Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Research Article

Effect of Polyvinylpyrrolidone on Polyvinylidene Fluoride/Hydroxyapatite- Blended Nanofiltration Membranes: Characterization and Filtration Properties

Author(s): Gunawan Setia Prihandana*, Tutik Sriani and Muslim Mahardika

Volume 17, Issue 1, 2023

Published on: 12 April, 2022

Page: [51 - 58] Pages: 8

DOI: 10.2174/1872210516666220302095010

Price: $65

conference banner
Abstract

Introduction: The application of polyvinylidene fluoride (PVDF) as a filtration membrane is limited due to its hydrophobicity. This paper elaborated on the fabrication process of nanofiltration PVDF membrane incorporating various quantities of hydrophilic polyvinylpyrrolidone (PVP) and hydroxyapatite (HA) using a wet phase inversion method to improve its hydrophilicity.

Methods: The membrane was fabricated by using the wet phase inversion method. It was then characterized in terms of water permeability, water contact angle, water content, surface energy, and surface porosity. Bacteria and Fe ions filtration was conducted to investigate the membrane filtration performance.

Results: The PVDF/PVP/HA-blended membrane showed the highest water permeability (6,165 LMH/Bar), water content (45.2 %), and surface energy (104.1 mN/m) when 2 wt.% of PVP was introduced into the base polymer PVDF. This fabricated membrane, labeled as PVP 2.0, also showed the lowest contact angle (64°) and the highest surface porosity (42%).

Conclusion: Overall, the PVP introduction patents into the polymeric membrane doping solution potentially improves membrane hydrophilicity and permeability.

Keywords: Polyvinylidene fluoride, polyvinylpyrrolidone, hydroxyapatite, nanofiltration, good health, polymers.

Graphical Abstract
[1]
Karagiannis IC, Soldatos PG. Water desalination cost literature: Review and assessment. Desalination 2008; 223(1-3): 448-56.
[http://dx.doi.org/10.1016/j.desal.2007.02.071]
[2]
Johnson DM, Hokanson DR, Zhang Q, Czupinski KD, Tang J. Feasibility of water purification technology in rural areas of developing countries. J Environ Manage 2008; 88(3): 416-27.
[http://dx.doi.org/10.1016/j.jenvman.2007.03.002] [PMID: 17459569]
[3]
Sridevi M, Nirmala C, Jawahar N, Arthi G, Vallinayagam S, Sharma VK. Role of nanomaterial’s as adsorbent for heterogeneous reaction in waste water treatment. J Mol Struct 2021; 1241: 130596.
[http://dx.doi.org/10.1016/j.molstruc.2021.130596]
[4]
Kerkez D. Bečelić-Tomin M, Gvoić V, Dalmacija B. Metal nanoparticles in dye wastewater treatment - smart solution for clear water. Recent Pat Nanotechnol 2021; 15(3): 270-94.
[http://dx.doi.org/10.2174/1872210515666210217091434] [PMID: 33596815]
[5]
Nikić J, Jazić JM, Watson M, Agbaba J. Application of nanomaterials in water treatment: arsenic and natural organic matter removal. Recent Pat Nanotechnol 2021; 15(3): 197-224.
[http://dx.doi.org/10.2174/1872210514999201228203806] [PMID: 33371841]
[6]
Gence O, Kazmi SMS, Munir MK, Sutcu M, Erdogmus E, Yarase A. Feasibility of using clay-free bricks manufactured from water treatment sludge, glass, and marble wastes: An exploratory study. Constr Build Mater 2021; 298: 123843.
[http://dx.doi.org/10.1016/j.conbuildmat.2021.123843]
[7]
Singha I, Mishrab PK. Nano-membrane filtration a novel application of nanotechnology for waste water treatment. Mater Today Proc 2020; 29(2): 327-32.
[http://dx.doi.org/10.1016/j.matpr.2020.07.284]
[8]
Luca AV, Petrescu L. Membrane technology applied to steel production: Investigation based on process modelling and environmental tools. J Clean Prod 2021; 294: 126256.
[http://dx.doi.org/10.1016/j.jclepro.2021.126256]
[9]
Ahmad NNR, Ang WL, Leo CP, Mohammad AW, Hilal N. Current advances in membrane technologies for saline wastewater treatment: A comprehensive review. Desalination 2021; 517: 115170.
[http://dx.doi.org/10.1016/j.desal.2021.115170]
[10]
Karimi A, Khataee A, Vatanpour V, Safarpour M. High-flux PVDF mixed matrix membranes embedded with size-controlled ZIF-8 nanoparticles. Separ Purif Tech 2019; 229: 115838.
[http://dx.doi.org/10.1016/j.seppur.2019.115838]
[11]
Asif MB, Zhang Z. Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects. Chem Eng J 2021; 418: 129481.
[http://dx.doi.org/10.1016/j.cej.2021.129481]
[12]
Lei J, Guo Z. PES asymmetric membrane for oil-in-water emulsion separation. Colloids Surf A Physicochem Eng Asp 2021; 626: 127096.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127096]
[13]
Sanada I, Ito H, Prihandana GS, et al. Antithrombogenicity of nano porous polyethersulfone membrane coated with fluorinated diamond-like carbon. Materials (Basel) 6(10): 4309-23.
[14]
Kusworo TJ, Susanto H, Aryanti N, et al. Preparation and characterization of photocatalytic PSf-TiO2/GO nanohybrid membrane for the degradation of organic contaminants in natural rubber wastewater. J Environ Chem Eng 2021; 9(2): 105066.
[http://dx.doi.org/10.1016/j.jece.2021.105066]
[15]
Zhu Y, Lu Y, Yu H, et al. Super-hydrophobic F-TiO2@PP membranes with nano-scale “coral”-like synapses for waste oil recovery. Separ Purif Tech 2021; 267: 118579.
[http://dx.doi.org/10.1016/j.seppur.2021.118579]
[16]
Yousef S, Tatariants M, Tichonovas M, Kliucininkas L. Lukošiūtė SI, Yan L. Sustainable green technology for recovery of cotton fibers and polyester from textile waste. J Clean Prod 2020; 254: 120078.
[http://dx.doi.org/10.1016/j.jclepro.2020.120078]
[17]
Ito H, Prihandana GS, Tanimura K, et al. Solute diffusion through the fibrotic tissue formed around a protective cage system for implantable sensors. J Biomed Mater Res B Appl Biomater 103(6): 1180-7.
[18]
Zhou L, He Y, Shi H, et al. One-pot route to synthesize HNTs@ PVDF membrane for rapid and effective separation of emulsion-oil and dyes from waste water. J Hazard Mater 2019; 380: 120865.
[http://dx.doi.org/10.1016/j.jhazmat.2019.120865] [PMID: 31330390]
[19]
Abd El-Kader MFH, Awwad NS, Ibrahium HA, Ahmed MK. Graphene oxide fillers through polymeric blends of PVC/PVDF using laser ablation technique: Electrical behavior, cell viability, and thermal stability. J Mater Res Technol 2021; 13: 1878-86.
[http://dx.doi.org/10.1016/j.jmrt.2021.05.024]
[20]
Karimi A, Khataee A, Ghadimi A, Vatanpour V. Ball-milled Cu2S nanoparticles as an efficient additive for modification of the PVDF ultrafiltration membranes: Application to separation of protein and dyes. J Environ Chem Eng 2021; 9(2): 105115.
[http://dx.doi.org/10.1016/j.jece.2021.105115]
[21]
He Y, Xu K, Feng X, Chen L, Jiang Z. A nonionic polymer-brush-grafted PVDF membrane to analyse fouling during the filtration of oil/water emulsion. J Membr Sci 2021; 637: 119644.
[http://dx.doi.org/10.1016/j.memsci.2021.119644]
[22]
Javadi M, Jafarzadeh Y, Yegani R, Kazemi S. PVDF membranes embedded with PVP functionalized nanodiamond for pharmaceutical wastewater treatment. Chem Eng Res Des 2018; 140: 241-50.
[http://dx.doi.org/10.1016/j.cherd.2018.10.029]
[23]
Beygmohammdi F, Kazerouni HN, Jafarzadeh Y, Hazrati H, Yegani R. Preparation and characterization of PVDF/PVP-GO membranes to be used in MBR system. Chem Eng Res Des 2020; 154: 232-40.
[http://dx.doi.org/10.1016/j.cherd.2019.12.016]
[24]
Zeng S, Su Q, Zhang L. Molecular-level evaluation and manipulation of thermal conductivity, moisture diffusivity and hydrophobicity of a GO-PVP/PVDF composite membrane. Int J Heat Mass Transf 2020; 152: 119508.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119508]
[25]
Safarpour M, Khataee A, Vatanpour V. Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance. J Membr Sci 2015; 489: 43-54.
[http://dx.doi.org/10.1016/j.memsci.2015.04.010]
[26]
Van der Marel P, Zwijnenburg A, Kemperman A, Wessling M, Temmink H, Van der Meer W. Influence of membrane properties on fouling in submerged membrane bioreactors. J Membr Sci 2010; 348(1-2): 66-74.
[http://dx.doi.org/10.1016/j.memsci.2009.10.054]
[27]
Chang I, Le Clech P, Jefferson B, Judd S. Membrane fouling in membrane bioreactors for wastewater treatment. J Environ Eng 2002; 128(11): 1018-29.
[http://dx.doi.org/10.1061/(ASCE)0733-9372(2002)128:11(1018)]
[28]
Marbelia L, Bilad MR, Piassecka A, Jishna PS, Naik PV, Vankelecom IFJ. Study of PVDF asymmetric membranes in a high-throughput membrane bioreactor (HT-MBR): influence of phase inversion parameters and filtration performance. Separ Purif Tech 2016; 162: 6-13.
[http://dx.doi.org/10.1016/j.seppur.2016.02.008]
[29]
Zhang P, Liu W, Rajabzadeh S, et al. Modification of PVDF hollow fiber membrane by co-deposition of PDA/MPC-co-AEMA for membrane distillation application with anti-fouling and anti-scaling properties. J Membr Sci 2021; 636: 119596.
[http://dx.doi.org/10.1016/j.memsci.2021.119596]
[30]
Vatanpour V, Esmaeili M, Chahvari S, Masteri-Farahani M. Evaluation of morphology, performance and fouling tendency of mixed matrix PVDF ultrafiltration membranes incorporated by different size-controlled SAPO-34 nanozeolites. J Environ Chem Eng 2021; 9(5): 105900.
[http://dx.doi.org/10.1016/j.jece.2021.105900]
[31]
Zhao J, Chong JY, Shi L, Wang R. PTFE-assisted immobilization of Pluronic F127 in PVDF hollow fiber membranes with enhanced hydrophilicity through nonsolvent-thermally induced phase separation method. J Membr Sci 2021; 620: 118914.
[http://dx.doi.org/10.1016/j.memsci.2020.118914]
[32]
Folgado E, Ladmiral V, Semsarilar M. Towards permanent hydrophilic PVDF membranes. Amphiphilic PVDF-b-PEG-b-PVDF triblock copolymer as membrane additive. Eur Polym J 2020; 131: 109708.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109708]
[33]
Li C, Chen X, Luo J, et al. VDF grafted Gallic acid to enhance the hydrophilicity and antibacterial properties of PVDF composite membrane. Separ Purif Tech 2021; 259: 118127.
[http://dx.doi.org/10.1016/j.seppur.2020.118127]
[34]
Nunes SP, Peinemann KV. Ultrafiltration membranes of PVDF/PMMA. J Membr Sci 1992; 73(1): 25-35.
[http://dx.doi.org/10.1016/0376-7388(92)80183-K]
[35]
Tamura M, Uragami T, Sugihara M. Studies on syntheses and permeabilities of special polymer membranes: Ultrafiltration and dialysis characteristics of cellulose nitrate-poly(vinyl pyrrolidone) polymer blend membranes. Polymer (Guildf) 1981; 22(6): 829-35.
[http://dx.doi.org/10.1016/0032-3861(81)90024-0]
[36]
Gao YX. Fundamentals of Membrane Separation Technology. Beijing, China: Chinese Science Press 1989.
[37]
Saraswathi MSSA, Rana R, Alwarappan S, Gowrishankar S, Kanimozhia P, Nagendran A. Cellulose acetate ultrafiltration membranes customized with bio-inspired polydopamine coating and in situ immobilization of silver nanoparticles. New J Chem 2019; 43(10): 4216-25.
[http://dx.doi.org/10.1039/C8NJ04511A]
[38]
Akhlaghi M, Dorost A, Karimyan K, Narooie MR, Sharafi H. Data for comparison of chlorine dioxide and chlorine disinfection power in a real dairy wastewater effluent. Data Brief 2018; 18: 886-90.
[http://dx.doi.org/10.1016/j.dib.2018.03.117] [PMID: 29900255]
[39]
Leininger DJ, Roberson JR, Elvinger F. Use of eosin methylene blue agar to differentiate Escherichia coli from other gram-negative mastitis pathogens. J Vet Diagn Invest 2001; 13(3): 273-5.
[http://dx.doi.org/10.1177/104063870101300319] [PMID: 11482612]
[40]
Kasim N, Mohammad AW, Abdullah SRS. 2017 Iron and manganese removal by nanofiltration and ultrafiltration membranes: Influence of pH adjustment. Malays J Anal Sci 2017; 21(1): 149-58.
[http://dx.doi.org/10.17576/mjas-2017-2101-17]
[41]
Wu J, Wang Z, Yan W, Wang Y, Wang J, Wang S. Improving the hydrophilicity and fouling resistance of RO membranes by surface immobilization of PVP based on a metal-polyphenol precursor layer. J Membr Sci 2015; 496: 58-69.
[http://dx.doi.org/10.1016/j.memsci.2015.08.044]
[42]
Kanagaraj P, Nagendran A, Rana D, Matsuura T, Neelakandan S, Malarvizhi K. Effects of polyvinylpyrrolidone on the permeation and fouling resistance properties of polyetherimide ultrafiltration membranes. Ind Eng Chem Res 2015; 54(17): 4832-8.
[http://dx.doi.org/10.1021/acs.iecr.5b00432]
[43]
Marbelia L, Bilad M, Vankelecoma IFJ. Gradual PVP leaching from PVDF/PVP blend membranes and its effects on membrane fouling in membrane bioreactors. Separ Purif Tech 2018; 213: 276-82.
[44]
Gebru KA, Das C. Effects of solubility parameter differences among PEG, PVP and CA on the preparation of ultrafiltration membranes: Impacts of solvents and additives on morphology, permeability and fouling performances. Chin J Chem Eng 2017; 25(7): 911-23.
[http://dx.doi.org/10.1016/j.cjche.2016.11.017]
[45]
Marchese J, Ponce M, Ochoa NA, Prádanos P, Palacio L, Hernández A. Fouling behaviour of polyethersulfone UF membranes made with different PVP. J Membr Sci 2003; 211(1): 1-11.
[http://dx.doi.org/10.1016/S0376-7388(02)00260-0]
[46]
Mosqueda-Jimenez DB, Narbaitz RM, Matsuura T, Chowdhury G, Pleizier G, Santerre JP. Influence of processing conditions on the properties of ultrafiltration membranes. J Membr Sci 2004; 231(1-2): 209-24.
[http://dx.doi.org/10.1016/j.memsci.2003.11.026]
[47]
Fane AG, Fell CJD, Waters AG. The relationship between membrane surface pore characteristics and flux for ultrafiltration membranes. J Membr Sci 1981; 9(3): 245-62.
[http://dx.doi.org/10.1016/S0376-7388(00)80267-7]
[48]
Kabsch-Korbutowicz M, Winnicki T. Application of modified polysulfone membranes to the treatment of water solutions containing humic substances and metal ions. Desalination 1996; 105(1-2): 41-9.
[http://dx.doi.org/10.1016/0011-9164(96)00056-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy