Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Antifungal Activity of Plant Secondary Metabolites on Candida albicans: An Updated Review

Author(s): Andleeb Khan*, Sivakumar Sivagurunathan Moni, M. Ali, Syam Mohan, Huma Jan, Saiema Rasool, Mohammad A Kamal, Saeed Alshahrani, Maryam Halawi and Hassan A Alhazmi

Volume 16, Issue 1, 2023

Published on: 05 August, 2022

Article ID: e040322201749 Pages: 28

DOI: 10.2174/1874467215666220304143332

Price: $65

Open Access Journals Promotions 2
Abstract

Fungal infections have been increasing continuously worldwide, especially in immunocompromised individuals. Fungi, regarded as eukaryotic pathogens, have many similarities to the host cells, which inhibit anti-fungal drug development progress. Various fungal model systems have been studied, and it was concluded that Candida spp. is the most common disease-causing fungus. Candida species are well known to cause infections not only in our mouth, skin, and vagina, but they are also a frequent cause of life-threatening hospital bloodstream infections. The morphological and developmental pathways of Candida have been studied extensively, providing insight into the fungus development. Candida albicans is known to be the most pathogenic species responsible for a variety of infections in humans. Conventional anti-fungal drugs, mainly azoles drugs available in the market, have been used for years developing resistance in C. albicans. Hence, the production of new anti-fungal drugs, which require detailed molecular knowledge of fungal pathogenesis, needs to be encouraged. Therefore, this review targets the new approach of "Green Medicines" or the phytochemicals and their secondary metabolites as a source of novel anti-fungal agents to overcome the drug resistance of C. albicans, their mechanism of action, and their combined effects with the available anti-fungal drugs.

Keywords: Fungal model systems, Candida albicans, Candidiasis, Drug resistance, secondary metabolites, green medicines.

[1]
Martin, S.G. Editorial overview: Eukaryotic microbes: Models and beyond. Curr. Opin. Microbiol., 2015, 28, v-vi.
[http://dx.doi.org/10.1016/j.mib.2015.08.008] [PMID: 26371422]
[2]
Matthaiou, D.K.; Christodoulopoulou, T.; Dimopoulos, G. How to treat fungal infections in ICU patients. BMC Infect. Dis., 2015, 15, 205.
[http://dx.doi.org/10.1186/s12879-015-0934-8] [PMID: 25930035]
[3]
Guevara-Lora, I.; Bras, G.; Karkowska-Kuleta, J.; González-González, M.; Ceballos, K.; Sidlo, W.; Rapala-Kozik, M. Plant-derived substances in the fight against infections caused by Candida species. Int. J. Mol. Sci., 2020, 21(17), 6131.
[http://dx.doi.org/10.3390/ijms21176131] [PMID: 32854425]
[4]
Fridkin, S.K. The changing face of fungal infections in health care settings. Clin. Infect. Dis., 2005, 41(10), 1455-1460.
[http://dx.doi.org/10.1086/497138] [PMID: 16231257]
[5]
Phua, A.I.; Hon, K.Y.; Holt, A.; O’Callaghan, M.; Bihari, S. Candida catheter-related bloodstream infection in patients on home parenteral nutrition - Rates, risk factors, outcomes, and management. Clin. Nutr. ESPEN, 2019, 31, 1-9.
[http://dx.doi.org/10.1016/j.clnesp.2019.03.007] [PMID: 31060825]
[6]
Ramage, G.; Vande Walle, K.; Wickes, B.L.; López-Ribot, J.L. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob. Agents Chemother., 2001, 45(9), 2475-2479.
[http://dx.doi.org/10.1128/AAC.45.9.2475-2479.2001] [PMID: 11502517]
[7]
Zida, A.; Bamba, S.; Yacouba, A.; Ouedraogo-Traore, R.; Guiguemdé, R.T. Anti-Candida albicans natural products, sources of new antifungal drugs: A review. J. Mycol. Med., 2017, 27(1), 1-19.
[http://dx.doi.org/10.1016/j.mycmed.2016.10.002] [PMID: 27842800]
[8]
Dhamgaye, S.; Devaux, F.; Vandeputte, P.; Khandelwal, N.K.; Sanglard, D.; Mukhopadhyay, G.; Prasad, R. Molecular mechanisms of action of herbal antifungal alkaloid berberine, in Candida albicans. PLoS One, 2014, 9(8), e104554.
[http://dx.doi.org/10.1371/journal.pone.0104554] [PMID: 25105295]
[9]
Almeida, F.; Rodrigues, M.L.; Coelho, C. The still underestimated problem of fungal diseases worldwide. Front. Microbiol., 2019, 10, 214.
[http://dx.doi.org/10.3389/fmicb.2019.00214] [PMID: 30809213]
[10]
Fisher, M.C.; Gurr, S.J.; Cuomo, C.A.; Blehert, D.S.; Jin, H.; Stukenbrock, E.H.; Stajich, J.E.; Kahmann, R.; Boone, C.; Denning, D.W.; Gow, N.A.R.; Klein, B.S.; Kronstad, J.W.; Sheppard, D.C.; Taylor, J.W.; Wright, G.D.; Heitman, J.; Casadevall, A.; Cowen, L.E. Threats posed by the Fungal Kingdom to humans, wildlife, and agriculture. MBio, 2020, 11(3), 1-17.
[http://dx.doi.org/10.1128/mBio.00449-20] [PMID: 32371596]
[11]
Feistel, D.J.; Elmostafa, R.; Nguyen, N.; Penley, M.; Morran, L.; Hickman, M.A. A novel virulence phenotype rapidly assesses Candida fungal pathogenesis in healthy and immunocompromised Caenorhabditis elegans hosts. MSphere, 2019, 4(2), 18.
[http://dx.doi.org/10.1128/mSphere.00697-18] [PMID: 30971447]
[12]
Hooper, L.V. Do symbiotic bacteria subvert host immunity? Nat. Rev. Microbiol., 2009, 7(5), 367-374.
[http://dx.doi.org/10.1038/nrmicro2114] [PMID: 19369952]
[13]
Hibbett, D.S.; Blackwell, M.; James, T.Y.; Spatafora, J.W.; Taylor, J.W.; Vilgalys, R. Phylogenetic taxon definitions for Fungi, Dikarya, Ascomycota and Basidiomycota. IMA Fungus, 2018, 9, 291-298.
[http://dx.doi.org/10.5598/imafungus.2018.09.02.05] [PMID: 30622884]
[14]
Gryganskyi, A.P.; Humber, R.A.; Smith, M.E.; Miadlikowska, J.; Wu, S.; Voigt, K.; Walther, G.; Anishchenko, I.M.; Vilgalys, R. Molecular phylogeny of the Entomophthoromycota. Mol. Phylogenet. Evol., 2012, 65(2), 682-694.
[http://dx.doi.org/10.1016/j.ympev.2012.07.026] [PMID: 22877646]
[15]
Köhler, J.R.; Hube, B.; Puccia, R.; Casadevall, A.; Perfect, J.R. Fungi that infect humans. Fungal kingdom, 2017, 5, 811-843.
[http://dx.doi.org/10.1128/microbiolspec.FUNK-0014-2016]
[16]
Humber, R.A. Entomophthoromycota: A new phylum and reclassification for entomophthoroid fungi. Mycotaxon, 2012, 120, 477-492.
[http://dx.doi.org/10.5248/120.477]
[17]
Vilela, R.; Mendoza, L. Human pathogenic entomophthorales. Clin. Microbiol. Rev., 2018, 31(4), e00014-e00018.
[http://dx.doi.org/10.1128/CMR.00014-18] [PMID: 30158298]
[18]
Ribes, J.A.; Vanover-Sams, C.L.; Baker, D.J. Zygomycetes in human disease. Clin. Microbiol. Rev., 2000, 13(2), 236-301.
[http://dx.doi.org/10.1128/CMR.13.2.236] [PMID: 10756000]
[19]
Zavasky, D.M.; Samowitz, W.; Loftus, T.; Segal, H.; Carroll, K. Gastrointestinal zygomycotic infection caused by Basidiobolus ranarum: Case report and review. Clin. Infect. Dis., 1999, 28(6), 1244-1248.
[http://dx.doi.org/10.1086/514781] [PMID: 10451160]
[20]
Chowdhary, A.; Randhawa, H.S.; Khan, Z.U.; Ahmad, S.; Khanna, G.; Gupta, R.; Chakravarti, A.; Roy, P. Rhinoentomophthoromycosis due to Conidiobolus coronatus. A case report and an overview of the disease in India. Sabouraudia, 2010, 48(6), 870-879.
[http://dx.doi.org/10.3109/13693786.2010.486010] [PMID: 20482451]
[21]
Prabhu, R.M.; Patel, R. Mucormycosis and entomophthoramycosis: A review of the clinical manifestations, diagnosis and treatment. Clin. Microbiol. Infect., 2004, 10(Suppl. 1), 31-47.
[http://dx.doi.org/10.1111/j.1470-9465.2004.00843.x] [PMID: 14748801]
[22]
Kimura, M.; Yaguchi, T.; Sutton, D.A.; Fothergill, A.W.; Thompson, E.H.; Wickes, B.L. Disseminated human conidiobolomycosis due to Conidiobolus lamprauges. J. Clin. Microbiol., 2011, 49(2), 752-756.
[http://dx.doi.org/10.1128/JCM.01484-10] [PMID: 21147951]
[23]
Ishikawa, F.; Oishi, K. Formation and regeneration of protoplasts from Conidiobolus lamprauges. Microbiology, 1985, 131, 3311-3316.
[http://dx.doi.org/10.1099/00221287-131-12-3311]
[24]
Skalski, J.H.; Kottom, T.J.; Limper, A.H. Pathobiology of Pneumocystis pneumonia: Life cycle, cell wall and cell signal transduction. FEMS Yeast Res., 2015, 15(6), 1-12.
[http://dx.doi.org/10.1093/femsyr/fov046] [PMID: 26071598]
[25]
Sullivan, D.J.; Moran, G.P. Human pathogenic fungi: Molecular biology and pathogenic mechanisms; Caister Academic Press, 2014.
[26]
Krzyściak, P.M.; Pindycka-Piaszczyńska, M.; Piaszczyński. M. Chromoblastomycosis. Postepy Dermatol. Alergol., 2014, 31(5), 310-321.
[http://dx.doi.org/10.5114/pdia.2014.40949] [PMID: 25395928]
[27]
Lichon, V.; Khachemoune, A. Mycetoma: A review. Am. J. Clin. Dermatol., 2006, 7(5), 315-321.
[http://dx.doi.org/10.2165/00128071-200607050-00005] [PMID: 17007542]
[28]
Ahmed, A.O.; van Leeuwen, W.; Fahal, A.; van de Sande, W.; Verbrugh, H.; van Belkum, A. Mycetoma caused by Madurella mycetomatis: A neglected infectious burden. Lancet Infect. Dis., 2004, 4(9), 566-574.
[http://dx.doi.org/10.1016/S1473-3099(04)01131-4] [PMID: 15336224]
[29]
Arantes, T.D.; Bagagli, E.; Niño-Vega, G.; San-Blas, G.; Theodoro, R.C. Paracoccidioides brasiliensis and Paracoccidioides lutzii, a secret love affair. Rev. Inst. Med. Trop. São Paulo, 2015, 57(Suppl. 19), 25-30.
[http://dx.doi.org/10.1590/S0036-46652015000700006] [PMID: 26465366]
[30]
Scott, D.; Deacon, J. Magnaporthe rhizophila sp. nov., a dark mycelial fungus with a Phialophora conidial state, from cereal roots in South Africa. Trans. Br. Mycol. Soc., 1983, 81, 77-81.
[http://dx.doi.org/10.1016/S0007-1536(83)80206-X]
[31]
Limper, A.H.; Adenis, A.; Le, T.; Harrison, T.S. Fungal infections in HIV/AIDS. Lancet Infect. Dis., 2017, 17(11), e334-e343.
[http://dx.doi.org/10.1016/S1473-3099(17)30303-1] [PMID: 28774701]
[32]
Saubolle, M.A.; McKellar, P.P.; Sussland, D. Epidemiologic, clinical, and diagnostic aspects of coccidioidomycosis. J. Clin. Microbiol., 2007, 45(1), 26-30.
[http://dx.doi.org/10.1128/JCM.02230-06] [PMID: 17108067]
[33]
Kollath, D.R.; Miller, K.J.; Barker, B.M. The mysterious desert dwellers: Coccidioides immitis and Coccidioides posadasii, causative fungal agents of coccidioidomycosis. Virulence, 2019, 10(1), 222-233.
[http://dx.doi.org/10.1080/21505594.2019.1589363] [PMID: 30898028]
[34]
Stockamp, N.W.; Thompson, G.R. III Coccidioidomycosis. Infect. Dis. Clin., 2016, 30(1), 229-246.
[http://dx.doi.org/10.1016/j.idc.2015.10.008] [PMID: 26739609]
[35]
Bennett, J.E.; Dolin, R.; Blaser, M.J. Mandell, douglas, and bennett’s principles and practice of infectious diseases: 2 volume set; Elsevier Health Sciences, 2014, p. 2.
[36]
Francesconi, F.; Vilasboas, V.; Mendes, L.; Francesconi, V.A.; Smith, M.B.; Patel, S.; Meixner, J.A.; McGinnis, M.R.; Marques, S.A. Systemic Fungal Infections, 2nd ed; Tropical Dermatology, 2016, pp. 219-235.
[37]
Siqueira, I.M.; Fraga, C.L.F.; Amaral, A.C.; Souza, A.C.O.; Jerônimo, M.S.; Correa, J.R.; Magalhães, K.G.; Inácio, C.A.; Ribeiro, A.M.; Burguel, P.H.; Felipe, M.S.; Tavares, A.H.; Bocca, A.L. Distinct patterns of yeast cell morphology and host responses induced by representative strains of Paracoccidioides brasiliensis (Pb18) and Paracoccidioides lutzii (Pb01). Sabouraudia, 2016, 54(2), 177-188.
[http://dx.doi.org/10.1093/mmy/myv072] [PMID: 26384386]
[38]
Pappas, P.G. Cryptococcal infections in non-HIV-infected patients. Trans. Am. Clin. Climatol. Assoc., 2013, 124, 61-79.
[PMID: 23874010]
[39]
Granados, D.P.; Castañeda, E. Influence of climatic conditions on the isolation of members of the Cryptococcus neoformans species complex from trees in Colombia from 1992-2004. FEMS Yeast Res., 2006, 6(4), 636-644.
[http://dx.doi.org/10.1111/j.1567-1364.2006.00090.x] [PMID: 16696660]
[40]
Walsh, N.M.; Botts, M.R.; McDermott, A.J.; Ortiz, S.C.; Wüthrich, M.; Klein, B.; Hull, C.M. Infectious particle identity determines dissemination and disease outcome for the inhaled human fungal pathogen Cryptococcus. PLoS Pathog., 2019, 15(6), e1007777.
[http://dx.doi.org/10.1371/journal.ppat.1007777] [PMID: 31247052]
[41]
Chayakulkeeree, M.; Perfect, J.R. Cryptococcosis. In: Diagnosis and treatment of human mycoses; Springer, 2008; pp. 255-276.
[42]
MacDougall, L.; Fyfe, M.; Romney, M.; Starr, M.; Galanis, E. Risk factors for Cryptococcus gattii infection, British Columbia, Canada. Emerg. Infect. Dis., 2011, 17(2), 193-199.
[http://dx.doi.org/10.3201/eid1702.101020] [PMID: 21291588]
[43]
Iverson, S.A.; Chiller, T.; Beekmann, S.; Polgreen, P.M.; Harris, J. Recognition and diagnosis of Cryptococcus gattii infections in the United States. Emerg. Infect. Dis., 2012, 18(6), 1012-1015.
[http://dx.doi.org/10.3201/eid1806.111228] [PMID: 22608164]
[44]
Karkowska-Kuleta, J.; Rapala-Kozik, M.; Kozik, A. Fungi pathogenic to humans: Molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochim. Pol., 2009, 56(2), 211-224.
[http://dx.doi.org/10.18388/abp.2009_2452] [PMID: 19543556]
[45]
Dannaoui, E. Antifungal resistance in mucorales. Int. J. Antimicrob. Agents, 2017, 50(5), 617-621.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.08.010] [PMID: 28802855]
[46]
Yeung, C.K.; Cheng, V.C.; Lie, A.K.; Yuen, K.Y. Invasive disease due to Mucorales: A case report and review of the literature. Hong Kong Med. J., 2001, 7(2), 180-188.
[PMID: 11514754]
[47]
Boddy, L. Pathogens of autotrophs. The Fungi; Elsevier, 2016, pp. 245-292.
[http://dx.doi.org/10.1016/B978-0-12-382034-1.00008-6]
[48]
Chitasombat, M.N.; Kofteridis, D.P.; Jiang, Y.; Tarrand, J.; Lewis, R.E.; Kontoyiannis, D.P. Rare opportunistic (non-Candida, non-Cryptococcus) yeast bloodstream infections in patients with cancer. J. Infect., 2012, 64(1), 68-75.
[http://dx.doi.org/10.1016/j.jinf.2011.11.002] [PMID: 22101079]
[49]
Schmiedel, Y.; Zimmerli, S. Common invasive fungal diseases: An overview of invasive candidiasis, aspergillosis, cryptococcosis, and Pneumocystis pneumonia. Swiss Med. Wkly., 2016, 146, w14281.
[http://dx.doi.org/10.4414/smw.2016.14281] [PMID: 26901377]
[50]
Latgé, J.P. The pathobiology of Aspergillus fumigatus. Trends Microbiol., 2001, 9(8), 382-389.
[http://dx.doi.org/10.1016/S0966-842X(01)02104-7] [PMID: 11514221]
[51]
Segal, B.H. Invasive aspergillosis in chronic granulomatous disease. In: Aspergillosis: From diagnosis to prevention; Springer, 2009; pp. 527-543.
[http://dx.doi.org/10.1007/978-90-481-2408-4_31]
[52]
Park, H.S.; Yu, J.H. Developmental regulators in Aspergillus fumigatus. J. Microbiol., 2016, 54(3), 223-231.
[http://dx.doi.org/10.1007/s12275-016-5619-5] [PMID: 26920882]
[53]
Bafadhel, M.; McKenna, S.; Agbetile, J.; Fairs, A.; Desai, D.; Mistry, V.; Morley, J.P.; Pancholi, M.; Pavord, I.D.; Wardlaw, A.J.; Pashley, C.H.; Brightling, C.E. Aspergillus fumigatus during stable state and exacerbations of COPD. Eur. Respir. J., 2014, 43(1), 64-71.
[http://dx.doi.org/10.1183/09031936.00162912] [PMID: 23598955]
[54]
Taylor, J.M.; Bowman, B.H.; Berbee, M.L.; White, T.J. Fungal model organisms: phylogenetics of saccharomyces, aspergillus, and neurospora. Syst. Biol., 1993, 42, 440-457.
[http://dx.doi.org/10.1093/sysbio/42.4.440]
[55]
Kabir, M.A.; Ahmad, Z. Candida infections and their prevention. ISRN Prev. Med., 2012, 2013, 763628.
[http://dx.doi.org/10.5402/2013/763628] [PMID: 24977092]
[56]
Gozalbo, D.; Roig, P.; Villamón, E.; Gil, M.L. Candida and candidiasis: The cell wall as a potential molecular target for antifungal therapy. Curr. Drug Targets Infect. Disord., 2004, 4(2), 117-135.
[http://dx.doi.org/10.2174/1568005043341046] [PMID: 15180460]
[57]
Perez-Nadales, E.; Nogueira, M.F.; Baldin, C.; Castanheira, S.; El Ghalid, M.; Grund, E.; Lengeler, K.; Marchegiani, E.; Mehrotra, P.V.; Moretti, M.; Naik, V.; Oses-Ruiz, M.; Oskarsson, T.; Schäfer, K.; Wasserstrom, L.; Brakhage, A.A.; Gow, N.A.; Kahmann, R.; Lebrun, M.H.; Perez-Martin, J.; Di Pietro, A.; Talbot, N.J.; Toquin, V.; Walther, A.; Wendland, J. Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet. Biol., 2014, 70, 42-67.
[http://dx.doi.org/10.1016/j.fgb.2014.06.011] [PMID: 25011008]
[58]
Xiao, Z.; Wang, Q.; Zhu, F.; An, Y. Epidemiology, species distribution, antifungal susceptibility and mortality risk factors of candidemia among critically ill patients: A retrospective study from 2011 to 2017 in a teaching hospital in China. Antimicrob. Resist. Infect. Control, 2019, 89, 1-89.
[http://dx.doi.org/10.1186/s13756-019-0534-2]
[59]
Scherer, S.; Magee, P.T. Genetics of Candida albicans. Microbiol. Rev., 1990, 54(3), 226-241.
[http://dx.doi.org/10.1128/mr.54.3.226-241.1990] [PMID: 2215421]
[60]
Kim, J.; Sudbery, P. Candida albicans, a major human fungal pathogen. J. Microbiol., 2011, 49(2), 171-177.
[http://dx.doi.org/10.1007/s12275-011-1064-7] [PMID: 21538235]
[61]
Kabir, M.A.; Hussain, M.A.; Ahmad, Z. Candida albicans: A model organism for studying fungal pathogens. ISRN Microbiol., 2012, 2012, 538694.
[http://dx.doi.org/10.5402/2012/538694] [PMID: 23762753]
[62]
Gow, N.A.; Hube, B. Importance of the Candida albicans cell wall during commensalism and infection. Curr. Opin. Microbiol., 2012, 15(4), 406-412.
[http://dx.doi.org/10.1016/j.mib.2012.04.005] [PMID: 22609181]
[63]
Slutsky, B.; Staebell, M.; Anderson, J.; Risen, L.; Pfaller, M.; Soll, D.R. “White-opaque transition”: A second high-frequency switching system in Candida albicans. J. Bacteriol., 1987, 169(1), 189-197.
[http://dx.doi.org/10.1128/jb.169.1.189-197.1987] [PMID: 3539914]
[64]
Sudbery, P.; Gow, N.; Berman, J. The distinct morphogenic states of Candida albicans. Trends Microbiol., 2004, 12(7), 317-324.
[http://dx.doi.org/10.1016/j.tim.2004.05.008] [PMID: 15223059]
[65]
Miller, M.G.; Johnson, A.D. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell, 2002, 110(3), 293-302.
[http://dx.doi.org/10.1016/S0092-8674(02)00837-1] [PMID: 12176317]
[66]
Daniels, K.J.; Srikantha, T.; Lockhart, S.R.; Pujol, C.; Soll, D.R. Opaque cells signal white cells to form biofilms in Candida albicans. EMBO J., 2006, 25(10), 2240-2252.
[http://dx.doi.org/10.1038/sj.emboj.7601099] [PMID: 16628217]
[67]
Lockhart, S.R.; Daniels, K.J.; Zhao, R.; Wessels, D.; Soll, D.R. Cell biology of mating in Candida albicans. Eukaryot. Cell, 2003, 2(1), 49-61.
[http://dx.doi.org/10.1128/EC.2.1.49-61.2003] [PMID: 12582122]
[68]
Semreen, M.H.; Soliman, S.S.M.; Saeed, B.Q.; Alqarihi, A.; Uppuluri, P.; Ibrahim, A.S. Metabolic profiling of candida auris, a newly-emerging multi-drug resistant candida species, by GC-MS. Molecules, 2019, 24(3), 399.
[http://dx.doi.org/10.3390/molecules24030399] [PMID: 30678308]
[69]
Forsberg, K.; Woodworth, K.; Walters, M.; Berkow, E.L.; Jackson, B.; Chiller, T.; Vallabhaneni, S. Candida auris: The recent emergence of a multidrug-resistant fungal pathogen. Med. Mycol., 2019, 57(1), 1-12.
[http://dx.doi.org/10.1093/mmy/myy054] [PMID: 30085270]
[70]
Satoh, K.; Makimura, K.; Hasumi, Y.; Nishiyama, Y.; Uchida, K.; Yamaguchi, H. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol. Immunol., 2009, 53(1), 41-44.
[http://dx.doi.org/10.1111/j.1348-0421.2008.00083.x] [PMID: 19161556]
[71]
Du, H.; Bing, J.; Hu, T.; Ennis, C.L.; Nobile, C.J.; Huang, G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog., 2020, 16(10), e1008921.
[http://dx.doi.org/10.1371/journal.ppat.1008921] [PMID: 33091071]
[72]
Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; Berkow, E.L.; Castanheira, M.; Magobo, R.E.; Jabeen, K.; Asghar, R.J.; Meis, J.F.; Jackson, B.; Chiller, T.; Litvintseva, A.P. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis., 2017, 64(2), 134-140.
[http://dx.doi.org/10.1093/cid/ciw691] [PMID: 27988485]
[73]
Sharma, C.; Kumar, N.; Pandey, R.; Meis, J.F.; Chowdhary, A. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation. New Microbes New Infect., 2016, 13, 77-82.
[http://dx.doi.org/10.1016/j.nmni.2016.07.003] [PMID: 27617098]
[74]
Borman, A.M.; Szekely, A.; Johnson, E.M. Isolates of the emerging pathogen Candida auris present in the UK have several geographic origins. Med. Mycol., 2017, 55(5), 563-567.
[http://dx.doi.org/10.1093/mmy/myw147] [PMID: 28204557]
[75]
Kean, R.; Ramage, G. Combined antifungal resistance and biofilm tolerance: The global threat of Candida auris. MSphere, 2019, 4(4), e00458-e19.
[http://dx.doi.org/10.1128/mSphere.00458-19] [PMID: 31366705]
[76]
Chowdhary, A.; Prakash, A.; Sharma, C.; Kordalewska, M.; Kumar, A.; Sarma, S.; Tarai, B.; Singh, A.; Upadhyaya, G.; Upadhyay, S.; Yadav, P.; Singh, P.K.; Khillan, V.; Sachdeva, N.; Perlin, D.S.; Meis, J.F. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: Role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J. Antimicrob. Chemother., 2018, 73(4), 891-899.
[http://dx.doi.org/10.1093/jac/dkx480] [PMID: 29325167]
[77]
Ben-Ami, R.; Berman, J.; Novikov, A.; Bash, E.; Shachor-Meyouhas, Y.; Zakin, S.; Maor, Y.; Tarabia, J.; Schechner, V.; Adler, A.; Finn, T. Multidrug-Resistant Candida haemulonii and C. auris, Tel Aviv, Israel. Emerg. Infect. Dis., 2017, 23(1), 195-203.
[http://dx.doi.org/10.3201/eid2302.161486] [PMID: 28098529]
[78]
Perlin, D.S. Mechanisms of echinocandin antifungal drug resistance. Ann. N. Y. Acad. Sci., 2015, 1354, 1-11.
[http://dx.doi.org/10.1111/nyas.12831] [PMID: 26190298]
[79]
Moran, C.; Grussemeyer, C.A.; Spalding, J.R.; Benjamin, D.K., Jr; Reed, S.D. Candida albicans and non-albicans bloodstream infections in adult and pediatric patients: Comparison of mortality and costs. Pediatr. Infect. Dis. J., 2009, 28(5), 433-435.
[http://dx.doi.org/10.1097/INF.0b013e3181920ffd] [PMID: 19319021]
[80]
Kumar, K.; Askari, F.; Sahu, M.S.; Kaur, R. Candida glabrata: A lot more than meets the eye. Microorganisms, 2019, 7(2), 39.
[http://dx.doi.org/10.3390/microorganisms7020039] [PMID: 30704135]
[81]
Angoulvant, A.; Guitard, J.; Hennequin, C. Old and new pathogenic Nakaseomyces species: Epidemiology, biology, identification, pathogenicity and antifungal resistance. FEMS Yeast Res., 2016, 16(2), fov114.
[PMID: 26691882]
[82]
Pappas, P.G.; Kauffman, C.A.; Andes, D.; Benjamin, D.K., Jr; Calandra, T.F.; Edwards, J.E., Jr; Filler, S.G.; Fisher, J.F.; Kullberg, B.J.; Ostrosky-Zeichner, L.; Reboli, A.C.; Rex, J.H.; Walsh, T.J.; Sobel, J.D. Clinical practice guidelines for the management of candidiasis: 2009 update by the infectious diseases society of America. Clin. Infect. Dis., 2009, 48(5), 503-535.
[http://dx.doi.org/10.1086/596757] [PMID: 19191635]
[83]
Brunke, S.; Hube, B. Two unlike cousins: Candida albicans and C. glabrata infection strategies. Cell. Microbiol., 2013, 15(5), 701-708.
[http://dx.doi.org/10.1111/cmi.12091] [PMID: 23253282]
[84]
Papon, N.; Courdavault, V.; Clastre, M.; Bennett, R.J. Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog., 2013, 9(9), e1003550.
[http://dx.doi.org/10.1371/journal.ppat.1003550] [PMID: 24086128]
[85]
Zuza-Alves, D.L.; Silva-Rocha, W.P.; Chaves, G.M. An Update on Candida tropicalis based on basic and clinical approaches. Front. Microbiol., 2017, 8, 1927.
[http://dx.doi.org/10.3389/fmicb.2017.01927] [PMID: 29081766]
[86]
Marcos-Zambrano, L.J.; Escribano, P.; Bouza, E.; Guinea, J. Production of biofilm by Candida and non-Candida spp. isolates causing fungemia: comparison of biomass production and metabolic activity and development of cut-off points. Int. J. Med. Microbiol., 2014, 304(8), 1192-1198.
[http://dx.doi.org/10.1016/j.ijmm.2014.08.012] [PMID: 25224357]
[87]
Porman, A.M.; Alby, K.; Hirakawa, M.P.; Bennett, R.J. Discovery of a phenotypic switch regulating sexual mating in the opportunistic fungal pathogen Candida tropicalis. Proc. Natl. Acad. Sci. USA, 2011, 108(52), 21158-21163.
[http://dx.doi.org/10.1073/pnas.1112076109] [PMID: 22158989]
[88]
Forastiero, A.; Mesa-Arango, A.C.; Alastruey-Izquierdo, A.; Alcazar-Fuoli, L.; Bernal-Martinez, L.; Pelaez, T.; Lopez, J.F.; Grimalt, J.O.; Gomez-Lopez, A.; Cuesta, I.; Zaragoza, O.; Mellado, E. Candida tropicalis antifungal cross-resistance is related to different azole target (Erg11p) modifications. Antimicrob. Agents Chemother., 2013, 57(10), 4769-4781.
[http://dx.doi.org/10.1128/AAC.00477-13] [PMID: 23877676]
[89]
García, M.J.; Ríos, G.; Ali, R.; Bellés, J.M.; Serrano, R. Comparative physiology of salt tolerance in Candida tropicalis and Saccharomyces cerevisiae. Microbiology, 1997, 143(Pt 4), 1125-1131.
[http://dx.doi.org/10.1099/00221287-143-4-1125] [PMID: 9141675]
[90]
Trofa, D.; Gácser, A.; Nosanchuk, J.D. Candida parapsilosis, an emerging fungal pathogen. Clin. Microbiol. Rev., 2008, 21(4), 606-625.
[http://dx.doi.org/10.1128/CMR.00013-08] [PMID: 18854483]
[91]
Fell, J.W.; Meyer, S.A. Systematics of yeast species in the Candida parapsilosis group. Mycopathol. Mycol. Appl., 1967, 32(3), 177-193.
[http://dx.doi.org/10.1007/BF02049795] [PMID: 6051845]
[92]
Kuhn, D.M.; Chandra, J.; Mukherjee, P.K.; Ghannoum, M.A. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect. Immun., 2002, 70(2), 878-888.
[http://dx.doi.org/10.1128/IAI.70.2.878-888.2002] [PMID: 11796623]
[93]
Thomaz, D.Y.; de Almeida, J.N., Jr; Lima, G.M.E.; Nunes, M.O.; Camargo, C.H.; Grenfell, R.C.; Benard, G.; Del Negro, G.M.B. An azole-resistant Candida parapsilosis Outbreak: Clonal persistence in the intensive care unit of a Brazilian teaching hospital. Front. Microbiol., 2018, 9, 2997.
[http://dx.doi.org/10.3389/fmicb.2018.02997] [PMID: 30568646]
[94]
Thompson, D.S.; Carlisle, P.L.; Kadosh, D. Coevolution of morphology and virulence in Candida species. Eukaryot. Cell, 2011, 10(9), 1173-1182.
[http://dx.doi.org/10.1128/EC.05085-11] [PMID: 21764907]
[95]
Whiteway, M.; Bachewich, C. Morphogenesis in Candida albicans. Annu. Rev. Microbiol., 2007, 61, 529-553.
[http://dx.doi.org/10.1146/annurev.micro.61.080706.093341] [PMID: 17506678]
[96]
Böttcher, B.; Pöllath, C.; Staib, P.; Hube, B.; Brunke, S. Candida species rewired hyphae developmental programs for chlamydospore formation. Front. Microbiol., 2016, 7, 1697.
[http://dx.doi.org/10.3389/fmicb.2016.01697] [PMID: 27833594]
[97]
Fabry, W.; Schmid, E.N.; Schraps, M.; Ansorg, R. Isolation and purification of chiamydospores of Candida albicans. Med. Mycol., 2003, 41(1), 53-58.
[http://dx.doi.org/10.1080/mmy.41.1.53.58] [PMID: 12627804]
[98]
Berman, J. Morphogenesis and cell cycle progression in Candida albicans. Curr. Opin. Microbiol., 2006, 9(6), 595-601.
[http://dx.doi.org/10.1016/j.mib.2006.10.007] [PMID: 17055773]
[99]
Kadosh, D.; Mundodi, V. A Re-Evaluation of the relationship between morphology and pathogenicity in Candida Species. J. Fungi (Basel), 2020, 6(1), 13.
[http://dx.doi.org/10.3390/jof6010013] [PMID: 31940968]
[100]
Monge, R.A.; Román, E.; Nombela, C.; Pla, J. The MAP kinase signal transduction network in Candida albicans. Microbiology, 2006, 152(Pt 4), 905-912. [Reading].
[http://dx.doi.org/10.1099/mic.0.28616-0] [PMID: 16549655]
[101]
Liu, H.; Köhler, J.; Fink, G.R. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science, 1994, 266(5191), 1723-1726.
[http://dx.doi.org/10.1126/science.7992058] [PMID: 7992058]
[102]
Signal transduction cascades regulating fungal development and virulence. Microbiol. Mol. Biol. Rev., 2000, 64(4), 746-785.
[http://dx.doi.org/10.1128/MMBR.64.4.746-785.2000] [PMID: 11104818]
[103]
Csank, C.; Makris, C.; Meloche, S.; Schröppel, K.; Röllinghoff, M.; Dignard, D.; Thomas, D.Y.; Whiteway, M. Derepressed hyphal growth and reduced virulence in a VH1 family-related protein phosphatase mutant of the human pathogen Candida albicans. Mol. Biol. Cell, 1997, 8(12), 2539-2551.
[http://dx.doi.org/10.1091/mbc.8.12.2539] [PMID: 9398674]
[104]
Guhad, F.A.; Csank, C.; Jensen, H.E.; Thomas, D.Y.; Whiteway, M.; Hau, J. Reduced pathogenicity of a Candida albicans MAP kinase phosphatase (CPP1) mutant in the murine mastitis model. Acta Pathol. Microbiol. Scand. Suppl., 1998, 106(11), 1049-1055.
[http://dx.doi.org/10.1111/j.1699-0463.1998.tb00257.x] [PMID: 9890266]
[105]
Sonneborn, A.; Bockmühl, D.P.; Gerads, M.; Kurpanek, K.; Sanglard, D.; Ernst, J.F. Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Mol. Microbiol., 2000, 35(2), 386-396.
[http://dx.doi.org/10.1046/j.1365-2958.2000.01705.x] [PMID: 10652099]
[106]
Lo, H.J.; Köhler, J.R.; DiDomenico, B.; Loebenberg, D.; Cacciapuoti, A.; Fink, G.R. Nonfilamentous C. albicans mutants are avirulent. Cell, 1997, 90(5), 939-949.
[http://dx.doi.org/10.1016/S0092-8674(00)80358-X] [PMID: 9298905]
[107]
Bahn, Y.S.; Sundstrom, P. CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans. J. Bacteriol., 2001, 183(10), 3211-3223.
[http://dx.doi.org/10.1128/JB.183.10.3211-3223.2001] [PMID: 11325951]
[108]
Maidan, M.M.; De Rop, L.; Serneels, J.; Exler, S.; Rupp, S.; Tournu, H.; Thevelein, J.M.; Van Dijck, P. The G protein-coupled receptor Gpr1 and the Galpha protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol. Biol. Cell, 2005, 16(4), 1971-1986.
[http://dx.doi.org/10.1091/mbc.e04-09-0780] [PMID: 15673611]
[109]
Klengel, T.; Liang, W.J.; Chaloupka, J.; Ruoff, C.; Schröppel, K.; Naglik, J.R. Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr. Biol., 2005, 15(22), 2021-2026.
[http://dx.doi.org/10.1016/j.cub.2005.10.040]
[110]
Hogan, D.A.; Sundstrom, P. The Ras/cAMP/PKA signaling pathway and virulence in Candida albicans. Future Microbiol., 2009, 4(10), 1263-1270.
[http://dx.doi.org/10.2217/fmb.09.106] [PMID: 19995187]
[111]
Lu, Y.; Su, C.; Mao, X.; Raniga, P.P.; Liu, H.; Chen, J. Efg1-mediated recruitment of NuA4 to promoters is required for hypha-specific Swi/Snf binding and activation in Candida albicans. Mol. Biol. Cell, 2008, 19(10), 4260-4272.
[http://dx.doi.org/10.1091/mbc.e08-02-0173] [PMID: 18685084]
[112]
Cao, F.; Lane, S.; Raniga, P.P.; Lu, Y.; Zhou, Z.; Ramon, K.; Chen, J.; Liu, H. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans. Mol. Biol. Cell, 2006, 17(1), 295-307.
[http://dx.doi.org/10.1091/mbc.e05-06-0502] [PMID: 16267276]
[113]
Leng, P.; Sudbery, P.E.; Brown, A.J. Rad6p represses yeast-hypha morphogenesis in the human fungal pathogen Candida albicans. Mol. Microbiol., 2000, 35(5), 1264-1275.
[http://dx.doi.org/10.1046/j.1365-2958.2000.01801.x] [PMID: 10712706]
[114]
Brown, A.J.P.; Argimon, S.; Gow, N.A.R. Signal transduction and morphogenesis in Candida albicans. In: Biology of the Fungal Cell. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research); Howard, R.J.; Gow, N.A.R., Eds.; Springer: Berlin, Heidelberg, 2007; 8, p. 167-194.
[115]
Mukaremera, L.; Lee, K.K.; Mora-Montes, H.M.; Gow, N.A.R. Candida albicans yeast, pseudohyphal, and hyphal morphogenesis differentially affects immune recognition. Front. Immunol., 2017, 8, 629.
[http://dx.doi.org/10.3389/fimmu.2017.00629] [PMID: 28638380]
[116]
Gow, N.A.; van de Veerdonk, F.L.; Brown, A.J.; Netea, M.G. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat. Rev. Microbiol., 2011, 10(2), 112-122.
[http://dx.doi.org/10.1038/nrmicro2711] [PMID: 22158429]
[117]
Julian, R.N. Candida Immunity. New J. Sci., 2014, •••, 390241.
[http://dx.doi.org/10.1155/2014/390241]
[118]
Gulati, M.; Nobile, C.J. Candida albicans biofilms: Development, regulation, and molecular mechanisms. Microbes Infect., 2016, 18(5), 310-321.
[http://dx.doi.org/10.1016/j.micinf.2016.01.002] [PMID: 26806384]
[119]
Erwig, L.P.; Gow, N.A.R. Interactions of fungal pathogens with phagocytes. Nat. Rev. Microbiol., 2016, 14(3), 163-176.
[http://dx.doi.org/10.1038/nrmicro.2015.21] [PMID: 26853116]
[120]
Chaffin, W.L. Candida albicans cell wall proteins. Microbiol. Mol. Biol. Rev., 2008, 72(3), 495-544.
[http://dx.doi.org/10.1128/MMBR.00032-07] [PMID: 18772287]
[121]
Shih-Chin, C.; Leo, A.B.J.; Bart-Jan, K.; Mihai, G.N. Interplay between Candida albicans and the mammalian innate host defence. Infect. Immun., 2012, 1304-1313.
[http://dx.doi.org/10.1128/IAI.06146-11]
[122]
Kashem, S.W.; Kaplan, D.H. Skin immunity to Candida albicans. Trends Immunol., 2016, 37(7), 440-450.
[http://dx.doi.org/10.1016/j.it.2016.04.007] [PMID: 27178391]
[123]
Brooks, G.F.; Janet, S.B.; Stephen, A.M. Medical Microbiology; 23rd edition; Lange publication, McGraw Hill Professional: USA, 2004.
[124]
Pashine, A.; Valiante, N.M.; Ulmer, J.B. Targeting the innate immune response with improved vaccine adjuvants. Nat. Med., 2005, 11(4)(Suppl.), S63-S68.
[http://dx.doi.org/10.1038/nm1210] [PMID: 15812492]
[125]
Kashem, S.W.; Riedl, M.S.; Yao, C.; Honda, C.N.; Vulchanova, L.; Kaplan, D.H. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic Cells and drive protective cutaneous immunity. Immunity, 2015, 43(3), 515-526.
[http://dx.doi.org/10.1016/j.immuni.2015.08.016] [PMID: 26377898]
[126]
Takeda, K.; Kaisho, T.; Akira, S. Toll-like receptors. Annu. Rev. Immunol., 2003, 21, 335-376.
[http://dx.doi.org/10.1146/annurev.immunol.21.120601.141126] [PMID: 12524386]
[127]
Eberle, F.C.; Brück, J.; Holstein, J.; Hirahara, K.; Ghoreschi, K. Recent advances in understanding psoriasis. F1000 Res., 2016, 5, 770.
[http://dx.doi.org/10.12688/f1000research.7927.1] [PMID: 27158469]
[128]
Sinéad, M.L.; Alan, D.I.; Stephan, W. Atopic dermatitis. Lancet, 2020.
[http://dx.doi.org/10.1016/S0140-6736(20)31286-1]
[129]
Zhang, E.; Tanaka, T.; Tajima, M.; Tsuboi, R.; Kato, H.; Nishikawa, A.; Sugita, T. Anti-Malassezia-specific IgE antibodies production in Japanese patients with head and neck atopic dermatitis: relationship between the level of specific IgE antibody and the colonization frequency of cutaneous Malassezia species and clinical severity. J. Allergy (Cairo), 2011, 2011, 645670.
[http://dx.doi.org/10.1155/2011/645670] [PMID: 22253636]
[130]
Ghaffari, J.; Sarvtin, M.T.; Hedayati, M.T.; Hajheydari, Z.; Yazdani, J.; Shokohi, T. Evaluation of candida colonization and specific humoral responses against Candida albicans in patients with atopic dermatitis. BioMed Res. Int., 2015, 2015, 142453.
[http://dx.doi.org/10.1155/2015/142453] [PMID: 26301239]
[131]
Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence, 2013, 4(2), 119-128.
[http://dx.doi.org/10.4161/viru.22913] [PMID: 23302789]
[132]
Pankhurst, C.L. Candidiasis (oropharyngeal). Clin. Evid., 2012, 2012, 1304.
[PMID: 22348417]
[133]
Samaranayake, L.P. Oral mycoses in HIV infection. Oral Surg. Oral Med. Oral Pathol., 1992, 73(2), 171-180.
[http://dx.doi.org/10.1016/0030-4220(92)90191-R] [PMID: 1549312]
[134]
Phan, Q.T.; Myers, C.L.; Fu, Y.; Sheppard, D.C.; Yeaman, M.R.; Welch, W.H.; Ibrahim, A.S.; Edwards, J.E., Jr; Filler, S. G. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol., 2007, 5(3), e64.
[http://dx.doi.org/10.1371/journal.pbio.0050064] [PMID: 17311474]
[135]
Phan, Q.T.; Fratti, R.A.; Prasadarao, N.V.; Edwards, J.E., Jr; Filler, S.G. N-cadherin mediates endocytosis of Candida albicans by endothelial cells. J. Biol. Chem., 2005, 280(11), 10455-10461.
[http://dx.doi.org/10.1074/jbc.M412592200] [PMID: 15632157]
[136]
Abi-Said, D.; Anaissie, E.; Uzun, O.; Raad, I.; Pinzcowski, H.; Vartivarian, S. The epidemiology of hematogenous candidiasis caused by different Candida species. Clin. Infect. Dis., 1997, 24(6), 1122-1128.
[http://dx.doi.org/10.1086/513663] [PMID: 9195068]
[137]
Abdimajid, A.M.; Xin-liang, Lu.; Faycal, A.M. Diagnosis and treatment of esophageal candidiasis: Current updates. Can. J. Gastroenterol. Hepatol., 2019, 3585136.
[http://dx.doi.org/10.1155/2019/3585136]
[138]
Delsing, C.E.; Bleeker-Rovers, C.P.; van de Veerdonk, F.L.; Tol, J.; van der Meer, J.W.M.; Kullberg, B.J.; Netea, M.G. Association of esophageal candidiasis and squamous cell carcinoma. Med. Mycol. Case Rep., 2012, 1(1), 5-8.
[http://dx.doi.org/10.1016/j.mmcr.2012.02.003] [PMID: 24371724]
[139]
de Repentigny, L.; Lewandowski, D.; Jolicoeur, P. Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. Clin. Microbiol. Rev., 2004, 17(4), 729-759.
[http://dx.doi.org/10.1128/CMR.17.4.729-759.2004] [PMID: 15489345]
[140]
Farah, C.S.; Hu, Y.; Riminton, S.; Ashman, R.B. Distinct roles for interleukin-12p40 and tumour necrosis factor in resistance to oral candidiasis defined by gene-targeting. Oral Microbiol. Immunol., 2006, 21(4), 252-255.
[http://dx.doi.org/10.1111/j.1399-302X.2006.00288.x] [PMID: 16842510]
[141]
Tau, G.; Rothman, P. Biologic functions of the IFN-γ receptors. Allergy, 1999, 54(12), 1233-1251.
[http://dx.doi.org/10.1034/j.1398-9995.1999.00099.x] [PMID: 10688427]
[142]
Auclair, S.; Liu, F.; Hu, H. Loss of immune control in HIV-infected patients: how does mucosal candidiasis occur? Future Microbiol., 2017, 12(1), 5-8.
[http://dx.doi.org/10.2217/fmb-2016-0194] [PMID: 27922753]
[143]
Benjamin, D.K., Jr; Stoll, B.J.; Gantz, M.G.; Walsh, M.C.; Sánchez, P.J.; Das, A.; Shankaran, S.; Higgins, R.D.; Auten, K.J.; Miller, N.A.; Walsh, T.J.; Laptook, A.R.; Carlo, W.A.; Kennedy, K.A.; Finer, N.N.; Duara, S.; Schibler, K.; Chapman, R.L.; Van Meurs, K.P.; Frantz, I.D., III; Phelps, D.L.; Poindexter, B.B.; Bell, E.F.; O’Shea, T.M.; Watterberg, K.L.; Goldberg, R.N. Neonatal candidiasis: Epidemiology, risk factors, and clinical judgment. Pediatrics, 2010, 126(4), e865-e873.
[http://dx.doi.org/10.1542/peds.2009-3412] [PMID: 20876174]
[144]
Alexandra, G.; Christoph, R. Germ-Free Mouse Technology in Cardiovascular Research. Microbiome and Metabolome in Diagnosis, Therapy, and other Strategic Applications; Academic press, 2019, pp. 13-25.
[http://dx.doi.org/10.1016/B978-0-12-815249-2.00002-6]
[145]
Gaffen, S.L.; Hernández-Santos, N.; Peterson, A.C. IL-17 signaling in host defense against Candida albicans. Immunol. Res., 2011, 50(2-3), 181-187.
[http://dx.doi.org/10.1007/s12026-011-8226-x] [PMID: 21717069]
[146]
Maher, C.O.; Dunne, K.; Comerford, R.; O’Dea, S.; Loy, A.; Woo, J.; Rogers, T.R.; Mulcahy, F.; Dunne, P.J.; Doherty, D.G. Candida albicans stimulates IL-23 release by human dendritic cells and downstream IL-17 secretion by Vδ1 T cells. J. Immunol., 2015, 194(12), 5953-5960.
[http://dx.doi.org/10.4049/jimmunol.1403066] [PMID: 25964489]
[147]
Warrier, S.A.; Sathasivasubramanian, S. Human immunodeficiency virus induced oral candidiasis. J. Pharm. Bioallied Sci., 2015, 7(Suppl. 2), S812-S814.
[http://dx.doi.org/10.4103/0975-7406.163577] [PMID: 26538978]
[148]
Michalski, C.; Kan, B.; Lavoie, P.M. Antifungal immunological defenses in newborns. Front. Immunol., 2017, 8, 281.
[http://dx.doi.org/10.3389/fimmu.2017.00281] [PMID: 28360910]
[149]
Benjamin, D.K., Jr; Stoll, B.J.; Fanaroff, A.A.; McDonald, S.A.; Oh, W.; Higgins, R.D.; Duara, S.; Poole, K.; Laptook, A.; Goldberg, R. Neonatal candidiasis among extremely low birth weight infants: risk factors, mortality rates, and neurodevelopmental outcomes at 18 to 22 months. Pediatrics, 2006, 117(1), 84-92.
[http://dx.doi.org/10.1542/peds.2004-2292] [PMID: 16396864]
[150]
Manzoni, P.; Mostert, M.; Jacqz-Aigrain, E.; Stronati, M.; Farina, D. Candida colonization in the nursery. J. Pediatr. (Rio J.), 2012, 88(3), 187-190.
[http://dx.doi.org/10.2223/JPED.2201] [PMID: 22717783]
[151]
Marr, N.; Wang, T.I.; Kam, S.H.Y.; Hu, Y.S.; Sharma, A.A.; Lam, A.; Markowski, J.; Solimano, A.; Lavoie, P.M.; Turvey, S.E. Attenuation of respiratory syncytial virus-induced and RIG-I-dependent type I IFN responses in human neonates and very young children. J. Immunol., 2014, 192(3), 948-957.
[http://dx.doi.org/10.4049/jimmunol.1302007] [PMID: 24391215]
[152]
Naglik, J.R.; Gaffen, S.L.; Hube, B. Candidalysin: Discovery and function in Candida albicans infections. Curr. Opin. Microbiol., 2019, 52, 100-109.
[http://dx.doi.org/10.1016/j.mib.2019.06.002] [PMID: 31288097]
[153]
Chouhan, S.; Kallianpur, S.; Prabhu, K.T.; Tijare, M.; Kasetty, S.; Gupta, S. Candidal prevalence in diabetics and its species identification. Int. J. Appl. Basic Med. Res., 2019, 9(1), 49-54. http://dx.doi.org/110.4103/ijabmr.IJABMR_259_18
[PMID: 30820420]
[154]
Gosiewski, T.; Salamon, D.; Szopa, M.; Sroka, A.; Malecki, M.T.; Bulanda, M. Quantitative evaluation of fungi of the genus candida in the feces of adult patients with type 1 and 2 diabetes - a pilot study. Gut Pathog., 2014, 6(1), 43.
[http://dx.doi.org/10.1186/s13099-014-0043-z]
[155]
Soyucen, E.; Gulcan, A.; Aktuglu-Zeybek, A.C.; Onal, H.; Kiykim, E.; Aydin, A. Differences in the gut microbiota of healthy children and those with type 1 diabetes. Pediatr. Int., 2014, 6(3), 336-343.
[http://dx.doi.org/10.1111/ped.12243]
[156]
Wilhelm, M.; Michael, S.; Erika, M.; Konrad, F. Impairment of polymorphonuclear leukocyte function and metabolic control of diabetes. Diabetes Care, 1992, 15(2), 256-260.
[http://dx.doi.org/10.2337/diacare.15.2.256]
[157]
Oliver, J.C.; Ferreira, C.B.R.J.; Silva, N.C.; Dias, A.L.T. Candida spp. and phagocytosis: multiple evasion mechanisms. Antonie van Leeuwenhoek, 2019, 112(10), 1409-1423.
[http://dx.doi.org/10.1007/s10482-019-01271-x] [PMID: 31079344]
[158]
Moyes, D.L.; Wilson, D.; Richardson, J.P.; Mogavero, S.; Tang, S.X.; Wernecke, J.; Höfs, S.; Gratacap, R.L.; Robbins, J.; Runglall, M.; Murciano, C.; Blagojevic, M.; Thavaraj, S.; Förster, T.M.; Hebecker, B.; Kasper, L.; Vizcay, G.; Iancu, S.I.; Kichik, N.; Häder, A.; Kurzai, O.; Luo, T.; Krüger, T.; Kniemeyer, O.; Cota, E.; Bader, O.; Wheeler, R.T.; Gutsmann, T.; Hube, B.; Naglik, J.R. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature, 2016, 532(7597), 64-68.
[http://dx.doi.org/10.1038/nature17625] [PMID: 27027296]
[159]
Naglik, J.R.; König, A.; Hube, B.; Gaffen, S.L. Candida albicans-Epithelial interactions and induction of mucosal innate immunity. Curr. Opin. Microbiol., 2017, 40, 104-112.
[http://dx.doi.org/10.1016/j.mib.2017.10.030]
[160]
Wang, D.; Jiang, Y.; Li, Z.; Xue, L.; Li, X.; Liu, Y.; Li, C.; Wang, H. The effect of Candida albicans on the expression levels of Toll-like receptor 2 and interleukin-8 in HaCaT cells under high and low-glucose conditions. Indian J. Dermatol., 2018, 63, 201-207.
[161]
Javed, F.; Ahmed, H.B.; Mehmood, A.; Saeed, A.; Al-Hezaimi, K.; Samaranayake, L.P.; Lakshman, P.S. Association between glycemic status and oral Candida carriage in patients with prediabetes. Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 2014, 117(1), 53-58.
[http://dx.doi.org/10.1016/j.oooo.2013.08.018] [PMID: 24332327]
[162]
Okada, M.; Hisajima, T.; Ishibashi, H.; Miyasaka, T.; Abe, S.; Satoh, T. Pathological analysis of the Candida albicans-infected tongue tissues of a murine oral candidiasis model in the early infection stage. Arch. Oral Biol., 2013, 58(4), 444-450.
[http://dx.doi.org/10.1016/j.archoralbio.2012.09.014]
[163]
Adriana, M.; Luigi, S.; Massimo, M.; Adrian, M. Oral candidiasis and inflammatory response: A potential synergic contribution to the onset of Type-2 diabetes mellitus. Australas. Med. J., 2017, 10(6), 550-556.
[http://dx.doi.org/10.21767/AMJ.2017.3053]
[164]
Zhao, G.; Dharmadhikari, G.; Hermann, M. Possible role of interleukin-1β in type 2 diabetes onset and implications for anti-inflammatory therapy strategies. PLOS Comput. Biol., 2014, 10(8), e1003798.
[165]
Aguirre-Quiñonero, A.; Castillo-Sedano, I.S.; Calvo-Muro, F.; Canut-Blasco, A. Accuracy of the BD MAX™ vaginal panel in the diagnosis of infectious vaginitis. Eur. J. Clin. Microbiol. Infect. Dis., 2019, 38(5), 877-882.
[http://dx.doi.org/10.1007/s10096-019-03480-8] [PMID: 30685805]
[166]
Farhan, M.A.; Moharram, A.M.; Salah, T.; Shaaban, O.M. Types of yeasts that cause vulvovaginal candidiasis in chronic users of corticosteroids. Med. Mycol., 2019, 57(6), 681-687.
[http://dx.doi.org/10.1093/mmy/myy117] [PMID: 30544194]
[167]
Hickey, D.K.; Patel, M.V.; Fahey, J.V.; Wira, C.R. Innate and adaptive immunity at mucosal surfaces of the female reproductive tract: Stratification and integration of immune protection against the transmission of sexually transmitted infections. J. Reprod. Immunol., 2011, 88(2), 185-194.
[http://dx.doi.org/10.1016/j.jri.2011.01.005] [PMID: 21353708]
[168]
Petrova, M.I.; Lievens, E.; Malik, S.; Imholz, N.; Lebeer, S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front. Physiol., 2015, 6(81)
[http://dx.doi.org/10.3389/fphys.2015.00081]
[169]
Zhou, J.Z.; Way, S.S.; Chen, K. Immunology of the uterine and vaginal mucosae. Trends Immunol., 2018, 39(4), 302-314.
[http://dx.doi.org/10.1016/j.it.2018.01.007]
[170]
Figueiredo, A.S.; Schumacher, A. The T helper type 17/regulatory T cell paradigm in pregnancy. Immunology, 2016, 148(1), 13-21.
[http://dx.doi.org/10.1111/imm.12595]
[171]
Moyes, D.L.; Runglall, M.; Murciano, C.; Shen, C.; Nayar, D.; Thavaraj, S.; Kohli, A.; Islam, A.; Mora-Montes, H.; Challacombe, S.J.; Naglik, J.R. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe, 2010, 8(3), 225-235.
[http://dx.doi.org/10.1016/j.chom.2010.08.002]
[172]
Morris, B.J.; Krieger, J.N. Penile inflammatory skin disorders and the preventive role of circumcision. Int. J. Prev. Med., 2017, 8(32), 32.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_377_16] [PMID: 28567234]
[173]
Ortega-Loubon, C.; Cano-Hernández, B.; Poves-Alvarez, R.; Muñoz-Moreno, M.F.; Román-García, P.; Balbás-Alvarez, S.; de la Varga-Martínez, O.; Gómez-Sánchez, E.; Gómez-Pesquera, E.; Lorenzo-López, M.; Tamayo, E.; Heredia-Rodríguez, M. The overlooked immune state in Candidemia: A risk factor for mortality. J. Clin. Med., 2019, 8(10), 1512.
[http://dx.doi.org/10.3390/jcm8101512] [PMID: 31547077]
[174]
Dimopoulos, G.; Karabinis, A.; Samonis, G.; Falagas, M.E. Candidemia in immunocompromised and immunocompetent critically ill patients: A prospective comparative study. Eur. J. Clin. Microbiol. Infect. Dis., 2007, 26(6), 377-384.
[http://dx.doi.org/10.1007/s10096-007-0316-2] [PMID: 17525857]
[175]
Santolaya, M.E.; Alvarado Matute, T.; de Queiroz Telles, F.; Colombo, A.L.; Zurita, J.; Tiraboschi, I.N.; Cortes, J.A.; Thompson-Moya, L.; Guzman-Blanco, M.; Sifuentes, J.; Echevarría, J.; Nucci, M. Recommendations for the management of candidemia in neonates in Latin America. Rev. Iberoam. Micol., 2013, 30(3), 158-170.
[http://dx.doi.org/10.1016/j.riam.2013.05.012] [PMID: 23756219]
[176]
White, T.C.; Holleman, S.; Dy, F.; Mirels, L.F.; Stevens, D.A. Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob. Agents Chemother., 2002, 46(6), 1704-1713.
[http://dx.doi.org/10.1128/AAC.46.6.1704-1713.2002] [PMID: 12019079]
[177]
Chandrasekar, P. Management of invasive fungal infections: A role for polyenes. J. Antimicrob. Chemother., 2011, 66(3), 457-465.
[http://dx.doi.org/10.1093/jac/dkq479] [PMID: 21172787]
[178]
Lotfali, E.; Ghajari, A.; Kordbacheh, P.; Zaini, F.; Mirhendi, H.; Mohammadi, R.; Noorbakhsh, F.; Rezaie, S. Regulation of ERG3, ERG6, and ERG11 genes in antifungal-resistant isolates of Candida parapsilosis. Iran. Biomed. J., 2017, 21(4), 275-281.
[http://dx.doi.org/10.18869/acadpub.ibj.21.4.275] [PMID: 28176517]
[179]
Ostrosky-Zeichner, L.; Marr, K.A.; Rex, J.H.; Cohen, S.H. Amphotericin B: time for a new “gold standard”. Clin. Infect. Dis., 2003, 37(3), 415-425.
[http://dx.doi.org/10.1086/376634] [PMID: 12884167]
[180]
Pemán, J.; Cantón, E.; Espinel-Ingroff, A. Antifungal drug resistance mechanisms. Expert Rev. Anti Infect. Ther., 2009, 7(4), 453-460.
[http://dx.doi.org/10.1586/eri.09.18] [PMID: 19400764]
[181]
Costa-de-Oliveira, S.; Rodrigues, A.G. Candida albicans antifungal resistance and tolerance in bloodstream infections: The triad yeast-host-antifungal. Microorganisms, 2020, 8(2), 154.
[http://dx.doi.org/10.3390/microorganisms8020154] [PMID: 31979032]
[182]
Vermes, A.; Guchelaar, H.J.; Dankert, J. Flucytosine: A review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob. Chemother., 2000, 46(2), 171-179.
[http://dx.doi.org/10.1093/jac/46.2.171] [PMID: 10933638]
[183]
Hagiwara, D.; Watanabe, A.; Kamei, K.; Goldman, G.H. Epidemiological and genomic landscape of azole resistance mechanisms in Aspergillus fungi. Front. Microbiol., 2016, 7, 1382.
[http://dx.doi.org/10.3389/fmicb.2016.01382] [PMID: 27708619]
[184]
Arikan-Akdagli, S.; Ghannoum, M.; Meis, J.F. Antifungal resistance: Specific focus on multidrug resistance in Candida auris and secondary azole resistance in Aspergillus fumigatus. J. Fungi (Basel), 2018, 4(4), 129.
[http://dx.doi.org/10.3390/jof4040129] [PMID: 30563053]
[185]
Chang, C.C.; Slavin, M.A.; Chen, S.C. New developments and directions in the clinical application of the echinocandins. Arch. Toxicol., 2017, 91(4), 1613-1621.
[http://dx.doi.org/10.1007/s00204-016-1916-3] [PMID: 28180946]
[186]
Mickymaray, S.; Al Aboody, M.S.; Rath, P.K.; Annamalai, P.; Nooruddin, T. Screening and antibacterial efficacy of selected Indian medicinal plants. Asian Pac. J. Trop. Biomed., 2016, 6, 185-191.
[http://dx.doi.org/10.1016/j.apjtb.2015.12.005]
[187]
Aboody, M.S.A.; Mickymaray, S. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics (Basel), 2020, 9(2), 45.
[http://dx.doi.org/10.3390/antibiotics9020045] [PMID: 31991883]
[188]
Hmoteh, J.; Musthafa, K.S.; Voravuthikunchai, S.P. Effects of Rhodomyrtus tomentosa extract on virulence factors of Candida albicans and human neutrophil function. Arch. Oral Biol., 2018, 87, 35-42.
[http://dx.doi.org/10.1016/j.archoralbio.2017.11.007] [PMID: 29247856]
[189]
Torres-Carro, R.; Isla, M.I.; Thomas-Valdes, S.; Jiménez-Aspee, F.; Schmeda-Hirschmann, G.; Alberto, M.R. Inhibition of pro-inflammatory enzymes by medicinal plants from the Argentinean highlands (Puna). J. Ethnopharmacol., 2017, 205, 57-68.
[http://dx.doi.org/10.1016/j.jep.2017.04.013] [PMID: 28433637]
[190]
Moreno, M.A.; Zampini, I.C.; Isla, M.I. Antifungal, anti-inflammatory and antioxidant activity of bi-herbal mixtures with medicinal plants from Argentinean highlands. J. Ethnopharmacol., 2020, 253, 112642.
[http://dx.doi.org/10.1016/j.jep.2020.112642] [PMID: 32035220]
[191]
Lu, M.; Li, T.; Wan, J.; Li, X.; Yuan, L.; Sun, S. Antifungal effects of phytocompounds on Candida species alone and in combination with fluconazole. Int. J. Antimicrob. Agents, 2017, 49(2), 125-136.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.10.021] [PMID: 28040409]
[192]
Swartjes, J.J.; Sharma, P.K.; van Kooten, T.G.; van der Mei, H.C.; Mahmoudi, M.; Busscher, H.J.; Rochford, E.T. Current developments in antimicrobial surface coatings for biomedical applications. Curr. Med. Chem., 2015, 22(18), 2116-2129.
[http://dx.doi.org/10.2174/0929867321666140916121355] [PMID: 25245508]
[193]
Sahal, G.; Woerdenbag, H.J.; Hinrichs, W.L.J.; Visser, A.; Tepper, P.G.; Quax, W.J.; van der Mei, H.C.; Bilkay, I.S. Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. J. Ethnopharmacol., 2020, 246, 112188.
[http://dx.doi.org/10.1016/j.jep.2019.112188] [PMID: 31470085]
[194]
Tyagi, A.K.; Malik, A. Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: Microscopic observations and chemical characterization of Cymbopogon citratus. BMC Complement. Altern. Med., 2010, 10, 65.
[http://dx.doi.org/10.1186/1472-6882-10-65] [PMID: 21067604]
[195]
Espino, M.; Solari, M. de los Ángeles, Fernández. M.; Boiteux, J.; Gómez, M.R.; Silva, M.F. NADES-mediated folk plant extracts as novel antifungal agents against Candida albicans. J. pharm. Biomed., 2019, 167, 15-20.
[196]
Dhiman, M.; Parab, R.R.; Manju, S.L.; Desai, D.C.; Mahajan, G.B. Antifungal activity of hydrochloride salts of tylophorinidine and tylophorinine. Nat. Prod. Commun., 2012, 7(9), 1171-1172.
[http://dx.doi.org/10.1177/1934578X1200700916] [PMID: 23074899]
[197]
Mollataghi, A.; Coudiere, E.; Hadi, A.H.; Mukhtar, M.R.; Awang, K.; Litaudon, M.; Ata, A. Anti-acetylcholinesterase, anti-α-glucosidase, anti-leishmanial and anti-fungal activities of chemical constituents of Beilschmiedia species. Fitoterapia, 2012, 83(2), 298-302.
[http://dx.doi.org/10.1016/j.fitote.2011.11.009] [PMID: 22119096]
[198]
Ma, C.; Du, F.; Yan, L.; He, G.; He, J.; Wang, C.; Rao, G.; Jiang, Y.; Xu, G. Potent activities of roemerine against Candida albicans and the underlying mechanisms. Molecules, 2015, 20(10), 17913-17928.
[http://dx.doi.org/10.3390/molecules201017913] [PMID: 26426004]
[199]
Zhao, L.X.; Li, D.D.; Hu, D.D.; Hu, G.H.; Yan, L.; Wang, Y.; Jiang, Y.Y. Effect of tetrandrine against Candida albicans biofilms. PLoS One, 2013, 8(11), e79671.
[http://dx.doi.org/10.1371/journal.pone.0079671] [PMID: 24260276]
[200]
Zorić N.; Kosalec, I.; Tomić S.; Bobnjarić I.; Jug, M.; Vlainić T.; Vlainić J. Membrane of Candida albicans as a target of berberine. BMC Complement. Altern. Med., 2017, 17(1), 268.
[http://dx.doi.org/10.1186/s12906-017-1773-5] [PMID: 28514949]
[201]
da Silva, D.L.; Magalhães, T.F.F.; Dos Santos, J.R.A.; de Paula, T.P.; Modolo, L.V.; de Fátima, A.; Buzanello Martins, C.V.; Santos, D.A.; de Resende-Stoianoff, M.A. Curcumin enhances the activity of fluconazole against Cryptococcus gattii-induced cryptococcosis infection in mice. J. Appl. Microbiol., 2016, 120(1), 41-48.
[http://dx.doi.org/10.1111/jam.12966] [PMID: 26442997]
[202]
Cassidy, A.; Minihane, A.M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am. J. Clin. Nutr., 2017, 105(1), 10-22.
[http://dx.doi.org/10.3945/ajcn.116.136051] [PMID: 27881391]
[203]
Oteiza, P.I.; Fraga, C.G.; Mills, D.A.; Taft, D.H. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol. Aspects Med., 2018, 61, 41-49.
[http://dx.doi.org/10.1016/j.mam.2018.01.001] [PMID: 29317252]
[204]
Kumar, G.; Banu, G.S.; Pandian, M.R. Biochemical activity of selenium and glutathione on country made liquor (CML) induced hepatic damage in rats. Indian J. Clin. Biochem., 2007, 22(1), 105-108.
[http://dx.doi.org/10.1007/BF02912891] [PMID: 23105662]
[205]
Kumar, G.; Murugesan, A.G. Hypolipidaemic activity of Helicteres isora L. bark extracts in streptozotocin induced diabetic rats. J. Ethnopharmacol., 2008, 116(1), 161-166.
[http://dx.doi.org/10.1016/j.jep.2007.11.020] [PMID: 18191354]
[206]
Ziberna, L.; Fornasaro, S. Cˇ vorovic´, J.; Tramer, F.; Passamonti, S. Bioavailability of flavonoids. Polyphenols in Human Health and Disease; Elsevier: Amsterdam, The Netherlands, 2014, pp. 489-511.
[http://dx.doi.org/10.1016/B978-0-12-398456-2.00037-2]
[207]
Seleem, D.; Pardi, V.; Murata, R.M. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch. Oral Biol., 2017, 76, 76-83.
[http://dx.doi.org/10.1016/j.archoralbio.2016.08.030] [PMID: 27659902]
[208]
da Silva, A.R.; de Andrade Neto, J.B.; da Silva, C.R. Campos, Rde.S.; Costa Silva, R.A.; Freitas, D.D.; do Nascimento, F.B.; de Andrade, L.N.; Sampaio, L.S.; Grangeiro, T.B.; Magalhães, H.I.; Cavalcanti, B.C.; de Moraes, M.O.; Nobre Júnior, H.V. Berberine antifungal activity in fluconazole-resistant pathogenic yeasts: Action mechanism evaluated by flow cytometry and biofilm growth inhibition in Candida spp. Antimicrob. Agents Chemother., 2016, 60(6), 3551-3557.
[http://dx.doi.org/10.1128/AAC.01846-15] [PMID: 27021328]
[209]
Alalwan, H.; Rajendran, R.; Lappin, D.F.; Combet, E.; Shahzad, M.; Robertson, D.; Nile, C.J.; Williams, C.; Ramage, G. The anti-adhesive effect of curcumin on Candida albicans biofilms on denture materials. Front. Microbiol., 2017, 8, 659.
[http://dx.doi.org/10.3389/fmicb.2017.00659] [PMID: 28473808]
[210]
Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine, 2008, 15(8), 639-652.
[http://dx.doi.org/10.1016/j.phymed.2008.06.008] [PMID: 18599280]
[211]
Wagner, H.; Ulrich-Merzenich, G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine, 2009, 16(2-3), 97-110.
[http://dx.doi.org/10.1016/j.phymed.2008.12.018] [PMID: 19211237]
[212]
Danielli, L.J.; Pippi, B.; Soares, K.D.; Duarte, J.A.; Maciel, A.J.; Machado, M.M.; Oliveira, L.F.S.; Bordignon, S.A.L.; Fuentefria, A.M.; Apel, M.A. Chemo sensitization of filamentous fungi to antifungal agents using Nectandra Rol. ex Rottb. species essential oils. Ind. Crops Prod., 2017, 102, 715.
[http://dx.doi.org/10.1016/j.indcrop.2017.03.013]
[213]
Moraes, R.C.; Carvalho, A.R.; Lana, A.J.D.; Kaiser, S.; Pippi, B.; Fuentefria, A.M.; Ortega, G.G. In vitro synergism of a water insoluble fraction of Uncaria tomentosa combined with fluconazole and terbinafine against resistant non-Candida albicans isolates. Pharm. Biol., 2017, 55(1), 406-415.
[http://dx.doi.org/10.1080/13880209.2016.1242631] [PMID: 27931150]
[214]
Ahmad, A.; Wani, M.Y.; Khan, A.; Manzoor, N.; Molepo, J. Synergistic Interactions of Eugenol-tosylate and its congeners with fluconazole against Candida albicans. PLoS One, 2015, 10(12), e0145053.
[http://dx.doi.org/10.1371/journal.pone.0145053] [PMID: 26694966]
[215]
Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Karuppayil, S.M. Phenylpropanoids of plant origin as inhibitors of biofilm formation by Candida albicans. J. Microbiol. Biotechnol., 2014, 24(9), 1216-1225.
[http://dx.doi.org/10.4014/jmb.1402.02056] [PMID: 24851813]
[216]
Shreaz, S.; Bhatia, R.; Khan, N.; Muralidhar, S.; Manzoor, N.; Khan, L.A. Influences of cinnamic aldehydes on H⁺ extrusion activity and ultrastructure of Candida. J. Med. Microbiol., 2013, 62(Pt 2), 232-240.
[http://dx.doi.org/10.1099/jmm.0.036145-0] [PMID: 22034160]
[217]
Bang, K.H.; Kim, Y.K.; Min, B.S.; Na, M.K.; Rhee, Y.H.; Lee, J.P.; Bae, K.H. Antifungal activity of magnolol and honokiol. Arch. Pharm. Res., 2000, 23(1), 46-49.
[http://dx.doi.org/10.1007/BF02976465] [PMID: 10728656]
[218]
Sun, L.; Liao, K.; Wang, D. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans. PLoS One, 2015, 10(2), e0117695.
[http://dx.doi.org/10.1371/journal.pone.0117695] [PMID: 25710475]
[219]
Zore, G.B.; Thakre, A.D.; Jadhav, S.; Karuppayil, S.M. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine, 2011, 18(13), 1181-1190.
[http://dx.doi.org/10.1016/j.phymed.2011.03.008] [PMID: 21596542]
[220]
Kang, K.; Fong, W.P.; Tsang, P.W. Novel antifungal activity of purpurin against Candida species in vitro. Med. Mycol., 2010, 48(7), 904-911.
[http://dx.doi.org/10.3109/13693781003739351] [PMID: 20392152]
[221]
Tsang, P.W.; Wong, A.P.; Yang, H.P.; Li, N.F. Purpurin triggers caspase-independent apoptosis in Candida dubliniensis biofilms. PLoS One, 2013, 8(12), e86032.
[http://dx.doi.org/10.1371/journal.pone.0086032] [PMID: 24376900]
[222]
Miao, H.; Zhao, L.; Li, C.; Shang, Q.; Lu, H.; Fu, Z.; Wang, L.; Jiang, Y.; Cao, Y. Inhibitory effect of Shikonin on Candida albicans growth. Biol. Pharm. Bull., 2012, 35(11), 1956-1963.
[http://dx.doi.org/10.1248/bpb.b12-00338] [PMID: 23123467]
[223]
Sreelatha, T.; Kandhasamy, S.; Dinesh, R.; Shruthy, S.; Shweta, S.; Mukesh, D.; Karunagaran, D.; Balaji, R.; Mathivanan, N.; Perumal, P.T. Synthesis and SAR study of novel anticancer and antimicrobial naphthoquinone amide derivatives. Bioorg. Med. Chem. Lett., 2014, 24(15), 3647-3651.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.080] [PMID: 24913712]
[224]
Palmeira-de-Oliveira, A.; Gaspar, C.; Palmeira-de-Oliveira, R.; Silva-Dias, A.; Salgueiro, L.; Cavaleiro, C.; Pina-Vaz, C.; Martinez-de-Oliveira, J.; Queiroz, J.A.; Rodrigues, A.G. The anti-Candida activity of Thymbra capitata essential oil: effect upon pre-formed biofilm. J. Ethnopharmacol., 2012, 140(2), 379-383.
[http://dx.doi.org/10.1016/j.jep.2012.01.029] [PMID: 22310557]
[225]
Feyaerts, A.F.; Mathé, L.; Luyten, W.; De Graeve, S.; Van Dyck, K.; Broekx, L.; Van Dijck, P. Essential oils and their components are a class of antifungals with potent vapour-phase-mediated anti-Candida activity. Sci. Rep., 2018, 8(1), 3958.
[http://dx.doi.org/10.1038/s41598-018-22395-6] [PMID: 29500393]
[226]
Mandras, N.; Nostro, A.; Roana, J.; Scalas, D.; Banche, G.; Ghisetti, V.; Del Re, S.; Fucale, G.; Cuffini, A.M.; Tullio, V. Liquid and vapour-phase antifungal activities of essential oils against Candida albicans and non-albicans Candida. BMC Complement. Altern. Med., 2016, 16(1), 330.
[http://dx.doi.org/10.1186/s12906-016-1316-5] [PMID: 27576581]
[227]
Peixoto, L.R.; Rosalen, P.L.; Ferreira, G.L.S.; Freires, I.A.; de Carvalho, F.G.; Castellano, L.R.; de Castro, R.D. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Arch. Oral Biol., 2017, 73, 179-185.
[http://dx.doi.org/10.1016/j.archoralbio.2016.10.013] [PMID: 27771586]
[228]
Perić M.; Rajković K.; Milić Lemić A.; Živković R.; Arsić Arsenijević V. Development and validation of mathematical models for testing antifungal activity of different essential oils against Candida species. Arch. Oral Biol., 2019, 98, 258-264.
[http://dx.doi.org/10.1016/j.archoralbio.2018.11.029] [PMID: 30530237]
[229]
Tangarife-Castaño, V.; Correa-Royero, J.; Zapata-Londono, B.; Durán, C.; Stanshenko, E.; Mesa-Arango, A.C. Anti Candida albicans activity, cytotoxicity and interaction with antifungal drugs of essential oils and extracts from aromatic and medicinal plants. Infection, 2011, 15, 160-167.
[http://dx.doi.org/10.1016/S0123-9392(11)70080-7]
[230]
Shih, Y.H.; Chang, K.W.; Hsia, S.M.; Yu, C.C.; Fuh, L.J.; Chi, T.Y.; Shieh, T.M. In vitro antimicrobial and anticancer potential of hinokitiol against oral pathogens and oral cancer cell lines. Microbiol. Res., 2013, 168(5), 254-262.
[http://dx.doi.org/10.1016/j.micres.2012.12.007] [PMID: 23312825]
[231]
Ahmad, A.; Khan, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur. J. Clin. Microbiol. Infect. Dis., 2011, 30(1), 41-50.
[http://dx.doi.org/10.1007/s10096-010-1050-8] [PMID: 20835742]
[232]
Khan, A.; Ahmad, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Res. Microbiol., 2010, 161(10), 816-823.
[http://dx.doi.org/10.1016/j.resmic.2010.09.008] [PMID: 20868749]
[233]
Yu, L.H.; Wei, X.; Ma, M.; Chen, X.J.; Xu, S.B. Possible inhibitory molecular mechanism of farnesol on the development of fluconazole resistance in Candida albicans biofilm. Antimicrob. Agents Chemother., 2012, 56(2), 770-775.
[http://dx.doi.org/10.1128/AAC.05290-11] [PMID: 22106223]
[234]
Fan, J.T.; Kuang, B.; Zeng, G.Z.; Zhao, S.M.; Ji, C.J.; Zhang, Y.M.; Tan, N.H. Biologically active arborinane-type triterpenoids and anthraquinones from Rubia yunnanensis. J. Nat. Prod., 2011, 74(10), 2069-2080.
[http://dx.doi.org/10.1021/np2002918] [PMID: 21973054]
[235]
Katragkou, A.; McCarthy, M.; Alexander, E.L.; Antachopoulos, C.; Meletiadis, J.; Jabra-Rizk, M.A.; Petraitis, V.; Roilides, E.; Walsh, T.J. In vitro interactions between farnesol and fluconazole, amphotericin B or micafungin against Candida albicans biofilms. J. Antimicrob. Chemother., 2015, 70(2), 470-478.
[http://dx.doi.org/10.1093/jac/dku374] [PMID: 25288679]
[236]
Chang, W.; Li, Y.; Zhang, L.; Cheng, A.; Liu, Y.; Lou, H. Retigeric acid B enhances the efficacy of azoles combating the virulence and biofilm formation of Candida albicans. Biol. Pharm. Bull., 2012, 35(10), 1794-1801.
[http://dx.doi.org/10.1248/bpb.b12-00511] [PMID: 22863995]
[237]
Edziri, H.; Mastouri, M.; Mahjoub, M.A.; Mighri, Z.; Mahjoub, A.; Verschaeve, L. Antibacterial, antifungal and cytotoxic activities of two flavonoids from Retama raetam flowers. Molecules, 2012, 17(6), 7284-7293.
[http://dx.doi.org/10.3390/molecules17067284] [PMID: 22695233]
[238]
Mohotti, S.; Rajendran, S.; Muhammad, T.; Strömstedt, A.A.; Adhikari, A.; Burman, R.; de Silva, E.D.; Göransson, U.; Hettiarachchi, C.M.; Gunasekera, S. Screening for bioactive secondary metabolites in Sri Lankan medicinal plants by microfractionation and targeted isolation of antimicrobial flavonoids from Derris scandens. J. Ethnopharmacol., 2020, 246, 112158.
[http://dx.doi.org/10.1016/j.jep.2019.112158] [PMID: 31421182]
[239]
Lee, J.A.; Chee, H.Y. In vitro antifungal activity of equol against Candida albicans. Mycobiology, 2010, 38(4), 328-330.
[http://dx.doi.org/10.4489/MYCO.2010.38.4.328] [PMID: 23956675]
[240]
Vieira, M.L.A.; Johann, S.; Hughes, F.M.; Rosa, C.A.; Rosa, L.H. The diversity and antimicrobial activity of endophytic fungi associated with medicinal plant Baccharis trimera (Asteraceae) from the Brazilian savannah. Can. J. Microbiol., 2014, 60(12), 847-856.
[http://dx.doi.org/10.1139/cjm-2014-0449] [PMID: 25403761]
[241]
Djouossi, M.G.; Tamokou, J.-d.-D.; Ngnokam, D.; Kuiate, J.-R.; Tapondjou, L.A.; Harakat, D.; Voutquenne-Nazabadioko, L. Antimicrobial and antioxidant flavonoids from the leaves of Oncoba spinosa Forssk. (Salicaceae). BMC Compl. Altern. Med., 2015, 15.
[http://dx.doi.org/10.1186/s12906-015-0660-1]
[242]
Gadetskaya, A.V.; Tarawneh, A.H.; Zhusupova, G.E.; Gemejiyeva, N.G.; Cantrell, C.L.; Cutler, S.J.; Ross, S.A. Sulfated phenolic compounds from Limonium caspium: Isolation, structural elucidation, and biological evaluation. Fitoterapia, 2015, 104, 80-85.
[http://dx.doi.org/10.1016/j.fitote.2015.05.017] [PMID: 26025854]
[243]
Karalija, E.; Paric´, A.; Dahija, S.; Bešta-Gajevic´, R.; C’avar Zeljkovic´, S. Phenolic compounds and bioactive properties of Verbascum glabratum subsp. bosnense (K. Malý) Murb., an endemic plant species. Nat. Prod. Res., 2018, 1-5.
[http://dx.doi.org/10.1080/14786419.2018.1538221] [PMID: 30580595]
[244]
Cantelli, B.A.M.; Bitencourt, T.A.; Komoto, T.T.; Beleboni, R.O.; Marins, M.; Fachin, A.L. Caffeic acid and licochalcone A interfere with the glyoxylate cycle of Trichophyton rubrum. Biomed. Pharmacother., 2017, 96, 1389-1394.
[http://dx.doi.org/10.1016/j.biopha.2017.11.051] [PMID: 29174577]
[245]
ElSohly, H.N.; Joshi, A.S.; Nimrod, A.C.; Walker, L.A.; Clark, A.M. Antifungal chalcones from Maclura tinctoria. Planta Med., 2001, 67(1), 87-89.
[http://dx.doi.org/10.1055/s-2001-10621] [PMID: 11270732]
[246]
Picerno, P.; Mencherini, T.; Sansone, F.; Del Gaudio, P.; Granata, I.; Porta, A.; Aquino, R.P. Screening of a polar extract of Paeonia rockii: composition and antioxidant and antifungal activities. J. Ethnopharmacol., 2011, 138(3), 705-712.
[http://dx.doi.org/10.1016/j.jep.2011.09.056] [PMID: 22004890]
[247]
de Oliveira Santos, G.C.; Vasconcelos, C.C.; Lopes, A.J.O.; de Sousa Cartágenes, M.D.S.; Filho, A.K.D.B.; do Nascimento, F.R.F.; Ramos, R.M.; Pires, E.R.R.B.; de Andrade, M.S.; Rocha, F.M.G.; de Andrade Monteiro, C. Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front. Microbiol., 2018, 9, 1351.
[http://dx.doi.org/10.3389/fmicb.2018.01351] [PMID: 30018595]
[248]
de Castro, R.D.; de Souza, T.M.P.A.; Bezerra, L.M.D.; Ferreira, G.L.S.; Costa, E.M.; Cavalcanti, A.L. Antifungal activity and mode of action of thymol and its synergism with nystatin against Candida species involved with infections in the oral cavity: An in vitro study. BMC Complement. Altern. Med., 2015, 15, 417.
[http://dx.doi.org/10.1186/s12906-015-0947-2] [PMID: 26601661]
[249]
Manzoor, N. Candida Pathogenicity and Alternative. Therapeutic Strategies: In pathogenicity and drug resistance of human pathogens; Springer: Singapore, 2019, pp. 135-146.
[http://dx.doi.org/10.1007/978-981-32-9449-3_7]
[250]
Sharma, M.; Manoharlal, R.; Shukla, S.; Puri, N.; Prasad, T.; Ambudkar, S.V.; Prasad, R. Curcumin modulates efflux mediated by yeast ABC multidrug transporters and is synergistic with antifungals. Antimicrob. Agents Chemother., 2009, 53(8), 3256-3265.
[http://dx.doi.org/10.1128/AAC.01497-08] [PMID: 19470507]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy