Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Review Article Section: Natural Products

Protective Role of Eupafolin against Tumor, Inflammation, Melanogenesis, Viral Disease and Renal Injury: Pharmacological and Analytical Aspects through Scientific Data Analysis

Author(s): Dinesh Kumar Patel*

Volume 2, Issue 2, 2022

Published on: 24 March, 2022

Page: [143 - 151] Pages: 9

DOI: 10.2174/2210298102666220302094321

Open Access Journals Promotions 2
Abstract

Background: Plant derived natural products have always been used in medicine for the treatment of human disorders due to their pharmacological activities and safety profile. Plant derived natural products have been used in food, nutraceuticals, and medicine for better growth and development. Phytoconstituents are pure chemicals derived from various plant materials, and some of the best examples are tannins, alkaloids, terpenes, terpenoids, coumarins, polysaccharides, glycosides, flavonoids, and phenols. Flavonoids are pure phytochemicals present in plants and their derived products such aseupafolin, kaempferol, quercetin, apigenin, myricetin, and luteolin. Flavonoids have different pharmacological activities due to their unique chemical structure and ring substitution.

Methods: In the present investigation, various scientific databases, including PubMed, Google, Science Direct, and Scopus, have been searched to collect all the needed information on eupafolin. The biological potential and pharmacological activities of eupafolin have been investigated in the present work through literature data analysis of eupafolin in different scientific works. Detailed pharmacological activities of eupafolin have been analyzed in the present work to determine their efficacy in medicine for the treatment of human disorders. The importance of analytical techniques for the separation, identification, and quantification of eupafolin in medicinal plants has also been investigated in the present work through literature data analysis.

Results: Analysis of scientific databases revealed that eupafolin is a flavonoid class phytochemical found to be present in Arnica chamissonis, Arnica Montana, Artemisia mongolica, Artemisia princeps, Artemisia scoparia, Chamaemelum nobile, Dimerostemma vestitum, Eupatorium cannabinum, Eupatorium perfoliatum, Gaillardia aristata, Kalanchoe brasiliensis, Kalanchoe pinnata, Korscheltellus gracilis, Lantana montevidensis, Lippia canescens, Lippia dulcis, Phyla nodiflora, and Salvia officinalis. Scientific research data analysis revealed the biological importance of eupafolin in medicine due to its anti-tumor, anti-inflammatory, anti-viral, and anti-oxidant activity. However, its potential on melanogenesis, cardiomyocytes, cerebral ischemia/reperfusion (I/R) injury, glutamate release has also been mentioned in the scientific research work. The study of analytical data revealed the importance of Gas chromatography, GC-MS, HPLC-DAD, HPLC-UV, TLC, and UHPLC-MS for qualitative and quantitative analysis of eupafolin in medicine and other allied health sectors.

Conclusion: Eupafolin has a very impressive pharmacological profile and could be used against different types of human disorders.

Keywords: Eupafolin, tumor, inflammation, melanogenesis, viral disease and renal injury, pharmacological, analytical, aspects.

Graphical Abstract
[1]
Patel, K.; Kumar, V.; Patel, D.K. An update of therapeutic potential and bioanalytical aspects of steroidal glycoalkaloid (solanidine). J. Coast. Life Med., 2017, 5(3), 134-140.
[http://dx.doi.org/10.12980/jclm.5.2017J6-256]
[2]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2016, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[3]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr. Tradit. Med., 2018, 4(2), 120-127.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[4]
Patel, K.; Patel, D.K. Medicinal significance, pharmacological activities, and analytical aspects of ricinine: A concise report. J. Coast. Life Med., 2016, 4(8), 663-667.
[http://dx.doi.org/10.12980/jclm.4.2016J6-96]
[5]
Patel, K.; Mishra, R.; Patel, D.K. A review on phytopharmaceutical importance of asiaticoside. J. Coast. Life Med., 2016, 4(12), 1000-1007.
[http://dx.doi.org/10.12980/jclm.4.2016J6-161]
[6]
Helmy, S.N.; Ezzat, S.R.; Naguib, M.H. Antioxidant, antibacterial activities and phytochemical screening of Asteriscus pygmaeus aerial parts ethanolic extract. GSC Biol. Pharm. Sci, 2019, 9(3), 041-6.
[7]
de Araújo, E.R.D.; Félix-Silva, J.; Xavier-Santos, J.B.; Fernandes, J.M.; Guerra, G.C.B.; de Araújo, A.A.; Araújo, D.F.S.; de Santis Ferreira, L.; da Silva Júnior, A.A.; Fernandes-Pedrosa, M.F.; Zucolotto, S.M. Local anti-inflammatory activity: Topical formulation containing Kalanchoe brasiliensis and Kalanchoe pinnata leaf aqueous extract. Biomed. Pharmacother., 2019, 113, 108721.
[http://dx.doi.org/10.1016/j.biopha.2019.108721] [PMID: 30856538]
[8]
Lin, Z.C.; Lee, C.W.; Tsai, M.H.; Ko, H.H.; Fang, J.Y.; Chiang, Y.C.; Liang, C.J.; Hsu, L.F.; Hu, S.C.; Yen, F.L. Eupafolin nanoparticles protect HaCaT keratinocytes from particulate matter-induced inflammation and oxidative stress. Int. J. Nanomedicine, 2016, 11, 3907-3926.
[http://dx.doi.org/10.2147/IJN.S109062] [PMID: 27570454]
[9]
Han, M.A.; Min, K.J.; Woo, S.M.; Seo, B.R.; Kwon, T.K. Eupafolin enhances TRAIL-mediated apoptosis through cathepsin S-induced down-regulation of Mcl-1 expression and AMPK-mediated Bim up-regulation in renal carcinoma Caki cells. Oncotarget, 2016, 7(40), 65707-65720.
[http://dx.doi.org/10.18632/oncotarget.11604] [PMID: 27582546]
[10]
Wang, C.Y.; Huang, S.C.; Lai, Z.R.; Ho, Y.L.; Jou, Y.J.; Kung, S.H.; Zhang, Y.; Chang, Y.S.; Lin, C.W. Eupafolin and ethyl acetate fraction of kalanchoe gracilis stem extract show potent antiviral activities against enterovirus 71 and coxsackievirus A16. Evid. Based Complement. Alternat. Med., 2013, 2013, 591354.
[PMID: 24078828]
[11]
Ko, H.H.; Chiang, Y.C.; Tsai, M.H.; Liang, C.J.; Hsu, L.F.; Li, S.Y.; Wang, M.C.; Yen, F.L.; Lee, C.W. Eupafolin, a skin whitening flavonoid isolated from Phyla nodiflora, downregulated melanogenesis: Role of MAPK and Akt pathways. J. Ethnopharmacol., 2014, 151(1), 386-393.
[http://dx.doi.org/10.1016/j.jep.2013.10.054] [PMID: 24212072]
[12]
Chen, C.C.; Lin, M.W.; Liang, C.J.; Wang, S.H. The anti-inflammatory effects and mechanisms of eupafolin in lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages. PLoS One, 2016, 11(7), e0158662.
[http://dx.doi.org/10.1371/journal.pone.0158662] [PMID: 27414646]
[13]
Gao, Y.; Zhang, Y.; Fan, Y. Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway. Iran. J. Basic Med. Sci., 2019, 22(11), 1340-1346.
[PMID: 32128100]
[14]
Jiang, H.; Wu, D.; Xu, D.; Yu, H.; Zhao, Z.; Ma, D.; Jin, J. Eupafolin exhibits potent anti-angiogenic and antitumor activity in hepatocellular carcinoma. Int. J. Biol. Sci., 2017, 13(6), 701-711.
[http://dx.doi.org/10.7150/ijbs.17534] [PMID: 28655996]
[15]
Fan, X.; Tao, J.; Cai, Z.; Fredimoses, M.; Wu, J.; Jiang, Z.; Zhang, K.; Li, S. Eupafolin suppresses esophagus cancer growth by targeting T-LAK cell-originated protein kinase. Front. Pharmacol., 2019, 10, 1248.
[http://dx.doi.org/10.3389/fphar.2019.01248] [PMID: 31708778]
[16]
Liu, K.; Park, C.; Chen, H.; Hwang, J.; Thimmegowda, N.R.; Bae, E.Y.; Lee, K.W.; Kim, H.G.; Liu, H.; Soung, N.K.; Peng, C.; Jang, J.H.; Kim, K.E.; Ahn, J.S.; Bode, A.M.; Dong, Z.; Kim, B.Y.; Dong, Z. Eupafolin suppresses prostate cancer by targeting phosphatidylinositol 3-kinase-mediated AKT signaling. Mol. Carcinog., 2015, 54(9), 751-760.
[http://dx.doi.org/10.1002/mc.22139] [PMID: 24700667]
[17]
Chung, K.S.; Choi, J.H.; Back, N.I.; Choi, M.S.; Kang, E.K.; Chung, H.G.; Jeong, T.S.; Lee, K.T. Eupafolin, a flavonoid isolated from Artemisia princeps, induced apoptosis in human cervical adenocarcinoma HeLa cells. Mol. Nutr. Food Res., 2010, 54(9), 1318-1328.
[http://dx.doi.org/10.1002/mnfr.200900305] [PMID: 20397191]
[18]
Abe, F.; Nagao, T.; Okabe, H. Antiproliferative constituents in plants 9. Aerial parts of Lippia dulcis and Lippia canescens. Biol. Pharm. Bull., 2002, 25(7), 920-922.
[http://dx.doi.org/10.1248/bpb.25.920] [PMID: 12132670]
[19]
Woerdenbag, H.J.; Merfort, I.; Schmidt, T.J.; Passreiter, C.M.; Willuhn, G.; Van Uden, W.; Pras, N.; Konings, A.W. Decreased helenalin-induced cytotoxicity by flavonoids from Arnica as studied in a human lung carcinoma cell line. Phytomedicine, 1995, 2(2), 127-132.
[http://dx.doi.org/10.1016/S0944-7113(11)80057-7] [PMID: 23196154]
[20]
Chen, Z.; Cheng, L.Q. Eupafolin induces autophagy and apoptosis in B-cell non-Hodgkin lymphomas. J. Pharm. Pharmacol., 2021, 73(2), 241-246.
[http://dx.doi.org/10.1093/jpp/rgaa011] [PMID: 33793811]
[21]
Wei, J.; Zhang, X.; Pan, H.; He, S.; Yuan, B.; Liu, Q.; Zhang, J.; Ding, Y. Eupafolin inhibits breast cancer cell proliferation and induces apoptosis by inhibiting the PI3K/Akt/mTOR pathway. Oncol. Lett., 2021, 21(4), 332.
[http://dx.doi.org/10.3892/ol.2021.12593] [PMID: 33692864]
[22]
Maas, M.; Deters, A.M.; Hensel, A. Anti-inflammatory activity of Eupatorium perfoliatum L. extracts, eupafolin, and dimeric guaianolide via iNOS inhibitory activity and modulation of inflammation-related cytokines and chemokines. J. Ethnopharmacol., 2011, 137(1), 371-381.
[http://dx.doi.org/10.1016/j.jep.2011.05.040] [PMID: 21669270]
[23]
Sung, H.C.; Liang, C.J.; Lee, C.W.; Yen, F.L.; Hsiao, C.Y.; Wang, S.H.; Jiang-Shieh, Y.F.; Tsai, J.S.; Chen, Y.L. The protective effect of eupafolin against TNF-α-induced lung inflammation via the reduction of intercellular cell adhesion molecule-1 expression. J. Ethnopharmacol., 2015, 170, 136-147.
[http://dx.doi.org/10.1016/j.jep.2015.04.058] [PMID: 25975517]
[24]
Tsai, M.H.; Lin, Z.C.; Liang, C.J.; Yen, F.L.; Chiang, Y.C.; Lee, C.W. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47(phox) pathway. Toxicol. Appl. Pharmacol., 2014, 279(2), 240-251.
[http://dx.doi.org/10.1016/j.taap.2014.06.012] [PMID: 24967690]
[25]
Lee, C.W.; Lin, Z.C.; Hsu, L.F.; Fang, J.Y.; Chiang, Y.C.; Tsai, M.H.; Lee, M.H.; Li, S.Y.; Hu, S.C.; Lee, I.T.; Yen, F.L. Eupafolin ameliorates COX-2 expression and PGE2 production in particulate pollutants-exposed human keratinocytes through ROS/MAPKs pathways. J. Ethnopharmacol., 2016, 189, 300-309.
[http://dx.doi.org/10.1016/j.jep.2016.05.002] [PMID: 27180879]
[26]
Sinha, M.; Chakraborty, U.; Kool, A.; Chakravarti, M.; Das, S.; Ghosh, S.; Thakur, L.; Khuranna, A.; Nayak, D.; Basu, B.; Kar, S.; Ray, R.; Das, S. In-vitro antiviral action of Eupatorium perfoliatum against dengue virus infection: Modulation of mTOR signaling and autophagy. J. Ethnopharmacol., 2022, 282, 114627.
[http://dx.doi.org/10.1016/j.jep.2021.114627] [PMID: 34509603]
[27]
Dabaghi-Barbosa, P.; Rocha, A.; Lima, A.; Heleno de Oliveira, B.; de Oliveira, M.; Carnieri, E.; Cadena, S.M.; Rocha, M. Hispidulin: Antioxidant properties and effect on mitochondrial energy metabolism. Free Radic. Res., 2005, 39(12), 1305-1315.
[http://dx.doi.org/10.1080/13561820500177659] [PMID: 16298860]
[28]
Lin, F.J.; Yen, F.L.; Chen, P.C.; Wang, M.C.; Lin, C.N.; Lee, C.W.; Ko, H.H. HPLC-fingerprints and antioxidant constituents of Phyla nodiflora. ScientificWorldJ., 2014, 2014, 528653.
[http://dx.doi.org/10.1155/2014/528653] [PMID: 25140335]
[29]
Lai, Z-R.; Ho, Y-L.; Huang, S-C.; Huang, T-H.; Lai, S-C.; Tsai, J-C.; Wang, C.Y.; Huang, G.J.; Chang, Y.S. Antioxidant, anti-inflammatory and antiproliferative activities of Kalanchoe gracilis (L.) DC stem. Am. J. Chin. Med., 2011, 39(6), 1275-1290.
[http://dx.doi.org/10.1142/S0192415X1100955X] [PMID: 22083996]
[30]
Miura, K.; Kikuzaki, H.; Nakatani, N. Antioxidant activity of chemical components from sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.) measured by the oil stability index method. J. Agric. Food Chem., 2002, 50(7), 1845-1851.
[http://dx.doi.org/10.1021/jf011314o] [PMID: 11902922]
[31]
Arroo, R.R.J.; Sari, S.; Barut, B.; Özel, A.; Ruparelia, K.C.; Şöhretoğlu, D. Flavones as tyrosinase inhibitors: Kinetic studies in vitro and in silico. Phytochem. Anal., 2020, 31(3), 314-321.
[http://dx.doi.org/10.1002/pca.2897] [PMID: 31997462]
[32]
Chen, X.; Yao, Z.; Peng, X.; Wu, L.; Wu, H.; Ou, Y.; Lai, J. Eupafolin alleviates cerebral ischemia/reperfusion injury in rats via blocking the TLR4/NF κB signaling pathway. Mol. Med. Rep., 2020, 22(6), 5135-5144.
[http://dx.doi.org/10.3892/mmr.2020.11637] [PMID: 33173992]
[33]
Chang, A.; Hung, C.F.; Hsieh, P.W.; Ko, H.H.; Wang, S.J. Eupafolin suppresses P/Q-Type Ca2+ channels to inhibit Ca2+/calmodulin-dependent protein kinase II and glutamate release at rat cerebrocortical nerve terminals. Biomol. Ther. (Seoul), 2021, 29(6), 630-636.
[http://dx.doi.org/10.4062/biomolther.2021.046] [PMID: 34475273]
[34]
Herrerias, T.; de Oliveira, B.H.; Gomes, M.A.; de Oliveira, M.B.; Carnieri, E.G.; Cadena, S.M.; Martinez, G.R.; Rocha, M.E. Eupafolin: Effect on mitochondrial energetic metabolism. Bioorg. Med. Chem., 2008, 16(2), 854-861.
[http://dx.doi.org/10.1016/j.bmc.2007.10.029] [PMID: 17977731]
[35]
Salama, M.M.; Kandil, Z.A.; Islam, W.T. Cytotoxic compounds from the leaves of Gaillardia aristata Pursh. growing in Egypt. Nat. Prod. Res., 2012, 26(22), 2057-2062.
[PMID: 21846263]
[36]
Zhang, H.; Chen, M.K.; Li, K.; Hu, C.; Lu, M.H.; Situ, J. Eupafolin nanoparticle improves acute renal injury induced by LPS through inhibiting ROS and inflammation. Biomed. Pharmacother., 2017, 85, 704-711.
[http://dx.doi.org/10.1016/j.biopha.2016.11.083] [PMID: 27923689]
[37]
de Araújo, E.R.; Guerra, G.C.; Araújo, D.F.; de Araújo, A.A.; Fernandes, J.M.; de Araújo Júnior, R.F.; da Silva, V.C.; de Carvalho, T.G.; Ferreira, L.S.; Zucolotto, S.M. Gastroprotective and antioxidant activity of kalanchoe brasiliensis and Kalanchoe pinnata leaf juices against indomethacin and ethanol-induced gastric lesions in rats. Int. J. Mol. Sci., 2018, 19(5), 1265.
[http://dx.doi.org/10.3390/ijms19051265] [PMID: 29695040]
[38]
Sándor, Z.; Mottaghipisheh, J.; Veres, K.; Hohmann, J.; Bencsik, T.; Horváth, A.; Kelemen, D.; Papp, R.; Barthó, L.; Csupor, D. Evidence supports tradition: The in vitro effects of roman chamomile on smooth muscles. Front. Pharmacol., 2018, 9, 323.
[http://dx.doi.org/10.3389/fphar.2018.00323] [PMID: 29681854]
[39]
Yu, X.Q.; Liu, C.X.; Zou, K.; He, H.B.; Wang, J.Z.; Wu, Y.H.X.Y.; Xu, Y.C. Research on chemical constituents and anti-tumor activity of eupatorium Chinense. Zhong Yao Cai, 2016, 39(8), 1782-1785.
[PMID: 30204384]
[40]
Mayorga, O.A.; da Costa, Y.F.; da Silva, J.B.; Scio, E.; Ferreira, A.L.; de Sousa, O.V.; Alves, M.S. Kalanchoe brasiliensis cambess., a promising natural source of antioxidant and antibiotic agents against multidrug-resistant pathogens for the treatment of Salmonella gastroenteritis. Oxid. Med. Cell. Longev., 2019, 2019, 9245951.
[http://dx.doi.org/10.1155/2019/9245951] [PMID: 31827708]
[41]
Elema, E.T.; Schripsema, J.; Malingré, T.M. Flavones and flavonol glycosides from Eupatorium cannabinum L. Pharm. Weekbl. Sci., 1989, 11(5), 161-164.
[http://dx.doi.org/10.1007/BF01959464] [PMID: 2594467]
[42]
Tan, RX; Lu, H; Wolfender, J.L; Yu, TT; Zheng, WF; Yang, L Mono- and sesquiterpenes and antifungal constituents from Artemisia species. Planta Med, 1999, 65, 064-7.
[43]
Fernandes, J.M.; Félix-Silva, J.; da Cunha, L.M.; Gomes, J. A dos S.; Siqueira, E.M da S.; Gimenes, L.P.; Lopes, N.P.; Soares, L.A.; Fernandes-Pedrosa, M.F.; Zucolotto, S.M. Inhibitory effects of hydroethanolic leaf extracts of Kalanchoe brasiliensis and Kalanchoe pinnata (Crassulaceae) against local effects induced by Bothrops jararaca snake venom. PLoS One, 2016, 11(12), e0168658.
[http://dx.doi.org/10.1371/journal.pone.0168658] [PMID: 28033347]
[44]
Stefani, R.; Eberlin, M.N.; Tomazela, D.M.; Da Costa, F.B. Eudesmanolides from Dimerostemma vestitum. J. Nat. Prod., 2003, 66(3), 401-403.
[http://dx.doi.org/10.1021/np020304u] [PMID: 12662100]
[45]
Maas, M.; Hensel, A.; Costa, F.B.; Brun, R.; Kaiser, M.; Schmidt, T.J. An unusual dimeric guaianolide with antiprotozoal activity and further sesquiterpene lactones from Eupatorium perfoliatum. Phytochemistry, 2011, 72(7), 635-644.
[http://dx.doi.org/10.1016/j.phytochem.2011.01.025] [PMID: 21329950]
[46]
Merfort, I.; Wendisch, D. New flavonoid glycosides from arnicae Flos DAB 91. Planta Med., 1992, 58(4), 355-357.
[http://dx.doi.org/10.1055/s-2006-961484] [PMID: 17226484]
[47]
Nagao, T.; Abe, F.; Kinjo, J.; Okabe, H. Antiproliferative constituents in plants 10. Flavones from the leaves of Lantana montevidensis Briq. and consideration of structure-activity relationship. Biol. Pharm. Bull., 2002, 25(7), 875-879.
[http://dx.doi.org/10.1248/bpb.25.875] [PMID: 12132661]
[48]
Lin, S.; Xiao, Y.Q.; Zhang, Q.W.; Zhang, N.N. Studies on chemical constituents in bud of Artemisia scoparia (II). Zhongguo Zhongyao Zazhi, 2004, 29(2), 152-154.
[PMID: 15719683]
[49]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. β-sitosterol: Bioactive compounds in foods, their role in health promotion and disease prevention “A concise report of its phytopharmaceutical importance. Curr. Tradit. Med., 2017, 3(3), 168-177.
[http://dx.doi.org/10.2174/2215083803666170615111759]
[50]
Devi, M.; Devi, S.; Sharma, V.; Rana, N.; Bhatia, R.K.; Bhatt, A.K. Green synthesis of silver nanoparticles using methanolic fruit extract of Aegle marmelos and their antimicrobial potential against human bacterial pathogens. J. Tradit. Complement. Med., 2019, 10(2), 158-165.
[http://dx.doi.org/10.1016/j.jtcme.2019.04.007] [PMID: 32257879]
[51]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7(1), 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[52]
Brown, P.; Zhou, Y.; El-Esawi, M.A.; Liehr, T.; Blanck, O.; Gladue, D.P. Large expert-curated database for benchmarking document similarity detection in biomedical literature search. Database (Oxford), 2019, 2019, baz085.
[http://dx.doi.org/10.1093/database/baz085] [PMID: 33326193]
[53]
Allec, S.I.; Sun, Y.; Sun, J.; Chang, C.A.; Wong, B.M. Heterogeneous CPU+GPU-enabled simulations for DFTB molecular dynamics of large chemical and biological systems. J. Chem. Theory Comput., 2019, 15(5), 2807-2815.
[http://dx.doi.org/10.1021/acs.jctc.8b01239] [PMID: 30916958]

© 2024 Bentham Science Publishers | Privacy Policy