Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Editorial

Role of Nanotechnology in Photocatalysis Application

Author(s): Y.M. Hunge*, A.A. Yadav, Seok-Won Kang and B.M. Mohite

Volume 17, Issue 1, 2023

Published on: 21 April, 2022

Page: [5 - 7] Pages: 3

DOI: 10.2174/1872210516666220304162429

conference banner
[1]
Bawa R, Mousa SA, Bawa R, Audette GF, Eds. The road from nanomedicine to precision medicine. New York: Jenny Stanford Publishing 2019; pp. 1-134.
[2]
Feynman RP, Gilbert D. There’s plenty of room at the bottom. Eng Sci 1960; 23: 22-36.
[3]
Taniguchi N, Arakawa C, Kobayashi T. On the basic concept of nanotechnology. Proceedings of the International Conference on Production Engineering. Tokyo. 1974.
[4]
Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. History of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules 2019; 25: 112.
[5]
Hunge YM, Yadav AA, Kang SW, Kim H, Fujishima A, Terashima C. Nanoflakes-like nickel cobaltite as active electrode material for 4-nitrophenol reduction and supercapacitor applications. J Hazard Mater 2021; 419: 126453.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126453] [PMID: 34323738]
[6]
Hunge YM, Yadav AA, Khan S, et al. Photocatalytic degradation of bisphenol A using titanium dioxide@nanodiamond composites under UV light illumination. J Colloid Interface Sci 2021; 582(Pt B): 1058-66.
[http://dx.doi.org/10.1016/j.jcis.2020.08.102] [PMID: 32927171]
[7]
Bahnemann DW. Ultrasmall metal oxide particles: Preparation, photophysical characterization, and photocatalytic properties. Isr J Chem 1993; 33: 115-36.
[http://dx.doi.org/10.1002/ijch.199300017]
[8]
Yadav AA, Kang SW, Hunge YM. Photocatalytic degradation of Rhodamine B using graphitic carbon nitride photocatalyst. J Mater Sci Mater 2021; 32: 15577-85.
[9]
Hisatomi T, Domen K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat Catal 2019; 2: 387-99.
[http://dx.doi.org/10.1038/s41929-019-0242-6]
[10]
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972; 238(5358): 37-8.
[11]
Hunge YM, Yadav AA, Kang SW. Porous nanoplate-like tungsten trioxide/reduced graphene oxide catalyst for sonocatalytic degradation and photocatalytic hydrogen production. Surf Interfaces 2021; 24: 101075.
[http://dx.doi.org/10.1016/j.surfin.2021.101075]
[12]
Hunge YM, Yadav AA, Kang SW, Kim H. Photocatalytic degradation of tetracycline antibiotics using hydrothermally synthesized two-dimensional molybdenum disulfide/titanium dioxide composites. J Colloid Interface Sci 2021; 606(Pt 1): 454-63.
[PMID: 34399362]
[13]
Yadav AA, Hunge YM, Kulkarni SB. Synthesis of multifunctional FeCo2O4 electrode using ultrasonic treatment for photocatalysis and energy storage applications. Ultrason Sonochem 2019; 58: 104663.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104663] [PMID: 31450378]
[14]
Hunge YM, Yadav AA, Mohite BM, Mathe VL, Bhosale CH. Photoelectrocatalytic degradation of sugarcane factory wastewater using WO3/ZnO thin films. J Mater Sci Mater 2018; 29: 3808-16.
[http://dx.doi.org/10.1007/s10854-017-8316-1]
[15]
Dong F, Guo S, Wang H, Li X, Wu Z. Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach. J Phys Chem C 2011; 115(27): 13285-92.
[http://dx.doi.org/10.1021/jp111916q]
[16]
Deshmukh SP, Dalavi DK, Hunge YM. Disinfection of water using supported Titanium Dioxide photocatalysts. Am J Eng Appl Sci 2020; 13(4): 819-26.
[http://dx.doi.org/10.3844/ajeassp.2020.819.826]

© 2024 Bentham Science Publishers | Privacy Policy