Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Mini-Review Article Section: Nanotechnology

Construction of Artificial Cells Utilizing DNA Nanotechnology

Author(s): Shuang Liu, Chunjuan Zhang, Fan Yang, Zhenzhen Guo and Qiaoling Liu*

Volume 2, Issue 3, 2022

Published on: 06 April, 2022

Page: [213 - 223] Pages: 11

DOI: 10.2174/2210298102666220302095040

Open Access Journals Promotions 2
Abstract

Programmable DNA nanostructures are excellent modules for preparing artificial cells with complex structures and functions. As a biocompatible building material, DNA nanostructures can mimic cell components on the nanoscale and serve as artificial cell structural units, such as membrane proteins, cytoskeleton, organelles, or even protocell models. The incorporation of DNA strand displacement reactions and functional nucleic acids endowed artificial cells with the capability of mimicking dynamic biological processes, such as molecular transportation, and signal transduction pathways. Herein, we focus on the recent progress in the construction of artificial cells utilizing DNA nanotechnology. DNA nanostructures used as cellular structural and functional units are summarized, and the applications of DNA-based artificial cells as biosensors or smart drug carriers are highlighted. We also discuss the perspective of DNA-based artificial cells, including the challenges in designing smart artificial cells with controllable behavior and constructing artificial cells with the cell-like function, as well as the opportunities of their potential applications.

Keywords: Artificial cells, DNA nanotechnology, DNA nanostructures, functional nucleic acids, biosensors, drug carriers.

Graphical Abstract
[1]
Shen, H.; Wang, Y.; Wang, J.; Li, Z.; Yuan, Q. Emerging biomimetic applications of DNA nanotechnology. ACS Appl. Mater. Interfaces, 2019, 11(15), 13859-13873.
[http://dx.doi.org/10.1021/acsami.8b06175] [PMID: 29939004]
[2]
Buddingh’, B.C.; van Hest, J.C.M. Artificial cells: Synthetic compartments with life-like functionality and adaptivity. Acc. Chem. Res., 2017, 50(4), 769-777.
[http://dx.doi.org/10.1021/acs.accounts.6b00512] [PMID: 28094501]
[3]
Sato, W.; Zajkowski, T.; Moser, F.; Adamala, K.P. Synthetic cells in biomedical applications. Wires Nanomed Nanobiotechnol, 2021, e1761.
[http://dx.doi.org/10.1002/wnan.1761]
[4]
Rubio-Sánchez, R.; Fabrini, G.; Cicuta, P.; Di Michele, L. Amphiphilic DNA nanostructures for bottom-up synthetic biology. Chem. Commun. (Camb.), 2021, 57(95), 12725-12740.
[http://dx.doi.org/10.1039/D1CC04311K] [PMID: 34750602]
[5]
Deamer, D. A giant step towards artificial life? Trends Biotechnol., 2005, 23(7), 336-338.
[http://dx.doi.org/10.1016/j.tibtech.2005.05.008] [PMID: 15935500]
[6]
Renggli, K.; Baumann, P.; Langowska, K.; Onaca, O.; Bruns, N.; Meier, W. Selective and responsive nanoreactors. Adv. Funct. Mater., 2011, 21(7), 1241-1259.
[http://dx.doi.org/10.1002/adfm.201001563]
[7]
Peng, R.; Wang, H.; Lyu, Y.; Xu, L.; Liu, H.; Kuai, H.; Liu, Q.; Tan, W. Facile assembly/disassembly of DNA nanostructures anchored on cell-mimicking giant vesicles. J. Am. Chem. Soc., 2017, 139(36), 12410-12413.
[http://dx.doi.org/10.1021/jacs.7b07485] [PMID: 28841373]
[8]
Liu, J.; Guo, Z.; Liang, K. Biocatalytic metal-organic framework-based artificial cells. Adv. Funct. Mater., 2019, 29(45), 1905321-1905329.
[http://dx.doi.org/10.1002/adfm.201905321]
[9]
Jahnke, K.; Ritzmann, N.; Fichtler, J.; Nitschke, A.; Dreher, Y.; Abele, T.; Hofhaus, G.; Platzman, I.; Schröder, R.R.; Müller, D.J.; Spatz, J.P.; Göpfrich, K. Proton gradients from light-harvesting E. coli control DNA assemblies for synthetic cells. Nat. Commun., 2021, 12(1), 3967.
[http://dx.doi.org/10.1038/s41467-021-24103-x] [PMID: 34172734]
[10]
Xiao, M.; Lai, W.; Yu, H.; Yu, Z.; Li, L.; Fan, C.; Pei, H. Assembly pathway selection with DNA reaction circuits for programming multi-ple cell-cell interactions. J. Am. Chem. Soc., 2021, 143(9), 3448-3454.
[http://dx.doi.org/10.1021/jacs.0c12358] [PMID: 33631070]
[11]
Qiao, Y.; Li, M.; Booth, R.; Mann, S. Predatory behaviour in synthetic protocell communities. Nat. Chem., 2017, 9(2), 110-119.
[http://dx.doi.org/10.1038/nchem.2617] [PMID: 28282044]
[12]
Czogalla, A.; Franquelim, H.G.; Schwille, P. DNA nanostructures on membranes as tools for synthetic biology. Biophys. J., 2016, 110(8), 1698-1707.
[http://dx.doi.org/10.1016/j.bpj.2016.03.015] [PMID: 27119630]
[13]
Hu, X.; Wang, Y.; Tan, Y.; Wang, J.; Liu, H.; Wang, Y.; Yang, S.; Shi, M.; Zhao, S.; Zhang, Y.; Yuan, Q. A difunctional regeneration scaf-fold for knee repair based on aptamer-directed cell recruitment. Adv. Mater., 2017, 29(15), 1605235.
[http://dx.doi.org/10.1002/adma.201605235] [PMID: 28185322]
[14]
Li, L.L.; Zhang, R.; Yin, L.; Zheng, K.; Qin, W.; Selvin, P.R.; Lu, Y. Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes. Angew. Chem. Int. Ed. Engl., 2012, 51(25), 6121-6125.
[http://dx.doi.org/10.1002/anie.201109156] [PMID: 22566291]
[15]
Wu, N.; Chen, F.; Zhao, Y.; Yu, X.; Wei, J.; Zhao, Y. Functional and biomimetic DNA nanostructures on lipid membranes. Langmuir, 2018, 34(49), 14721-14730.
[http://dx.doi.org/10.1021/acs.langmuir.8b01818] [PMID: 30044097]
[16]
Langecker, M.; Arnaut, V.; Martin, T.G.; List, J.; Renner, S.; Mayer, M.; Dietz, H.; Simmel, F.C. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science, 2012, 338(6109), 932-936.
[http://dx.doi.org/10.1126/science.1225624] [PMID: 23161995]
[17]
Beales, P.A.; Vanderlick, T.K. Application of nucleic acid-lipid conjugates for the programmable organisation of liposomal modules. Adv. Colloid Interface Sci., 2014, 207, 290-305.
[http://dx.doi.org/10.1016/j.cis.2013.12.009] [PMID: 24461711]
[18]
Kocabey, S.; Kempter, S.; List, J.; Xing, Y.; Bae, W.; Schiffels, D.; Shih, W.M.; Simmel, F.C.; Liedl, T. Membrane-assisted growth of DNA origami nanostructure arrays. ACS Nano, 2015, 9(4), 3530-3539.
[http://dx.doi.org/10.1021/acsnano.5b00161] [PMID: 25734977]
[19]
Zhao, N.; Chen, Y.; Chen, G.; Xiao, Z. Artificial cells based on DNA nanotechnology. ACS Appl. Bio Mater., 2020, 3(7), 3928-3934.
[http://dx.doi.org/10.1021/acsabm.0c00149] [PMID: 35025469]
[20]
Messager, L.; Burns, J.R.; Kim, J.; Cecchin, D.; Hindley, J.; Pyne, A.L.B.; Gaitzsch, J.; Battaglia, G.; Howorka, S. Biomimetic hybrid nano-containers with selective permeability. Angew. Chem. Int. Ed. Engl., 2016, 55(37), 11106-11109.
[http://dx.doi.org/10.1002/anie.201604677] [PMID: 27560310]
[21]
Burns, J.R.; Stulz, E.; Howorka, S. Self-assembled DNA nanopores that span lipid bilayers. Nano Lett., 2013, 13(6), 2351-2356.
[http://dx.doi.org/10.1021/nl304147f] [PMID: 23611515]
[22]
Chidchob, P.; Offenbartl-Stiegert, D.; McCarthy, D.; Luo, X.; Li, J.; Howorka, S.; Sleiman, H.F. Spatial presentation of cholesterol units on a DNA cube as a determinant of membrane protein-mimicking functions. J. Am. Chem. Soc., 2019, 141(2), 1100-1108.
[http://dx.doi.org/10.1021/jacs.8b11898] [PMID: 30557499]
[23]
Iwabuchi, S.; Kawamata, I.; Murata, S.; Nomura, S.M. A large, square-shaped, DNA origami nanopore with sealing function on a giant vesicle membrane. Chem. Commun. (Camb.), 2021, 57(24), 2990-2993.
[http://dx.doi.org/10.1039/D0CC07412H] [PMID: 33587063]
[24]
Arnott, P.M.; Howorka, S. A temperature-gated nanovalve self-assembled from DNA to control molecular transport across membranes. ACS Nano, 2019, 13(3), 3334-3340.
[http://dx.doi.org/10.1021/acsnano.8b09200] [PMID: 30794375]
[25]
Burns, J.R.; Seifert, A.; Fertig, N.; Howorka, S. A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nat. Nanotechnol., 2016, 11(2), 152-156.
[http://dx.doi.org/10.1038/nnano.2015.279] [PMID: 26751170]
[26]
Li, P.; Xie, G.; Liu, P.; Kong, X.Y.; Song, Y.; Wen, L.; Jiang, L. Light-driven ATP transmembrane transport controlled by DNA na-nomachines. J. Am. Chem. Soc., 2018, 140(47), 16048-16052.
[http://dx.doi.org/10.1021/jacs.8b10527] [PMID: 30372056]
[27]
Li, C.; Chen, H.; Zhou, L.; Shi, H.; He, X.; Yang, X.; Wang, K.; Liu, J. Single-stranded DNA designed lipophilic G-quadruplexes as trans-membrane channels for switchable potassium transport. Chem. Commun. (Camb.), 2019, 55(80), 12004-12007.
[http://dx.doi.org/10.1039/C9CC04176A] [PMID: 31503273]
[28]
Grome, M.W.; Zhang, Z.; Pincet, F.; Lin, C. Vesicle tubulation with self-assembling DNA nanosprings. Angew. Chem. Int. Ed. Engl., 2018, 57(19), 5330-5334.
[http://dx.doi.org/10.1002/anie.201800141] [PMID: 29575478]
[29]
Czogalla, A.; Kauert, D.J.; Franquelim, H.G.; Uzunova, V.; Zhang, Y.; Seidel, R.; Schwille, P. Amphipathic DNA origami nanoparticles to scaffold and deform lipid membrane vesicles. Angew. Chem. Int. Ed. Engl., 2015, 54(22), 6501-6505.
[http://dx.doi.org/10.1002/anie.201501173] [PMID: 25882792]
[30]
Franquelim, H.G.; Khmelinskaia, A.; Sobczak, J.P.; Dietz, H.; Schwille, P. Membrane sculpting by curved DNA origami scaffolds. Nat. Commun., 2018, 9(1), 811.
[http://dx.doi.org/10.1038/s41467-018-03198-9] [PMID: 29476101]
[31]
Journot, C.M.A.; Ramakrishna, V.; Wallace, M.I.; Turberfield, A.J. Modifying membrane morphology and interactions with DNA origami clathrin-mimic networks. ACS Nano, 2019, 13(9), 9973-9979.
[http://dx.doi.org/10.1021/acsnano.8b07734] [PMID: 31418553]
[32]
Baumann, K.N.; Piantanida, L.; García-Nafría, J.; Sobota, D.; Voïtchovsky, K.; Knowles, T.P.J.; Hernández-Ainsa, S. Coating and stabiliza-tion of liposomes by clathrin-inspired DNA self-assembly. ACS Nano, 2020, 14(2), 2316-2323.
[http://dx.doi.org/10.1021/acsnano.9b09453] [PMID: 31976654]
[33]
Ohmann, A.; Li, C.Y.; Maffeo, C.; Al Nahas, K.; Baumann, K.N.; Göpfrich, K.; Yoo, J.; Keyser, U.F.; Aksimentiev, A. A synthetic enzyme built from DNA flips 107 lipids per second in biological membranes. Nat. Commun., 2018, 9(1), 2426.
[http://dx.doi.org/10.1038/s41467-018-04821-5] [PMID: 29930243]
[34]
Ganar, K.A.; Honaker, L.W.; Deshpande, S. Shaping synthetic cells through cytoskeleton-condensate-membrane interactions. Curr. Opin. Colloid Interface Sci., 2021, 54, 101459.
[http://dx.doi.org/10.1016/j.cocis.2021.101459]
[35]
Yang, Y.; Wang, J.; Shigematsu, H.; Xu, W.; Shih, W.M.; Rothman, J.E.; Lin, C. Self-assembly of size-controlled liposomes on DNA nano-templates. Nat. Chem., 2016, 8(5), 476-483.
[http://dx.doi.org/10.1038/nchem.2472] [PMID: 27102682]
[36]
Kurokawa, C.; Fujiwara, K.; Morita, M.; Kawamata, I.; Kawagishi, Y.; Sakai, A.; Murayama, Y.; Nomura, S.M.; Murata, S.; Takinoue, M.; Yanagisawa, M. DNA cytoskeleton for stabilizing artificial cells. Proc. Natl. Acad. Sci. USA, 2017, 114(28), 7228-7233.
[http://dx.doi.org/10.1073/pnas.1702208114] [PMID: 28652345]
[37]
Jahnke, K.; Weiss, M.; Frey, C.; Antona, S.; Janiesch, J.W.; Platzman, I.; Gopfrich, K.; Spatz, J.P. Programmable functionalization of sur-factant-stabilized microfluidic droplets via DNA-tags. Adv. Funct. Mater., 2019, 29(23), 1808647.
[http://dx.doi.org/10.1002/adfm.201808647]
[38]
Sato, Y.; Hiratsuka, Y.; Kawamata, I.; Murata, S.; Nomura, S.M. Micrometer-sized molecular robot changes its shape in response to signal molecules. Sci. Robot., 2017, 2(4), eaal3735.
[http://dx.doi.org/10.1126/scirobotics.aal3735] [PMID: 33157867]
[39]
Franquelim, H.G.; Dietz, H.; Schwille, P. Reversible membrane deformations by straight DNA origami filaments. Soft Matter, 2021, 17(2), 276-287.
[http://dx.doi.org/10.1039/D0SM00150C] [PMID: 32406895]
[40]
Bhattacharya, A.; Devaraj, N.K. Tailoring the shape and size of artificial cells. ACS Nano, 2019, 13(7), 7396-7401.
[http://dx.doi.org/10.1021/acsnano.9b05112] [PMID: 31298028]
[41]
Sato, Y.; Takinoue, M. Capsule-like DNA hydrogels with patterns formed by lateral phase separation of DNA nanostructures. JACS Au, 2021, 2(1), 159-168.
[http://dx.doi.org/10.1021/jacsau.1c00450]
[42]
Liu, J.; Postupalenko, V.; Lörcher, S.; Wu, D.; Chami, M.; Meier, W.; Palivan, C.G. DNA-mediated self-organization of polymeric nano-compartments leads to interconnected artificial organelles. Nano Lett., 2016, 16(11), 7128-7136.
[http://dx.doi.org/10.1021/acs.nanolett.6b03430] [PMID: 27726407]
[43]
Aufinger, L.; Simmel, F.C. Artificial gel-based organelles for spatial organization of cell-free gene expression reactions. Angew. Chem. Int. Ed. Engl., 2018, 57(52), 17245-17248.
[http://dx.doi.org/10.1002/anie.201809374] [PMID: 30394633]
[44]
Deng, N.N.; Huck, W.T.S. Microfluidic formation of monodisperse coacervate organelles in liposomes. Angew. Chem. Int. Ed. Engl., 2017, 56(33), 9736-9740.
[http://dx.doi.org/10.1002/anie.201703145] [PMID: 28658517]
[45]
Guo, X.; Bai, L.; Li, F.; Huck, W.T.S.; Yang, D. Branched DNA architectures via PCR-based assembly as gene compartment for cell-free gene expression reactions. ChemBioChem, 2019, 20(20), 2597-2603.
[http://dx.doi.org/10.1002/cbic.201900094] [PMID: 30938476]
[46]
Deng, J.; Walther, A. Programmable ATP-fueled DNA coacervates by transient liquid-liquid phase separation. Chem, 2020, 6(12), 1-15.
[http://dx.doi.org/10.1016/j.chempr.2020.09.022]
[47]
Merindol, R.; Loescher, S.; Samanta, A.; Walther, A. Pathway-controlled formation of mesostructured all-DNA colloids and superstruc-tures. Nat. Nanotechnol., 2018, 13(8), 730-738.
[http://dx.doi.org/10.1038/s41565-018-0168-1] [PMID: 29941888]
[48]
Samanta, A.; Sabatino, V.; Ward, T.R.; Walther, A. Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes. Nat. Nanotechnol., 2020, 15(11), 914-921.
[http://dx.doi.org/10.1038/s41565-020-0761-y] [PMID: 32895521]
[49]
Sato, Y.; Sakamoto, T.; Takinoue, M. Sequence-based engineering of dynamic functions of micrometer-sized DNA droplets. Sci. Adv., 2020, 6(23), eaba3471.
[http://dx.doi.org/10.1126/sciadv.aba3471] [PMID: 32537507]
[50]
Zhu, C.; Bao, G.; Wang, N. Cell mechanics: Mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng., 2000, 2(1), 189-226.
[http://dx.doi.org/10.1146/annurev.bioeng.2.1.189] [PMID: 11701511]
[51]
Lagny, T.J.; Bassereau, P. Bioinspired membrane-based systems for a physical approach of cell organization and dynamics: Usefulness and limitations. Interface Focus, 2015, 5(4), 20150038.
[http://dx.doi.org/10.1098/rsfs.2015.0038] [PMID: 26464792]
[52]
Göpfrich, K.; Platzman, I.; Spatz, J.P. Mastering complexity: Towards bottom-up construction of multifunctional eukaryotic synthetic cells. Trends Biotechnol., 2018, 36(9), 938-951.
[http://dx.doi.org/10.1016/j.tibtech.2018.03.008] [PMID: 29685820]
[53]
Liu, G.; Huang, S.; Liu, X.; Chen, W.; Ma, X.; Cao, S.; Wang, L.; Chen, L.; Yang, H. DNA-based artificial signaling system mimicking the dimerization of receptors for signal transduction and amplification. Anal. Chem., 2021, 93(41), 13807-13814.
[http://dx.doi.org/10.1021/acs.analchem.1c02405] [PMID: 34613712]
[54]
You, M.; Lyu, Y.; Han, D.; Qiu, L.; Liu, Q.; Chen, T.; Sam Wu, C.; Peng, L.; Zhang, L.; Bao, G.; Tan, W. DNA probes for monitoring dynamic and transient molecular encounters on live cell membranes. Nat. Nanotechnol., 2017, 12(5), 453-459.
[http://dx.doi.org/10.1038/nnano.2017.23] [PMID: 28319616]
[55]
Liu, H.; Yang, Q.; Peng, R.; Kuai, H.; Lyu, Y.; Pan, X.; Liu, Q.; Tan, W. Artificial signal feedback network mimicking cellular adaptivity. J. Am. Chem. Soc., 2019, 141(16), 6458-6461.
[http://dx.doi.org/10.1021/jacs.8b13816] [PMID: 30942594]
[56]
Peng, R.; Xu, L.; Wang, H.; Lyu, Y.; Wang, D.; Bi, C.; Cui, C.; Fan, C.; Liu, Q.; Zhang, X.; Tan, W. DNA-based artificial molecular signal-ing system that mimics basic elements of reception and response. Nat. Commun., 2020, 11(1), 978.
[http://dx.doi.org/10.1038/s41467-020-14739-6] [PMID: 32080196]
[57]
Magdalena Estirado, E.; Mason, A.F.; Alemán García, M.Á.; van Hest, J.C.M.; Brunsveld, L. Supramolecular nanoscaffolds within cyto-mimetic protocells as signal localization hubs. J. Am. Chem. Soc., 2020, 142(20), 9106-9111.
[http://dx.doi.org/10.1021/jacs.0c01732] [PMID: 32356660]
[58]
Yang, Q.; Guo, Z.; Liu, H.; Peng, R.; Xu, L.; Bi, C.; He, Y.; Liu, Q.; Tan, W. A cascade signaling network between artificial cells switching activity of synthetic transmembrane channels. J. Am. Chem. Soc., 2021, 143(1), 232-240.
[http://dx.doi.org/10.1021/jacs.0c09558] [PMID: 33356224]
[59]
Yang, S.; Pieters, P.A.; Joesaar, A.; Bögels, B.W.A.; Brouwers, R.; Myrgorodska, I.; Mann, S.; de Greef, T.F.A. Light-activated signaling in DNA-encoded sender-receiver architectures. ACS Nano, 2020, 14(11), 15992-16002.
[http://dx.doi.org/10.1021/acsnano.0c07537] [PMID: 33078948]
[60]
Göpfrich, K.; Li, C.Y.; Mames, I.; Bhamidimarri, S.P.; Ricci, M.; Yoo, J.; Mames, A.; Ohmann, A.; Winterhalter, M.; Stulz, E.; Aksi-mentiev, A.; Keyser, U.F. Ion channels made from a single membrane-spanning DNA duplex. Nano Lett., 2016, 16(7), 4665-4669.
[http://dx.doi.org/10.1021/acs.nanolett.6b02039] [PMID: 27324157]
[61]
Harrell, C.C.; Kohli, P.; Siwy, Z.; Martin, C.R. DNA-nanotube artificial ion channels. J. Am. Chem. Soc., 2004, 126(48), 15646-15647.
[http://dx.doi.org/10.1021/ja044948v] [PMID: 15571378]
[62]
Göpfrich, K.; Zettl, T.; Meijering, A.E.; Hernández-Ainsa, S.; Kocabey, S.; Liedl, T.; Keyser, U.F. DNA-tile structures induce ionic cur-rents through lipid membranes. Nano Lett., 2015, 15(5), 3134-3138.
[http://dx.doi.org/10.1021/acs.nanolett.5b00189] [PMID: 25816075]
[63]
Qiu, H.; Li, F.; Du, Y.; Li, R.; Hyun, J.Y.; Lee, S.Y.; Choi, J.H. Programmable aggregation of artificial cells with DNA signals. ACS Synth. Biol., 2021, 10(6), 1268-1276.
[http://dx.doi.org/10.1021/acssynbio.0c00550] [PMID: 34006093]
[64]
Jahn, R.; Lang, T.; Südhof, T.C. Membrane fusion. Cell, 2003, 112(4), 519-533.
[http://dx.doi.org/10.1016/S0092-8674(03)00112-0] [PMID: 12600315]
[65]
Stengel, G.; Zahn, R.; Höök, F. DNA-induced programmable fusion of phospholipid vesicles. J. Am. Chem. Soc., 2007, 129(31), 9584-9585.
[http://dx.doi.org/10.1021/ja073200k] [PMID: 17629277]
[66]
Chan, Y.; van Lengerich, B.; Boxer, S.G.M.; van Lengerich, B.; Boxer, S.G. Lipid-anchored DNA mediates vesicle fusion as observed by lipid and content mixing. Biointerphases, 2008, 3(2), 17-21.
[http://dx.doi.org/10.1116/1.2889062]
[67]
Ries, O.; Löffler, P.M.G.; Rabe, A.; Malavan, J.J.; Vogel, S. Efficient liposome fusion mediated by lipid-nucleic acid conjugates. Org. Biomol. Chem., 2017, 15(42), 8936-8945.
[http://dx.doi.org/10.1039/C7OB01939D] [PMID: 29043358]
[68]
Peruzzi, J.A.; Jacobs, M.L.; Vu, T.Q.; Wang, K.S.; Kamat, N.P. Barcoding biological reactions with DNA-functionalized vesicles. Angew. Chem. Int. Ed. Engl., 2019, 58(51), 18683-18690.
[http://dx.doi.org/10.1002/anie.201911544] [PMID: 31596992]
[69]
Sherman, W.; Seeman, N.C. A precisely controlled DNA biped walking device. Nano Lett., 2004, 4(7), 1203-1207.
[http://dx.doi.org/10.1021/nl049527q]
[70]
Pan, J.; Du, Y.; Qiu, H.; Upton, L.R.; Li, F.; Choi, J.H. Mimicking chemotactic cell migration with DNA programmable synthetic vesicles. Nano Lett., 2019, 19(12), 9138-9144.
[http://dx.doi.org/10.1021/acs.nanolett.9b04428] [PMID: 31729226]
[71]
Du, Y.; Pan, J.; Qiu, H.; Mao, C.; Choi, J.H. Mechanistic understanding of surface migration dynamics with DNA walkers. J. Phys. Chem. B, 2021, 125(2), 507-517.
[http://dx.doi.org/10.1021/acs.jpcb.0c09048] [PMID: 33428424]
[72]
Vance, J.A.; Devaraj, N.K. Membrane mimetic chemistry in artificial cells. J. Am. Chem. Soc., 2021, 143(22), 8223-8231.
[http://dx.doi.org/10.1021/jacs.1c03436] [PMID: 34014081]
[73]
Matsuo, M.; Kan, Y.; Kurihara, K.; Jimbo, T.; Imai, M.; Toyota, T.; Hirata, Y.; Suzuki, K.; Sugawara, T. DNA length-dependent division of a giant vesicle-based model protocell. Sci. Rep., 2019, 9(1), 6916.
[http://dx.doi.org/10.1038/s41598-019-43367-4] [PMID: 31061467]
[74]
Kurihara, K.; Tamura, M.; Shohda, K.; Toyota, T.; Suzuki, K.; Sugawara, T. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat. Chem., 2011, 3(10), 775-781.
[http://dx.doi.org/10.1038/nchem.1127] [PMID: 21941249]
[75]
Kurihara, K.; Okura, Y.; Matsuo, M.; Toyota, T.; Suzuki, K.; Sugawara, T. A recursive vesicle-based model protocell with a primitive model cell cycle. Nat. Commun., 2015, 6(1), 8352.
[http://dx.doi.org/10.1038/ncomms9352] [PMID: 26418735]
[76]
Liu, S.; Yu, X.; Wang, J.; Liu, D.; Wang, L.; Liu, S.; Liu, S. Exonuclease III-powered self-propelled DNA machine for distinctly amplified detection of nucleic acid and protein. Anal. Chem., 2020, 92(14), 9764-9771.
[http://dx.doi.org/10.1021/acs.analchem.0c01197] [PMID: 32527089]
[77]
Rossetti, M.; Stella, L.; Morla-Folch, J.; Bobone, S.; Boloix, A.; Baranda, L.; Moscone, D.; Roldan, M.; Veciana, J.; Segura, M.F.; Kober, M.; Ventosa, N.; Porchetta, A. Engineering DNA-grafted quatsomes as stable nucleic acid-responsive fluorescent Nanovesicles. Adv. Funct. Mater., 2021, 31(46), 2103511.
[http://dx.doi.org/10.1002/adfm.202103511]
[78]
Jumeaux, C.; Wahlsten, O.; Block, S.; Kim, E.; Chandrawati, R.; Howes, P.D.; Höök, F.; Stevens, M.M. MicroRNA detection by DNA-mediated liposome fusion. ChemBioChem, 2018, 19(5), 434-438.
[http://dx.doi.org/10.1002/cbic.201700592] [PMID: 29333674]
[79]
Gao, X.; Li, S.; Ding, F.; Fan, H.; Shi, L.; Zhu, L.; Li, J.; Feng, J.; Zhu, X.; Zhang, C. Rapid detection of exosomal microRNAs using virus-mimicking fusogenic vesicles. Angew. Chem. Int. Ed. Engl., 2019, 58(26), 8719-8723.
[http://dx.doi.org/10.1002/anie.201901997] [PMID: 31095853]
[80]
Jung, C.; Allen, P.B.; Ellington, A.D.A. Simple, cleated DNA walker that hangs on to surfaces. ACS Nano, 2017, 11(8), 8047-8054.
[http://dx.doi.org/10.1021/acsnano.7b02693] [PMID: 28719175]
[81]
Liang, C.P.; Ma, P.Q.; Liu, H.; Guo, X.; Yin, B.C.; Ye, B.C. Rational engineering of a dynamic, entropy-driven DNA nanomachine for intracellular microRNA imaging. Angew. Chem. Int. Ed. Engl., 2017, 56(31), 9077-9081.
[http://dx.doi.org/10.1002/anie.201704147] [PMID: 28620910]
[82]
Li, Y.; Wang, G.A.; Mason, S.D.; Yang, X.; Yu, Z.; Tang, Y.; Li, F. Simulation-guided engineering of an enzyme-powered three dimen-sional DNA nanomachine for discriminating single nucleotide variants. Chem. Sci. (Camb.), 2018, 9(30), 6434-6439.
[http://dx.doi.org/10.1039/C8SC02761G] [PMID: 30310573]
[83]
Conway, J.W.; Madwar, C.; Edwardson, T.G.; McLaughlin, C.K.; Fahkoury, J.; Lennox, R.B.; Sleiman, H.F. Dynamic behavior of DNA cages anchored on spherically supported lipid bilayers. J. Am. Chem. Soc., 2014, 136(37), 12987-12997.
[http://dx.doi.org/10.1021/ja506095n] [PMID: 25140890]
[84]
Sun, L.; Gao, Y.; Xu, Y.; Chao, J.; Liu, H.; Wang, L.; Li, D.; Fan, C. Real-time imaging of single-molecule enzyme cascade using a DNA origami raft. J. Am. Chem. Soc., 2017, 139(48), 17525-17532.
[http://dx.doi.org/10.1021/jacs.7b09323] [PMID: 29131610]
[85]
Peng, R.; Zheng, X.; Lyu, Y.; Xu, L.; Zhang, X.; Ke, G.; Liu, Q.; You, C.; Huan, S.; Tan, W. Engineering a 3D DNA-logic gate na-nomachine for bispecific recognition and computing on target cell surfaces. J. Am. Chem. Soc., 2018, 140(31), 9793-9796.
[http://dx.doi.org/10.1021/jacs.8b04319] [PMID: 30021431]
[86]
Kaufhold, W.T.; Brady, R.A.; Tuffnell, J.M.; Cicuta, P.; Di Michele, L. Membrane scaffolds enhance the responsiveness and stability of DNA-based sensing circuits. Bioconjug. Chem., 2019, 30(7), 1850-1859.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00080] [PMID: 30865433]
[87]
Peng, X.; Wen, Z.B.; Yang, P.; Chai, Y.Q.; Liang, W.B.; Yuan, R. Biomimetic 3D DNA nanomachine via free DNA walker movement on lipid bilayers supported by hard SiO2@CdTe nanoparticles for ultrasensitive microRNA detection. Anal. Chem., 2019, 91(23), 14920-14926.
[http://dx.doi.org/10.1021/acs.analchem.9b03263] [PMID: 31674756]
[88]
Wu, L.; Ding, H.; Qu, X.; Shi, X.; Yang, J.; Huang, M.; Zhang, J.; Zhang, H.; Song, J.; Zhu, L.; Song, Y.; Ma, Y.; Yang, C. Fluidic multiva-lent membrane nanointerface enables synergetic enrichment of circulating tumor cells with high efficiency and viability. J. Am. Chem. Soc., 2020, 142(10), 4800-4806.
[http://dx.doi.org/10.1021/jacs.9b13782] [PMID: 32049531]
[89]
Wen, Z.B.; Peng, X.; Yang, Z.Z.; Zhuo, Y.; Chai, Y.Q.; Liang, W.B.; Yuan, R. A dynamic 3D DNA nanostructure based on silicon-supported lipid bilayers: A highly efficient DNA nanomachine for rapid and sensitive sensing. Chem. Commun. (Camb.), 2019, 55(89), 13414-13417.
[http://dx.doi.org/10.1039/C9CC07071K] [PMID: 31638106]
[90]
Sun, L.; Gao, Y.; Wang, Y.; Wei, Q.; Shi, J.; Chen, N.; Li, D.; Fan, C. Guiding protein delivery into live cells using DNA-programmed membrane fusion. Chem. Sci. (Camb.), 2018, 9(27), 5967-5975.
[http://dx.doi.org/10.1039/C8SC00367J] [PMID: 30079211]
[91]
Meyer, C.E.; Liu, J.; Craciun, I.; Wu, D.; Wang, H.; Xie, M.; Fussenegger, M.; Palivan, C.G. Segregated nanocompartments containing ther-apeutic enzymes and imaging compounds within DNA-zipped polymersome clusters for advanced nanotheranostic platform. Small, 2020, 16(27), e1906492.
[http://dx.doi.org/10.1002/smll.201906492] [PMID: 32130785]
[92]
Tanner, P.; Balasubramanian, V.; Palivan, C.G. Aiding nature’s organelles: Artificial peroxisomes play their role. Nano Lett., 2013, 13(6), 2875-2883.
[http://dx.doi.org/10.1021/nl401215n] [PMID: 23647405]
[93]
Huang, F.; Duan, R.; Zhou, Z.; Vázquez-González, M.; Xia, F.; Willner, I. Near-infrared light-activated membrane fusion for cancer cell therapeutic applications. Chem. Sci. (Camb.), 2020, 11(21), 5592-5600.
[http://dx.doi.org/10.1039/D0SC00863J] [PMID: 32874503]
[94]
Chen, L.; Liang, S.; Chen, Y.; Wu, M.; Zhang, Y. Destructing plasma membrane with activatable vesicular DNA nanopores. ACS Appl. Mater. Interfaces, 2020, 12(1), 96-105.
[http://dx.doi.org/10.1021/acsami.9b14746] [PMID: 31815409]
[95]
Luo, C.; Hu, X.; Peng, R.; Huang, H.; Liu, Q.; Tan, W. Biomimetic carriers based on giant membrane vesicles for targeted drug delivery and photodynamic/photothermal synergistic therapy. ACS Appl. Mater. Interfaces, 2019, 11(47), 43811-43819.
[http://dx.doi.org/10.1021/acsami.9b11223] [PMID: 31670932]
[96]
You, M.; Peng, L.; Shao, N.; Zhang, L.; Qiu, L.; Cui, C.; Tan, W. DNA “nano-claw”: Logic-based autonomous cancer targeting and thera-py. J. Am. Chem. Soc., 2014, 136(4), 1256-1259.
[http://dx.doi.org/10.1021/ja4114903] [PMID: 24367989]
[97]
Jiang, G.; Zhang, M.; Yue, B.; Yang, M.; Carter, C.; Al-Quran, S.Z.; Li, B.; Li, Y. PTK7: A new biomarker for immunophenotypic charac-terization of maturing T cells and T cell acute lymphoblastic leukemia. Leuk. Res., 2012, 36(11), 1347-1353.
[http://dx.doi.org/10.1016/j.leukres.2012.07.004] [PMID: 22898210]
[98]
Chang, X.; Zhang, C.; Lv, C.; Sun, Y.; Zhang, M.; Zhao, Y.; Yang, L.; Han, D.; Tan, W. Construction of a multiple-aptamer-based DNA logic device on live cell membranes via associative toehold activation for accurate cancer cell identification. J. Am. Chem. Soc., 2019, 141(32), 12738-12743.
[http://dx.doi.org/10.1021/jacs.9b05470] [PMID: 31328519]
[99]
Huang, H.; Guo, Z.; Zhang, C.; Cui, C.; Fu, T.; Liu, Q.; Tan, W. Logic-gated cell-derived nanovesicles via DNA-based smart recognition module. ACS Appl. Mater. Interfaces, 2021, 13(26), 30397-30403.
[http://dx.doi.org/10.1021/acsami.1c07632] [PMID: 34161059]
[100]
Chen, Z.; Wang, J.; Sun, W.; Archibong, E.; Kahkoska, A.R.; Zhang, X.; Lu, Y.; Ligler, F.S.; Buse, J.B.; Gu, Z. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat. Chem. Biol., 2018, 14(1), 86-93.
[http://dx.doi.org/10.1038/nchembio.2511] [PMID: 29083418]
[101]
Boloix, A.; Feiner-Gracia, N.; Köber, M.; Repetto, J.; Pascarella, R.; Soriano, A.; Masanas, M.; Segovia, N.; Vargas-Nadal, G.; Merlo-Mas, J.; Danino, D.; Abutbul-Ionita, I.; Foradada, L.; Roma, J.; Córdoba, A.; Sala, S.; de Toledo, J.S.; Gallego, S.; Veciana, J.; Albertazzi, L.; Se-gura, M.F.; Ventosa, N. Engineering pH-sensitive stable nanovesicles for delivery of microRNA therapeutics. Small, 2021, e2101959.
[PMID: 34786859]

© 2024 Bentham Science Publishers | Privacy Policy