosanbased hydrogels and small polyanionic electrolytes. The mechanical strength was ascertained by entrapment efficiency and texture analyzer.

Methods: Chitosan-based hydrogels and the combination of poloxamer and further microparticles were prepared by the counter-ion aggregation technique in a polyanionic electrolyte medium (20 % w/v). During the preparation, poloxamer was incorporated to improve the mechanical strength, which was ascertained in terms of adhesive strength (tensile strength) by texture analyzer and entrapment efficiency. The prepared microparticles were also subjected to micrometric studies, swelling index, surface morphology study, drug-polymer interaction study, and zeta analysis.

Results: A remarkable increase in entrapment efficiency (maximum of 78.56 % from SSP4) was observed with the progressive increase in poloxamer-188. In addition to that, the adhesive strength was also studied by a texture analyzer for all microparticles. Sodium citrate-based products exhibited superior adhesive strength values than sodium sulfate- and sodium tripolyphosphate-based products, indicating the significance of incorporating poloxamer-188. A significant finding was also recorded for the swelling properties at microenvironmental pH attributed to polyanions. It was observed that sodium TPP microparticles continued to swell in a phosphate buffer of pH 6.8. Zeta value was found to be maximum with -5.2 mV; however, it could further be improved by adding electrolytes. TPP4 showed a comparatively larger particle size of 8.07 μm. Polydispersity index value revealed homogenous dispersion of microparticles. SEM study revealed prominent porous surfaces for sodium tripolyphosphate microparticles.

Conclusion: The study revealed that the addition of poloxamer-188 improved the mechanical strength, identified by entrapment efficiency and texture analysis. SCP4 microparticle was found to be the best formulation among all.

Keywords: Mechanical strength, chitosan microparticle, poloxamer-188, texture analyzer, microparticles, entrapment efficiency, chitosan-based hydrogels.

Graphical Abstract
[1]
Wong CY, Al-Salami H, Dass CR. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. Int J Pharm 2018; 537(1-2): 223-44.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.036] [PMID: 29288095]
[2]
Nidhi Rashid M, Kaur V, Hallan SS, Sharma S, Mishra N. Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: A brief review. Saudi Pharm J 2016; 24(4): 458-72.
[http://dx.doi.org/10.1016/j.jsps.2014.10.001] [PMID: 27330377]
[3]
Gong J, Jaiswal R, Mathys JM, Combes V, Grau GE, Bebawy M. Microparticles and their emerging role in cancer multidrug resistance. Cancer Treat Rev 2012; 38(3): 226-34.
[http://dx.doi.org/10.1016/j.ctrv.2011.06.005] [PMID: 21757296]
[4]
Singh S, Shankar R, Singh GP. Prevalence and associated risk factors of hypertension: A cross-sectional study in urban VaranasiInt J Hypertens 2017; 2017
[http://dx.doi.org/10.1155/2017/5491838]
[6]
Mohammadi MT, Dehghani GA. Acute hypertension induces brain injury and blood-brain barrier disruption through reduction of claudins mRNA expression in rat. Pathol Res Pract 2014; 210(12): 985-90.
[http://dx.doi.org/10.1016/j.prp.2014.05.007] [PMID: 24996562]
[8]
World Health Organization (WHO)Hypertension. Available from:. https://www.who.int/news-room/fact-sheets/detail/hyperten-sion(Accessed on: 12th Nov 2019).2019.
[9]
Alijotas-Reig J, Bove-Farre I, de Cabo-Frances F, Angles-Coll R. Effectiveness and safety of prehospital urapidil for hypertensive emergencies. Am J Emerg Med 2001; 19(2): 130-3.
[http://dx.doi.org/10.1053/ajem.2001.20008] [PMID: 11239257]
[10]
Dooley M, Goa KL. Urapidil. A reappraisal of its use in the management of hypertension. Drugs 1998; 56(5): 929-55.
[http://dx.doi.org/10.2165/00003495-199856050-00016] [PMID: 9829161]
[11]
European Medicines Agency List of nationally authorised medicinal products.Active substance: Urapidil. Available from: https://www.ema.europa.eu/en/documents/psusa/urapidil-list-nationally-authorised-medicinal-products-psusa/00003078/201507_en.pdf(Accessed on: 12th Sep 2019).
[12]
Siepmann J, Faham A, Clas SD, et al. Lipids and polymers in pharmaceutical technology: Lifelong companions. Int J Pharm 2019; 558: 128-42.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.080] [PMID: 30639218]
[13]
Rodriguez LB, Avalos A, Chiaia N, Nadarajah A. Effect of formulation and process parameters on chitosan microparticles prepared by an emulsion crosslinking technique. AAPS PharmSciTech 2017; 18(4): 1084-94.
[http://dx.doi.org/10.1208/s12249-016-0677-x] [PMID: 27995463]
[14]
Kiso M, Ishida H, Ando H. Complex carbohydrate synthesis. In: Wong CH, Ed.Carbohydrate-based Drug Discovery. 1st ed. New York, USA: John Wiley & Sons 2003; pp. 37-54.
[http://dx.doi.org/10.1002/3527602437.ch2]
[15]
Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 2018; 109: 273-86.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.078] [PMID: 29248555]
[16]
Zargar V, Asghari M, Dashti A. A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, and applications. Chem Bio Eng Rev 2015; 2(3): 204-26.
[http://dx.doi.org/10.1002/cben.201400025]
[17]
Roy H, Nayak BS, Nandi S. Chitosan anchored nanoparticles in current drug development utilizing computer-aided pharmacokinetic modeling: Case studies for target specific cancer treatment and future prospective. Curr Pharm Des 2020; 26(15): 1666-75.
[http://dx.doi.org/10.2174/1381612826666200203121241] [PMID: 32013823]
[18]
Roy H, Rahaman SA, Kumar TV, Nandi S. Current development on chitosan-based antimicrobial drug formulations for the wound healing. Curr Drug Discov Technol 2020; 17(4): 534-41.
[http://dx.doi.org/10.2174/1570163817666200123122532] [PMID: 31971111]
[19]
Venkatesan J, Kim SK, Wong TW. Chitosan and its application as tissue engineering scaffolds.In: Nanotechnology Applications for Tissue Engineering. 1st ed. William Andrew Publishing 2015; pp. 133-47.
[http://dx.doi.org/10.1016/B978-0-323-32889-0.00009-1]
[20]
Viljoen JM, Steenekamp JH, Marais AF, Kotzé AF. Effect of moisture content, temperature and exposure time on the physical stability of chitosan powder and tablets. Drug Dev Ind Pharm 2014; 40(6): 730-42.
[http://dx.doi.org/10.3109/03639045.2013.782501] [PMID: 23596972]
[21]
Chooi KW, Simão Carlos MI, Soundararajan R, et al. Physical characterisation and long-term stability studies on quaternary ammonium palmitoyl glycol chitosan (GCPQ)--a new drug delivery polymer. J Pharm Sci 2014; 103(8): 2296-306.
[http://dx.doi.org/10.1002/jps.24026] [PMID: 24916193]
[22]
Mucha M, Ludwiczak S, Kawinska M. Kinetics of water sorption by chitosan and its blends with poly (vinyl alcohol). Carbohydr Polym 2005; 62(1): 42-9.
[http://dx.doi.org/10.1016/j.carbpol.2005.07.008]
[23]
Gocho H, Shimizu H, Tanioka A, Chou TJ, Nakajima T. Effect of polymer chain end on sorption isotherm of water by chitosan. Carbohydr Polym 2000; 41(1): 87-90.
[http://dx.doi.org/10.1016/S0144-8617(99)00113-7]
[24]
Kam HM, Khor E, Lim LY. Storage of partially deacetylated chitosan films. J Biomed Mater Res 1999; 48(6): 881-8.
[http://dx.doi.org/10.1002/(SICI)1097-4636(1999)48:6<881:AID-JBM18>3.0.CO;2-2] [PMID: 10556855]
[25]
Vårum KM, Ottøy MH, Smidsrød O. Acid hydrolysis of chitosans. Carbohydr Polym 2001; 46(1): 89-98.
[http://dx.doi.org/10.1016/S0144-8617(00)00288-5]
[26]
Il’ina AV, Varlamov VP. Hydrolysis of chitosan in lactic acid. Prikl Biokhim Mikrobiol 2004; 40(3): 354-8.
[PMID: 15283341]
[27]
Ifuku S. Chitin and chitosan nanofibers: Preparation and chemical modifications. Molecules 2014; 19(11): 18367-80.
[http://dx.doi.org/10.3390/molecules191118367] [PMID: 25393598]
[28]
Jarry C, Leroux JC, Haeck J, Chaput C. Irradiating or autoclaving chitosan/polyol solutions: Effect on thermogelling chitosan-β-glycerophosphate systems. Chem Pharm Bull (Tokyo) 2002; 50(10): 1335-40.
[http://dx.doi.org/10.1248/cpb.50.1335] [PMID: 12372859]
[29]
Barrera-Martínez CL, Padilla-Vaca F, Liakos I, Meléndez-Ortiz HI, Cortez-Mazatan GY, Peralta-Rodríguez RD. Chitosan microparticles as entrapment system for trans- cinnamaldehyde: Synthesis, drug loading, and in vitro cytotoxicity evaluation. Int J Biol Macromol 2021; 166: 322-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.188] [PMID: 33127551]
[30]
Hermans K, Van den Plas D, Kerimova S, et al. Development and characterization of mucoadhesive chitosan films for ophthalmic delivery of cyclosporine A. Int J Pharm 2014; 472(1-2): 10-9.
[http://dx.doi.org/10.1016/j.ijpharm.2014.06.017] [PMID: 24929014]
[31]
Matet M, Heuzey MC, Pollet E, Ajji A, Avérous L. Innovative thermoplastic chitosan obtained by thermo-mechanical mixing with polyol plasticizers. Carbohydr Polym 2013; 95(1): 241-51.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.052] [PMID: 23618266]
[32]
Silvestro I, Francolini I, Di Lisio V, et al. Preparation and characterization of TPP-chitosan crosslinked scaffolds for tissue engineering. Materials (Basel) 2020; 13(16): 3577.
[http://dx.doi.org/10.3390/ma13163577] [PMID: 32823636]
[33]
Caddeo C, Nácher A, Díez-Sales O, Merino-Sanjuán M, Fadda AM, Manconi M. Chitosan-xanthan gum microparticle-based oral tablet for colon-targeted and sustained delivery of quercetin. J Microencapsul 2014; 31(7): 694-9.
[http://dx.doi.org/10.3109/02652048.2014.913726] [PMID: 24903450]
[34]
Oliveira B, Santana MH, Ré MI. Spray-dried chitosan microspheres cross-linked with D, L-glyceraldehyde as a potential drug delivery system: Preparation and characterization. Braz J Chem Eng 2005; 22(3): 353-60.
[http://dx.doi.org/10.1590/S0104-66322005000300004]
[35]
Genta I, Costantini M, Asti A, Conti B, Montanari L. Influence of glutaraldehyde on drug release and mucoadhesive properties of chitosan microspheres. Carbohydr Polym 1998; 36(2-3): 81-8.
[http://dx.doi.org/10.1016/S0144-8617(98)00022-8]
[36]
Roy H, Brahma CK, Kumar R, Nandi S. Formulation of saquinavir mesylate loaded microparticle by counterion induced aggregation method: Approach by hyperosmotic technique. Drug Invent Today 2013; 5(3): 259-66.
[http://dx.doi.org/10.1016/j.dit.2013.07.002]
[37]
Kucukoglu V, Uzuner H, Kenar H, Karadenizli A. In vitro antibacterial activity of ciprofloxacin loaded chitosan microparticles and their effects on human lung epithelial cells. Int J Pharm 2019; 569118578
[http://dx.doi.org/10.1016/j.ijpharm.2019.118578] [PMID: 31362096]
[38]
Hejjaji EM, Smith AM, Morris GA. Designing chitosan-tripolyphosphate microparticles with desired size for specific pharmaceutical or forensic applications. Int J Biol Macromol 2017; 95: 564-73.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.092] [PMID: 27894825]
[39]
Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 2010; 62(1): 83-99.
[http://dx.doi.org/10.1016/j.addr.2009.07.019] [PMID: 19799949]
[40]
Dautzenberg H, Kriz J. Response of polyelectrolyte complexes to subsequent addition of salts with different cations. Langmuir 2003; 19(13): 5204-11.
[http://dx.doi.org/10.1021/la0209482]
[41]
Denkbas EB, Ottenbrite RM. Perspectives on: Chitosan drug delivery systems based on their geometries. J Bioact Compat Polym 2006; 21(4): 351-68.
[http://dx.doi.org/10.1177/0883911506066930]
[42]
Peppas NA. Hydrogels in medicine and pharmacy. Boca Raton, FL: CRC Press 1986.
[43]
Barse R, Kokare C, Tagalpallewar A. Influence of hydroxypropylmethylcellulose and poloxamer composite on developed ophthalmic in situ gel: Ex vivo and in vivo characterization. J Drug Deliv Sci Technol 2016; 33: 66-74.
[http://dx.doi.org/10.1016/j.jddst.2016.03.011]
[44]
Jin SG, Yousaf AM, Kim KS, et al. Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings. Int J Pharm 2016; 501(1-2): 160-6.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.044] [PMID: 26851354]
[45]
Marcos X, Pérez-Casas S, Llovo J, Concheiro A, Alvarez-Lorenzo C. Poloxamer-hydroxyethyl cellulose-α-cyclodextrin supramolecular gels for sustained release of griseofulvin. Int J Pharm 2016; 500(1-2): 11-9.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.015] [PMID: 26795192]
[46]
Bodratti AM, Alexandridis P. Formulation of poloxamers for drug delivery. J Funct Biomater 2018; 9(1): 11.
[http://dx.doi.org/10.3390/jfb9010011] [PMID: 29346330]
[47]
Bodratti AM, Alexandridis P. Amphiphilic block copolymers in drug delivery: Advances in formulation structure and performance. Expert Opin Drug Deliv 2018; 15(11): 1085-104.
[http://dx.doi.org/10.1080/17425247.2018.1529756] [PMID: 30259762]
[48]
Dong H, Tian L, Gao M, et al. Promising galactose-decorated biodegradable poloxamer 188-PLGA diblock copolymer nanoparticles of resibufogenin for enhancing liver cancer therapy. Drug Deliv 2017; 24(1): 1302-16.
[http://dx.doi.org/10.1080/10717544.2017.1373165] [PMID: 28895767]
[49]
Li S, Xiong Y, Zhang X. Poloxamer surface modified trimethyl chitosan nanoparticles for the effective delivery of methotrexate in osteosarcoma. Biomed Pharmacother 2017; 90: 872-9.
[http://dx.doi.org/10.1016/j.biopha.2017.04.004] [PMID: 28449430]
[50]
Szymańska E, Winnicka K. Stability of chitosan-a challenge for pharmaceutical and biomedical applications. Mar Drugs 2015; 13(4): 1819-46.
[http://dx.doi.org/10.3390/md13041819] [PMID: 25837983]
[51]
Quiñones JP, Peniche H, Peniche C. Chitosan based self-assembled nanoparticles in drug delivery. Polymers (Basel) 2018; 10(3): 235.
[http://dx.doi.org/10.3390/polym10030235] [PMID: 30966270]
[52]
Yasasvini S, Anusa RS. VedhaHari BN, Prabhu PC, RamyaDevi D. Topical hydrogel matrix loaded with Simvastatin microparticles for enhanced wound healing activity. Mater Sci Eng C 2017; 72: 160-7.
[http://dx.doi.org/10.1016/j.msec.2016.11.038] [PMID: 28024572]
[53]
Helmy AM, Elsabahy M, Abd-Elkareem M, Ibrahim EA, Soliman GM. High-Payload chitosan microparticles for the colonic delivery of quercetin: Development and in-vivo evaluation in a rabbit colitis model. J Drug Deliv Sci Technol 2020; 58101832
[http://dx.doi.org/10.1016/j.jddst.2020.101832]
[54]
Patel MA, AbouGhaly MH, Schryer-Praga JV, Chadwick K. The effect of ionotropic gelation residence time on alginate cross-linking and properties. Carbohydr Polym 2017; 155: 362-71.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.095] [PMID: 27702523]
[55]
Khar RK, Ahuaj A, Ali J. Controlled and novel drug delivery..In: Jain NK. Mucoadhesive drug delivery. 2nd ed.. India: CBS publishers and distributors 2019; pp. 361-2.
[56]
Carvalho FC, Bruschi ML, Evangelista RC, Gremião MP. Mucoadhesive drug delivery systems. Braz J Pharm Sci 2010; 46(1): 1-7.
[http://dx.doi.org/10.1590/S1984-82502010000100002]
[57]
Lengyel M, Kállai-Szabó N, Antal V, Laki AJ, Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci Pharm 2019; 87(3): 20.
[http://dx.doi.org/10.3390/scipharm87030020]
[58]
Krasaekoopt W, Bhandari B, Deeth H. The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int Dairy J 2004; 14(8): 737-43.
[http://dx.doi.org/10.1016/j.idairyj.2004.01.004]
[59]
Bromberg L, Temchenko M, Alakhov V, Hatton TA. Bioadhesive properties and rheology of polyether-modified poly(acrylic acid) hydrogels. Int J Pharm 2004; 282(1-2): 45-60.
[http://dx.doi.org/10.1016/j.ijpharm.2004.05.030] [PMID: 15336381]
[60]
Mura C, Nácher A, Merino V, et al. Design, characterization and in vitro evaluation of 5-aminosalicylic acid loaded N-succinyl-chitosan microparticles for colon specific delivery. Colloids Surf B Biointerfaces 2012; 94: 199-205.
[http://dx.doi.org/10.1016/j.colsurfb.2012.01.030] [PMID: 22341520]
[61]
Yu CY, Yin BC, Zhang W, Cheng SX, Zhang XZ, Zhuo RX. Composite microparticle drug delivery systems based on chitosan, alginate and pectin with improved pH-sensitive drug release property. Colloids Surf B Biointerfaces 2009; 68(2): 245-9.
[http://dx.doi.org/10.1016/j.colsurfb.2008.10.013] [PMID: 19058952]
[62]
Mulia K, Krisanti EA. Effect of sodium tripolyphosphate concentration and simulated gastrointestinal fluids on release profile of paracetamol from chitosan microsphere. IOP Conf Series Mater Sci Eng 2018; 316012028
[http://dx.doi.org/10.1088/1757-899X/316/1/012028]
[63]
Wu QX, Lin DQ, Yao SJ. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes. Mar Drugs 2014; 12(12): 6236-53.
[http://dx.doi.org/10.3390/md12126236] [PMID: 25532565]
[64]
Kahya N. Water soluble chitosan derivatives and their biological activities: A review. Polym Sci 2018; 4(2): 1-6.
[65]
Cevher E, Taha MA, Orlu M, Araman A. Evaluation of mechanical and mucoadhesive properties of clomiphene citrate gel formulations containing carbomers and their thiolated derivatives. Drug Deliv 2008; 15(1): 57-67.
[http://dx.doi.org/10.1080/10717540701829234] [PMID: 18197525]
[66]
He H, Li H, Tang X. Preparation of pH-dependent modified-release pellets of urapidil to improve its bioavailability. Pharm Dev Technol 2011; 16(3): 212-8.
[http://dx.doi.org/10.3109/10837451003592191] [PMID: 20151942]
[67]
Patel BK, Parikh RH, Aboti PS. Development of oral sustained release rifampicin loaded chitosan nanoparticles by design of experiment. J Drug Deliv 2013; 2013370938
[68]
Tilkan MG, Özdemir N. Investigation of the parameters affecting the release of flurbiprofen from chitosan microspheres. Braz J Pharm Sci 2018; 53: 53.
[http://dx.doi.org/10.1590/s2175-97902017000400242]
[69]
Rana V, Babita K, Goyal D, Tiwary A. Sodium citrate cross-linked chitosan films: Optimization as substitute for human/rat/rabbit epidermal sheets. J Pharm Pharm Sci 2004; 8(1): 10-7.
[PMID: 15946593]
[70]
Islam MA, Firdous J, Choi YJ, Yun CH, Cho CS. Design and application of chitosan microspheres as oral and nasal vaccine carriers: An updated review. Int J Nanomedicine 2012; 7: 6077-93.
[PMID: 23271909]
[71]
Suksamran T, Opanasopit P, Rojanarata T, Ngawhirunpat T. Development of alginate/chitosan microparticles for dust mite allerge. Trop J Pharm Res 2011; 10(3): tjpr.v10i3.8.
[http://dx.doi.org/10.4314/tjpr.v10i3.8]
[72]
Bangun H, Tandiono S, Arianto A. Preparation and evaluation of chitosan-tripolyphosphate nanoparticles suspension as an antibacterial agent. J Appl Pharm Sci 2018; 8(12): 147-56.
[http://dx.doi.org/10.7324/JAPS.2018.81217]
[73]
Thielbeer F, Donaldson K, Bradley M. Zeta potential mediated reaction monitoring on nano and microparticles. Bioconjug Chem 2011; 22(2): 144-50.
[http://dx.doi.org/10.1021/bc1005015] [PMID: 21244000]
[74]
Li BZ, Wang LJ, Li D, et al. Physical properties and loading capacity of starch-based microparticles crosslinked with trisodium trimetaphosphate. J Food Eng 2009; 92(3): 255-60.
[http://dx.doi.org/10.1016/j.jfoodeng.2008.10.008]
[75]
Dhanka M, Shetty C, Srivastava R. Methotrexate loaded gellan gum microparticles for drug delivery. Int J Biol Macromol 2018; 110: 346-56.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.026] [PMID: 29223759]
[76]
Larbi-Bouamrane O, Bal Y, Aliouche D, Cote G, Chagnes A. Preparation and characterization of cross-linked chitosan microcapsules for controlled delivery of oxytetracycline. Indian J Pharm Sci 2017; 78(6): 715-24.
[77]
Nanaki S, Barmpalexis P, Iatrou A, Christodoulou E, Kostoglou M, Bikiaris DN. Risperidone controlled release microspheres based on poly(lactic acid)-poly(propylene adipate) novel polymer blends appropriate for long acting injectable formulations. Pharmaceutics 2018; 10(3): 130.
[http://dx.doi.org/10.3390/pharmaceutics10030130] [PMID: 30104505]
[78]
Bright KC, Freeda TH. Growth and characterization of organometallic l-alanine cadmium chloride single crystal by slow evaporation technique. Physica B 2010; 405(18): 3857-61.
[http://dx.doi.org/10.1016/j.physb.2010.06.017]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy