Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Curcumin as a Natural Modulator of B Lymphocytes: Evidence from In Vitro and In Vivo Studies

Author(s): Asadollah Mohammadi, Kazem Mashayekhi, Jamshid Gholizadeh Navashenaq and Saeed Mohammadian Haftcheshmeh*

Volume 22, Issue 18, 2022

Published on: 14 April, 2022

Page: [2361 - 2370] Pages: 10

DOI: 10.2174/1389557522666220304122916

Price: $65

conference banner
Abstract

B cells are the only player of humoral immune responses by the production of various types of antibodies. However, B cells are also involved in the pathogenesis of several immune-mediated diseases. Moreover, different types of B cell lymphoma have also been characterized. Selective depletion of B cells by anti-CD20 and other B cell-depleting agents in the clinic can improve a wide range of immune-mediated diseases. B cells' capacity to act as cytokine-producing cells explains how they can control immune cells' activity and contribute to disease pathogenesis. Thus, researchers investigated a safe, low-cost, and effective treatment modality for targeting B cells. In this respect, curcumin, the biologically active ingredient of turmeric, has a wide range of pharmacological activities. Evidence showed that curcumin could affect various immune cells, such as monocytes and macrophages, dendritic cells, and T lymphocytes. However, there are few pieces of evidence about the effects of curcumin on B cells. This study aims to review the available evidence about curcumin's modulatory effects on B cells' proliferation, differentiation, and function in different states. Apart from normal B cells, the modulatory effects of curcumin on B cell lymphoma will also be discussed.

Keywords: B cells, B cell lymphoma, curcumin, inflammatory diseases, immune cells, pharmacological activities.

Graphical Abstract
[1]
Thomas, M.D.; Srivastava, B.; Allman, D. Regulation of peripheral B cell maturation. Cell. Immunol., 2006, 239(2), 92-102.
[http://dx.doi.org/10.1016/j.cellimm.2006.04.007] [PMID: 16797504]
[2]
Wang, Y.; Liu, J.; Burrows, P.D.; Wang, J.Y. B cell development and maturation. Adv. Exp. Med. Biol., 2020, 1254, 1-22.
[http://dx.doi.org/10.1007/978-981-15-3532-1_1] [PMID: 32323265]
[3]
Hardy, R.R.; Hayakawa, K. B cell development pathways. Annu. Rev. Immunol., 2001, 19, 595-621.
[http://dx.doi.org/10.1146/annurev.immunol.19.1.595] [PMID: 11244048]
[4]
Eibel, H.; Kraus, H.; Sic, H.; Kienzler, A.K.; Rizzi, M. B cell biology: An overview. Curr. Allergy Asthma Rep., 2014, 14(5), 434.
[http://dx.doi.org/10.1007/s11882-014-0434-8] [PMID: 24633618]
[5]
Kanellopoulos, J.M.; Ojcius, D.M. Development of humoral immunity. Biomed. J., 2019, 42(4), 207-208.
[http://dx.doi.org/10.1016/j.bj.2019.08.003] [PMID: 31627862]
[6]
Burbage, M.; Keppler, S.J. Shaping the humoral immune response: Actin regulators modulate antigen presentation and influence B-T inter-actions. Mol. Immunol., 2018, 101, 370-376.
[http://dx.doi.org/10.1016/j.molimm.2018.07.026] [PMID: 30055407]
[7]
Goust, J.M.; Bierer, B. Cell-mediated immunity. Immunol. Ser., 1993, 58, 187-212.
[PMID: 8424973]
[8]
Tanaka, S.; Baba, Y. B cell receptor signaling. Adv. Exp. Med. Biol., 2020, 1254, 23-36.
[http://dx.doi.org/10.1007/978-981-15-3532-1_2] [PMID: 32323266]
[9]
Suan, D.; Sundling, C.; Brink, R. Plasma cell and memory B cell differentiation from the germinal center. Curr. Opin. Immunol., 2017, 45, 97-102.
[http://dx.doi.org/10.1016/j.coi.2017.03.006] [PMID: 28319733]
[10]
Quách, T.D.; Hopkins, T.J.; Holodick, N.E.; Vuyyuru, R.; Manser, T.; Bayer, R.L.; Rothstein, T.L. Human B-1 and B-2 B cells develop from lin-CD34+CD38lo stem cells. J. Immunol., 2016, 197(10), 3950-3958.
[http://dx.doi.org/10.4049/jimmunol.1600630] [PMID: 27815443]
[11]
Rodriguez-Zhurbenko, N.; Quach, T.D.; Hopkins, T.J.; Rothstein, T.L.; Hernandez, A.M. Human B-1 cells and B-1 cell antibodies change with advancing age. Front. Immunol., 2019, 10, 483.
[http://dx.doi.org/10.3389/fimmu.2019.00483] [PMID: 30941130]
[12]
Pillai, S.; Cariappa, A. The follicular versus marginal zone B lymphocyte cell fate decision. Nat. Rev. Immunol., 2009, 9(11), 767-777.
[http://dx.doi.org/10.1038/nri2656] [PMID: 19855403]
[13]
Cerutti, A.; Cols, M.; Puga, I. Marginal zone B cells: Virtues of innate-like antibody-producing lymphocytes. Nat. Rev. Immunol., 2013, 13(2), 118-132.
[http://dx.doi.org/10.1038/nri3383] [PMID: 23348416]
[14]
Zhang, Y.; Garcia-Ibanez, L.; Toellner, K.M. Regulation of germinal center B-cell differentiation. Immunol. Rev., 2016, 270(1), 8-19.
[http://dx.doi.org/10.1111/imr.12396] [PMID: 26864101]
[15]
Wang, R.X.; Yu, C.R.; Dambuza, I.M.; Mahdi, R.M.; Dolinska, M.B.; Sergeev, Y.V.; Wingfield, P.T.; Kim, S.H.; Egwuagu, C.E. Interleu-kin-35 induces regulatory B cells that suppress autoimmune disease. Nat. Med., 2014, 20(6), 633-641.
[http://dx.doi.org/10.1038/nm.3554] [PMID: 24743305]
[16]
Rosser, E.C.; Oleinika, K.; Tonon, S.; Doyle, R.; Bosma, A.; Carter, N.A.; Harris, K.A.; Jones, S.A.; Klein, N.; Mauri, C. Regulatory B cells are induced by gut microbiota-driven interleukin-1β and interleukin-6 production. Nat. Med., 2014, 20(11), 1334-1339.
[http://dx.doi.org/10.1038/nm.3680] [PMID: 25326801]
[17]
Kuan, Y.C.; Wu, Y.J.; Hung, C.L.; Sheu, F. Trametes versicolor protein YZP activates regulatory B lymphocytes - gene identification through de novo assembly and function analysis in a murine acute colitis model. PLoS One, 2013, 8(9), e72422.
[http://dx.doi.org/10.1371/journal.pone.0072422] [PMID: 24019869]
[18]
Yoshizaki, A.; Miyagaki, T.; DiLillo, D.J.; Matsushita, T.; Horikawa, M.; Kountikov, E.I.; Spolski, R.; Poe, J.C.; Leonard, W.J.; Tedder, T.F. Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature, 2012, 491(7423), 264-268.
[http://dx.doi.org/10.1038/nature11501] [PMID: 23064231]
[19]
Okada, Y.; Ochi, H.; Fujii, C.; Hashi, Y.; Hamatani, M.; Ashida, S.; Kawamura, K.; Kusaka, H.; Matsumoto, S.; Nakagawa, M.; Mizuno, T.; Takahashi, R.; Kondo, T. Signaling via toll-like receptor 4 and CD40 in B cells plays a regulatory role in the pathogenesis of multiple scle-rosis through interleukin-10 production. J. Autoimmun., 2018, 88, 103-113.
[http://dx.doi.org/10.1016/j.jaut.2017.10.011] [PMID: 29146546]
[20]
Mauri, C.; Blair, P.A. Regulatory B cells in autoimmunity: Developments and controversies. Nat. Rev. Rheumatol., 2010, 6(11), 636-643.
[http://dx.doi.org/10.1038/nrrheum.2010.140] [PMID: 20856268]
[21]
van de Veen, W.; Stanic, B.; Wirz, O.F.; Jansen, K.; Globinska, A.; Akdis, M. Role of regulatory B cells in immune tolerance to allergens and beyond. J. Allergy Clin. Immunol., 2016, 138(3), 654-665.
[http://dx.doi.org/10.1016/j.jaci.2016.07.006] [PMID: 27596706]
[22]
Tedder, T.F. B10 cells: A functionally defined regulatory B cell subset. J. Immunol., 2015, 194(4), 1395-1401.
[http://dx.doi.org/10.4049/jimmunol.1401329] [PMID: 25663677]
[23]
Lee, K.M.; Stott, R.T.; Zhao, G. SooHoo, J.; Xiong, W.; Lian, M.M.; Fitzgerald, L.; Shi, S.; Akrawi, E.; Lei, J.; Deng, S.; Yeh, H.; Mark-mann, J.F.; Kim, J.I. TGF-β-producing regulatory B cells induce regulatory T cells and promote transplantation tolerance. Eur. J. Immunol., 2014, 44(6), 1728-1736.
[http://dx.doi.org/10.1002/eji.201344062] [PMID: 24700192]
[24]
Khan, A.R.; Hams, E.; Floudas, A.; Sparwasser, T.; Weaver, C.T.; Fallon, P.G. PD-L1hi B cells are critical regulators of humoral immuni-ty. Nat. Commun., 2015, 6, 5997.
[http://dx.doi.org/10.1038/ncomms6997] [PMID: 25609381]
[25]
Dörner, T.; Burmester, G.R. The role of B cells in rheumatoid arthritis: Mechanisms and therapeutic targets. Curr. Opin. Rheumatol., 2003, 15(3), 246-252.
[http://dx.doi.org/10.1097/00002281-200305000-00011] [PMID: 12707577]
[26]
Barnas, J.L.; Looney, R.J.; Anolik, J.H. B cell targeted therapies in autoimmune disease. Curr. Opin. Immunol., 2019, 61, 92-99.
[http://dx.doi.org/10.1016/j.coi.2019.09.004] [PMID: 31733607]
[27]
Kapsogeorgou, E.K.; Tzioufas, A.G. Autoantibodies in autoimmune diseases: Clinical and critical evaluation. Isr. Med. Assoc. J., 2016, 18(9), 519-524.
[PMID: 28471596]
[28]
Xia, Y.; Kellems, R.E. Receptor-activating autoantibodies and disease: Preeclampsia and beyond. Expert Rev. Clin. Immunol., 2011, 7(5), 659-674.
[http://dx.doi.org/10.1586/eci.11.56] [PMID: 21895478]
[29]
Prüss, H.; Kirmse, K. Pathogenic role of autoantibodies against inhibitory synapses. Brain Res., 2018, 1701, 146-152.
[http://dx.doi.org/10.1016/j.brainres.2018.09.009] [PMID: 30205110]
[30]
Fang, Q.; Ou, J.; Nandakumar, K.S. Autoantibodies as diagnostic markers and mediator of joint inflammation in arthritis. Mediators Inflamm., 2019, 2019, 6363086.
[http://dx.doi.org/10.1155/2019/6363086] [PMID: 31772505]
[31]
Blair, P.A.; Noreña, L.Y.; Flores-Borja, F.; Rawlings, D.J.; Isenberg, D.A.; Ehrenstein, M.R.; Mauri, C. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity, 2010, 32(1), 129-140.
[http://dx.doi.org/10.1016/j.immuni.2009.11.009] [PMID: 20079667]
[32]
Li, W.; Tian, X.; Lu, X.; Peng, Q.; Shu, X.; Yang, H.; Li, Y.; Wang, Y.; Zhang, X.; Liu, Q.; Wang, G. Significant decrease in peripheral regulatory B cells is an immunopathogenic feature of dermatomyositis. Sci. Rep., 2016, 6, 27479.
[http://dx.doi.org/10.1038/srep27479] [PMID: 27270362]
[33]
Salahuddin, P.; Rabbani, G.; Khan, R.H. The role of advanced glycation end products in various types of neurodegenerative disease: A therapeutic approach. Cell. Mol. Biol. Lett., 2014, 19(3), 407-437.
[http://dx.doi.org/10.2478/s11658-014-0205-5] [PMID: 25141979]
[34]
Reuschenbach, M.; von Knebel Doeberitz, M.; Wentzensen, N. A systematic review of humoral immune responses against tumor antigens. Cancer Immunol. Immunother., 2009, 58(10), 1535-1544.
[http://dx.doi.org/10.1007/s00262-009-0733-4] [PMID: 19562338]
[35]
DiLillo, D.J.; Yanaba, K.; Tedder, T.F. B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: Therapeutic B cell deple-tion enhances B16 melanoma growth in mice. J. Immunol., 2010, 184(7), 4006-4016.
[http://dx.doi.org/10.4049/jimmunol.0903009] [PMID: 20194720]
[36]
Balkwill, F.; Montfort, A.; Capasso, M. B regulatory cells in cancer. Trends Immunol., 2013, 34(4), 169-173.
[http://dx.doi.org/10.1016/j.it.2012.10.007] [PMID: 23206438]
[37]
Bindea, G.; Mlecnik, B.; Tosolini, M.; Kirilovsky, A.; Waldner, M.; Obenauf, A.C.; Angell, H.; Fredriksen, T.; Lafontaine, L.; Berger, A.; Bruneval, P.; Fridman, W.H.; Becker, C.; Pagès, F.; Speicher, M.R.; Trajanoski, Z.; Galon, J. Spatiotemporal dynamics of intratumoral im-mune cells reveal the immune landscape in human cancer. Immunity, 2013, 39(4), 782-795.
[http://dx.doi.org/10.1016/j.immuni.2013.10.003] [PMID: 24138885]
[38]
Ammirante, M.; Luo, J.L.; Grivennikov, S.; Nedospasov, S.; Karin, M. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature, 2010, 464(7286), 302-305.
[http://dx.doi.org/10.1038/nature08782] [PMID: 20220849]
[39]
Pucci, F.; Garris, C.; Lai, C.P.; Newton, A.; Pfirschke, C.; Engblom, C.; Alvarez, D.; Sprachman, M.; Evavold, C.; Magnuson, A.; von An-drian, U.H.; Glatz, K.; Breakefield, X.O.; Mempel, T.R.; Weissleder, R.; Pittet, M.J. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science, 2016, 352(6282), 242-246.
[http://dx.doi.org/10.1126/science.aaf1328] [PMID: 26989197]
[40]
Johnsen, H.E.; Bergkvist, K.S.; Schmitz, A.; Kjeldsen, M.K.; Hansen, S.M.; Gaihede, M.; Nørgaard, M.A.; Bæch, J.; Grønholdt, M.L.; Jen-sen, F.S.; Johansen, P.; Bødker, J.S.; Bøgsted, M.; Dybkær, K. Cell of origin associated classification of B-cell malignancies by gene signa-tures of the normal B-cell hierarchy. Leuk. Lymphoma, 2014, 55(6), 1251-1260.
[http://dx.doi.org/10.3109/10428194.2013.839785] [PMID: 23998255]
[41]
Momtazi-Borojeni, A.A.; Haftcheshmeh, S.M.; Esmaeili, S.A.; Johnston, T.P.; Abdollahi, E.; Sahebkar, A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev., 2018, 17(2), 125-135.
[http://dx.doi.org/10.1016/j.autrev.2017.11.016] [PMID: 29180127]
[42]
Abdollahi, E.; Momtazi, A.A.; Johnston, T.P.; Sahebkar, A. Therapeutic effects of curcumin in inflammatory and immune-mediated disea-ses: A nature-made jack-of-all-trades? J. Cell. Physiol., 2018, 233(2), 830-848.
[http://dx.doi.org/10.1002/jcp.25778] [PMID: 28059453]
[43]
Mohammadian Haftcheshmeh, S.; Karimzadeh, M.R.; Azhdari, S.; Vahedi, P.; Abdollahi, E.; Momtazi-Borojeni, A.A. Modulatory effects of curcumin on the atherogenic activities of inflammatory monocytes: Evidence from in vitro and animal models of human atherosclero-sis. Biofactors, 2020, 46(3), 341-355.
[http://dx.doi.org/10.1002/biof.1603] [PMID: 31875344]
[44]
Mohammadian Haftcheshmeh, S.; Momtazi-Borojeni, A.A. Berberine as a promising natural compound for the treatment of periodontal disease: A focus on anti-inflammatory properties. J. Cell. Mol. Med., 2021, 25(24), 11333-11337.
[http://dx.doi.org/10.1111/jcmm.17019] [PMID: 34719112]
[45]
Spagnuolo, C.; Moccia, S.; Russo, G.L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur. J. Med. Chem., 2018, 153, 105-115.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.001] [PMID: 28923363]
[46]
Chau, Y.C.; Wang, C.K.; Shen, L.; Lim, C.M.; Chiang, H.P.; Chao, C.C.; Huang, H.J.; Lin, C.T.; Kumara, N.T.R.N.; Voo, N.Y. Simulta-neous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays. Sci. Rep., 2017, 7(1), 16817.
[http://dx.doi.org/10.1038/s41598-017-17024-7] [PMID: 29196641]
[47]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[48]
Mirzaei, H.; Shakeri, A.; Rashidi, B.; Jalili, A.; Banikazemi, Z.; Sahebkar, A. Phytosomal curcumin: A review of pharmacokinetic, experi-mental and clinical studies. Biomed. Pharmacother., 2017, 85, 102-112.
[http://dx.doi.org/10.1016/j.biopha.2016.11.098] [PMID: 27930973]
[49]
Huang, Y.; Cao, S.; Zhang, Q.; Zhang, H.; Fan, Y.; Qiu, F.; Kang, N. Biological and pharmacological effects of hexahydrocurcumin, a me-tabolite of curcumin. Arch. Biochem. Biophys., 2018, 646, 31-37.
[http://dx.doi.org/10.1016/j.abb.2018.03.030] [PMID: 29596797]
[50]
Momtazi, A.A.; Shahabipour, F.; Khatibi, S.; Johnston, T.P.; Pirro, M.; Sahebkar, A. Curcumin as a microRNA regulator in cancer: A re-view. Rev. Physiol. Biochem. Pharmacol., 2016, 171, 1-38.
[http://dx.doi.org/10.1007/112_2016_3] [PMID: 27457236]
[51]
Gowhari Shabgah, A.; Hejri Zarifi, S.; Mazloumi Kiapey, S.S.; Ezzatifar, F.; Pahlavani, N.; Soleimani, D.; Mohammadian Haftcheshmeh, S.; Mohammadi, H.; Gholizadeh Navashenaq, J. Curcumin and cancer; are long non-coding RNAs missing link? Prog. Biophys. Mol. Biol., 2021, 164, 63-71.
[http://dx.doi.org/10.1016/j.pbiomolbio.2021.04.001] [PMID: 33894206]
[52]
Rahimi, K.; Hassanzadeh, K.; Khanbabaei, H.; Haftcheshmeh, S.M.; Ahmadi, A.; Izadpanah, E.; Mohammadi, A.; Sahebkar, A. Curcumin: A dietary phytochemical for targeting the phenotype and function of dendritic cells. Curr. Med. Chem., 2020.
[http://dx.doi.org/10.2174/0929867327666200515101228] [PMID: 32410550]
[53]
Rahimi, K.; Ahmadi, A.; Hassanzadeh, K.; Soleimani, Z.; Sathyapalan, T.; Mohammadi, A.; Sahebkar, A. Targeting the balance of T helper cell responses by curcumin in inflammatory and autoimmune states. Autoimmun. Rev., 2019, 18(7), 738-748.
[http://dx.doi.org/10.1016/j.autrev.2019.05.012] [PMID: 31059845]
[54]
Mohammadi, A.; Blesso, C.N.; Barreto, G.E.; Banach, M.; Majeed, M.; Sahebkar, A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J. Nutr. Biochem., 2019, 66, 1-16.
[http://dx.doi.org/10.1016/j.jnutbio.2018.12.005] [PMID: 30660832]
[55]
Kahkhaie, K.R.; Mirhosseini, A.; Aliabadi, A.; Mohammadi, A.; Mousavi, M.J.; Haftcheshmeh, S.M.; Sathyapalan, T.; Sahebkar, A. Cur-cumin: A modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology, 2019, 27(5), 885-900.
[http://dx.doi.org/10.1007/s10787-019-00607-3] [PMID: 31140036]
[56]
Hesari, A.; Ghasemi, F.; Salarinia, R.; Biglari, H.; Tabar Molla Hassan, A.; Abdoli, V.; Mirzaei, H. Effects of curcumin on NF-κB, AP-1, and Wnt/β-catenin signaling pathway in hepatitis B virus infection. J. Cell. Biochem., 2018, 119(10), 7898-7904.
[http://dx.doi.org/10.1002/jcb.26829] [PMID: 29923222]
[57]
Vamanu, E.; Gatea, F.; Sârbu, I.; Pelinescu, D. An in vitro study of the influence of Curcuma longa extracts on the microbiota modulation process, in patients with hypertension. Pharmaceutics, 2019, 11(4), E191.
[http://dx.doi.org/10.3390/pharmaceutics11040191] [PMID: 31003502]
[58]
Vamanu, E.; Gatea, F. Correlations between microbiota bioactivity and bioavailability of functional compounds: A mini-review. Biomedicines, 2020, 8(2), E39.
[http://dx.doi.org/10.3390/biomedicines8020039] [PMID: 32093399]
[59]
Wang, S.; Li, H.; Zhang, M.; Yue, L.T.; Wang, C.C.; Zhang, P.; Liu, Y.; Duan, R.S. Curcumin ameliorates experimental autoimmune myasthenia gravis by diverse immune cells. Neurosci. Lett., 2016, 626, 25-34.
[http://dx.doi.org/10.1016/j.neulet.2016.05.020] [PMID: 27181511]
[60]
Chen, L.; Flies, D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol., 2013, 13(4), 227-242.
[http://dx.doi.org/10.1038/nri3405] [PMID: 23470321]
[61]
Huang, G.; Xu, Z.; Huang, Y.; Duan, X.; Gong, W.; Zhang, Y.; Fan, J.; He, F. Curcumin protects against collagen-induced arthritis via suppression of BAFF production. J. Clin. Immunol., 2013, 33(3), 550-557.
[http://dx.doi.org/10.1007/s10875-012-9839-0] [PMID: 23184090]
[62]
Sharma, S.; Chopra, K.; Kulkarni, S.K.; Agrewala, J.N. Resveratrol and curcumin suppress immune response through CD28/CTLA-4 and CD80 co-stimulatory pathway. Clin. Exp. Immunol., 2007, 147(1), 155-163.
[http://dx.doi.org/10.1111/j.1365-2249.2006.03257.x] [PMID: 17177975]
[63]
Decoté-Ricardo, D.; Chagas, K.K.; Rocha, J.D.; Redner, P.; Lopes, U.G.; Cambier, J.C.; Barros de Arruda, L.; Peçanha, L.M. Modulation of in vitro murine B-lymphocyte response by curcumin. Phytomedicine, 2009, 16(10), 982-988.
[http://dx.doi.org/10.1016/j.phymed.2009.01.004] [PMID: 19303754]
[64]
Huang, G.; Yang, Y.; Xu, Z.; Zhou, P.; Gong, W.; Li, Y.; Fan, J.; He, F. Downregulation of B lymphocyte stimulator expression by curcu-min in B lymphocyte via suppressing nuclear translocation of NF-κB. Eur. J. Pharmacol., 2011, 650(1), 451-457.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.065] [PMID: 20950605]
[65]
Krivosikova, M.; Dallos, T.; Maslinski, W.; Buc, M. B cell activating factor, its role in autoimmunity, and targeting in autoimmune disea-ses. Bratisl. Lek Listy, 2009, 110(3), 137-145.
[PMID: 19507632]
[66]
Baker, K.P. BLyS-an essential survival factor for B cells: Basic biology, links to pathology and therapeutic target. Autoimmun. Rev., 2004, 3(5), 368-375.
[http://dx.doi.org/10.1016/j.autrev.2004.02.001] [PMID: 15288003]
[67]
Churchill, M.; Chadburn, A.; Bilinski, R.T.; Bertagnolli, M.M. Inhibition of intestinal tumors by curcumin is associated with changes in the intestinal immune cell profile. J. Surg. Res., 2000, 89(2), 169-175.
[http://dx.doi.org/10.1006/jsre.2000.5826] [PMID: 10729246]
[68]
Cogné, M. Activation-induced deaminase in B lymphocyte maturation and beyond. Biomed. J., 2013, 36(6), 259-268.
[http://dx.doi.org/10.4103/2319-4170.113191] [PMID: 24385067]
[69]
Haque, S.; Lee, H.; Waqas, B.; Chiorazzi, N.; Mongini, P. Antiinflammatory curcumin inhibits AID expression within cycling human B cells (96.21). J. Immunol., 2010, 180(1 Supplement), 96.21.
[70]
Jacob, A.; Chaves, L.; Eadon, M.T.; Chang, A.; Quigg, R.J.; Alexander, J.J. Curcumin alleviates immune-complex-mediated glomeru-lonephritis in factor-H-deficient mice. Immunology, 2013, 139(3), 328-337.
[http://dx.doi.org/10.1111/imm.12079] [PMID: 23347386]
[71]
Moon, D.O.; Kim, M.O.; Choi, Y.H.; Park, Y.M.; Kim, G.Y. Curcumin attenuates inflammatory response in IL-1beta-induced human sy-novial fibroblasts and collagen-induced arthritis in mouse model. Int. Immunopharmacol., 2010, 10(5), 605-610.
[http://dx.doi.org/10.1016/j.intimp.2010.02.011] [PMID: 20188213]
[72]
South, E.H.; Exon, J.H.; Hendrix, K. Dietary curcumin enhances antibody response in rats. Immunopharmacol. Immunotoxicol., 1997, 19(1), 105-119.
[http://dx.doi.org/10.3109/08923979709038536] [PMID: 9049662]
[73]
Kuramoto, Y.; Yamada, K.; Tsuruta, O.; Sugano, M. Effect of natural food colorings on immunoglobulin production in vitro by rat spleen lymphocytes. Biosci. Biotechnol. Biochem., 1996, 60(10), 1712-1713.
[http://dx.doi.org/10.1271/bbb.60.1712] [PMID: 8987673]
[74]
Pan, L.; Lu, M.P.; Wang, J.H.; Xu, M.; Yang, S.R. Immunological pathogenesis and treatment of systemic lupus erythematosus. World J. Pediatr., 2020, 16(1), 19-30.
[http://dx.doi.org/10.1007/s12519-019-00229-3] [PMID: 30796732]
[75]
Kapingidza, A.B.; Kowal, K.; Chruszcz, M. Antigen-antibody complexes. Subcell. Biochem., 2020, 94, 465-497.
[http://dx.doi.org/10.1007/978-3-030-41769-7_19] [PMID: 32189312]
[76]
Mahmud, S.A.; Binstadt, B.A. Autoantibodies in the pathogenesis, diagnosis, and prognosis of juvenile idiopathic arthritis. Front. Immunol., 2019, 9, 3168.
[http://dx.doi.org/10.3389/fimmu.2018.03168] [PMID: 30693002]
[77]
Kurien, B.T.; D’Souza, A.; Scofield, R.H. Heat-solubilized curry spice curcumin inhibits antibody-antigen interaction in in vitro studies: A possible therapy to alleviate autoimmune disorders. Mol. Nutr. Food Res., 2010, 54(8), 1202-1209.
[http://dx.doi.org/10.1002/mnfr.200900106] [PMID: 20146265]
[78]
Odot, J.; Albert, P.; Carlier, A.; Tarpin, M.; Devy, J.; Madoulet, C. In vitro and in vivo anti-tumoral effect of curcumin against melanoma cells. Int. J. Cancer, 2004, 111(3), 381-387.
[http://dx.doi.org/10.1002/ijc.20160] [PMID: 15221965]
[79]
Antony, S.; Kuttan, R.; Kuttan, G. Immunomodulatory activity of curcumin. Immunol. Invest., 1999, 28(5-6), 291-303.
[http://dx.doi.org/10.3109/08820139909062263] [PMID: 10574627]
[80]
Kurup, V.P.; Barrios, C.S.; Raju, R.; Johnson, B.D.; Levy, M.B.; Fink, J.N. Immune response modulation by curcumin in a latex allergy model. Clin. Mol. Allergy, 2007, 5, 1.
[http://dx.doi.org/10.1186/1476-7961-5-1] [PMID: 17254346]
[81]
Kurup, V.; Barrios, C.; Johnson, B.; Fink, J. Intragastric curcumin downregulates Aspergillus antigen induced Th2 response in a murine model of allergic aspergillosis. J. Allergy Clin. Immunol., 2006, 117(2), S203.
[http://dx.doi.org/10.1016/j.jaci.2005.12.802]
[82]
Han, S.S.; Chung, S.T.; Robertson, D.A.; Ranjan, D.; Bondada, S. Curcumin causes the growth arrest and apoptosis of B cell lymphoma by downregulation of EGR-1, c-myc, bcl-XL, NF-kappa B, and p53. Clin. Immunol., 1999, 93(2), 152-161.
[http://dx.doi.org/10.1006/clim.1999.4769] [PMID: 10527691]
[83]
Shishodia, S.; Amin, H.M.; Lai, R.; Aggarwal, B.B. Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem. Pharmacol., 2005, 70(5), 700-713.
[http://dx.doi.org/10.1016/j.bcp.2005.04.043] [PMID: 16023083]
[84]
Ghosh, A.K.; Kay, N.E.; Secreto, C.R.; Shanafelt, T.D. Curcumin inhibits prosurvival pathways in chronic lymphocytic leukemia B cells and may overcome their stromal protection in combination with EGCG. Clin. Cancer Res., 2009, 15(4), 1250-1258.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1511] [PMID: 19228728]
[85]
Gururajan, M.; Dasu, T.; Shahidain, S.; Jennings, C.D.; Robertson, D.A.; Rangnekar, V.M.; Bondada, S. Spleen tyrosine kinase (Syk), a novel target of curcumin, is required for B lymphoma growth. J. Immunol., 2007, 178(1), 111-121.
[http://dx.doi.org/10.4049/jimmunol.178.1.111] [PMID: 17182546]
[86]
Buchner, M.; Fuchs, S.; Prinz, G.; Pfeifer, D.; Bartholomé, K.; Burger, M.; Chevalier, N.; Vallat, L.; Timmer, J.; Gribben, J.G.; Jumaa, H.; Veelken, H.; Dierks, C.; Zirlik, K. Spleen tyrosine kinase is overexpressed and represents a potential therapeutic target in chronic lymphocytic leukemia. Cancer Res., 2009, 69(13), 5424-5432.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4252] [PMID: 19549911]
[87]
Prockop, S.E.; Vatsayan, A. Epstein-Barr virus lymphoproliferative disease after solid organ transplantation. Cytotherapy, 2017, 19(11), 1270-1283.
[http://dx.doi.org/10.1016/j.jcyt.2017.08.010] [PMID: 28965834]
[88]
Ranjan, D.; Siquijor, A.; Johnston, T.D.; Wu, G.; Nagabhuskahn, M. The effect of curcumin on human B-cell immortalization by Epstein-Barr virus. Am. Surg., 1998, 64(1), 47-51.
[PMID: 9457037]
[89]
Ranjan, D.; Johnston, T.D.; Reddy, K.S.; Wu, G.; Bondada, S.; Chen, C. Enhanced apoptosis mediates inhibition of EBV-transformed lymphoblastoid cell line proliferation by curcumin. J. Surg. Res., 1999, 87(1), 1-5.
[http://dx.doi.org/10.1006/jsre.1999.5719] [PMID: 10527697]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy