Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Ferroptosis Inhibitors as Potential New Therapeutic Targets for Cardiovascular Disease

Author(s): Zahra Shaghaghi, Shokouh Motieian, Maryam Alvandi, Amirhossein Yazdi, Bahareh Asadzadeh, Soghra Farzipour* and Sahar Abbasi

Volume 22, Issue 17, 2022

Published on: 27 April, 2022

Page: [2271 - 2286] Pages: 16

DOI: 10.2174/1389557522666220218123404

Price: $65

conference banner
Abstract

Ferroptosis is a novel form of programmed cell death that occurs due to an increase in iron levels. Ferroptosis is implicated in a number of cardiovascular diseases, including myocardial infarction (MI), reperfusion damage, and heart failure (HF). As cardiomyocyte depletion is the leading cause of patient morbidity and mortality, it is critical to thoroughly comprehend the regulatory mechanisms of ferroptosis activation. In fact, inhibiting cardiac ferroptosis can be a useful therapeutic method for cardiovascular disorders. The iron, lipid, amino acid, and glutathione metabolisms strictly govern the beginning and execution of ferroptosis. Therefore, ferroptosis can be inhibited by iron chelators, free radical-trapping antioxidants, GPX4 (Glutathione Peroxidase 4) activators, and lipid peroxidation (LPO) inhibitors. However, the search for new molecular targets for ferroptosis is becoming increasingly important in cardiovascular disease research. In this review, we address the importance of ferroptosis in various cardiovascular illnesses, provide an update on current information regarding the molecular mechanisms that drive ferroptosis, and discuss the role of ferroptosis inhibitors in cardiovascular disease.

Keywords: Ferroptosis inhibitors, cardiovascular diseases, lipoxygenase inhibitors, reactive oxygen species, iron chelators, antioxidants.

Graphical Abstract
[1]
Khan, M.A.; Hashim, M.J.; Mustafa, H.; Baniyas, M.Y.; Al Suwaidi, S.K.B.M.; AlKatheeri, R.; Alblooshi, F.M.K.; Almatrooshi, M.E.A.H.; Alzaabi, M.E.H.; Al Darmaki, R.S.; Lootah, S.N.A.H. Global epidemiology of ischemic heart disease: Results from the global burden of disease study. Cureus, 2020, 12(7), e9349-e9349.
[http://dx.doi.org/10.7759/cureus.9349] [PMID: 32742886]
[2]
Chiong, M.; Wang, Z.V.; Pedrozo, Z.; Cao, D.J.; Troncoso, R.; Ibacache, M.; Criollo, A.; Nemchenko, A.; Hill, J.A.; Lavandero, S. Cardiomyocyte death: Mechanisms and translational implications. Cell Death Dis., 2011, 2(12), e244.
[http://dx.doi.org/10.1038/cddis.2011.130] [PMID: 22190003]
[3]
Zhu, H.; Sun, A. Programmed necrosis in heart disease: Molecular mechanisms and clinical implications. J. Mol. Cell. Cardiol., 2018, 116, 125-134.
[http://dx.doi.org/10.1016/j.yjmcc.2018.01.018] [PMID: 29426003]
[4]
Kim, N.H.; Kang, P.M. Apoptosis in cardiovascular diseases: Mechanism and clinical implications. Korean Circ. J., 2010, 40(7), 299-305.
[http://dx.doi.org/10.4070/kcj.2010.40.7.299] [PMID: 20664736]
[5]
Yarbrough, W.M.; Mukherjee, R.; Stroud, R.E.; Meyer, E.C.; Escobar, G.P.; Sample, J.A.; Hendrick, J.W.; Mingoia, J.T.; Spinale, F.G. Caspase inhibition modulates left ventricular remodeling following myocardial infarction through cellular and extracellular mechanisms. J. Cardiovasc. Pharmacol., 2010, 55(4), 408-416.
[http://dx.doi.org/10.1097/FJC.0b013e3181d4ca66] [PMID: 20147844]
[6]
Orogo, A.M.; Gustafsson, Å.B. Therapeutic targeting of autophagy: Potential and concerns in treating cardiovascular disease. Circ. Res., 2015, 116(3), 489-503.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303791] [PMID: 25634972]
[7]
Kaludercic, N.; Maiuri, M.C.; Kaushik, S.; Fernández, Á.F.; de Bruijn, J.; Castoldi, F.; Chen, Y.; Ito, J.; Mukai, R.; Murakawa, T.; Nah, J.; Pietrocola, F.; Saito, T.; Sebti, S.; Semenzato, M.; Tsansizi, L.; Sciarretta, S.; Madrigal-Matute, J. Comprehensive autophagy evaluation in cardiac disease models. Cardiovasc. Res., 2020, 116(3), 483-504.
[http://dx.doi.org/10.1093/cvr/cvz233] [PMID: 31504266]
[8]
Piamsiri, C.; Maneechote, C.; Siri-Angkul, N.; Chattipakorn, S.C.; Chattipakorn, N. Targeting necroptosis as therapeutic potential in chronic myocardial infarction. J. Biomed. Sci., 2021, 28(1), 25-25.
[http://dx.doi.org/10.1186/s12929-021-00722-w] [PMID: 33836761]
[9]
Zhang, T.; Zhang, Y.; Cui, M.; Jin, L.; Wang, Y.; Lv, F.; Liu, Y.; Zheng, W.; Shang, H.; Zhang, J.; Zhang, M.; Wu, H.; Guo, J.; Zhang, X.; Hu, X.; Cao, C.M.; Xiao, R.P. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat. Med., 2016, 22(2), 175-182.
[http://dx.doi.org/10.1038/nm.4017] [PMID: 26726877]
[10]
Wu, X.; Li, Y.; Zhang, S.; Zhou, X. Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics, 2021, 11(7), 3052-3059.
[http://dx.doi.org/10.7150/thno.54113] [PMID: 33537073]
[11]
Lillo-Moya, J.; Rojas-Solé, C.; Muñoz-Salamanca, D.; Panieri, E.; Saso, L.; Rodrigo, R. Targeting ferroptosis against ischemia/reperfusion cardiac injury. Antioxidants, 2021, 10(5), 667.
[12]
Tadokoro, T.; Ikeda, M.; Ide, T.; Deguchi, H.; Ikeda, S.; Okabe, K.; Ishikita, A.; Matsushima, S.; Koumura, T.; Yamada, K.I.; Imai, H.; Tsutsui, H. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight, 2020, 5(9), 132747.
[http://dx.doi.org/10.1172/jci.insight.132747] [PMID: 32376803]
[13]
Qin, Y.; Qiao, Y.; Wang, D.; Tang, C.; Yan, G. Ferritinophagy and ferroptosis in cardiovascular disease: Mechanisms and potential applications. Biomed. Pharmacother., 2021, 141, 111872.
[14]
Li, J.; Cao, F.; Yin, H.L.; Huang, Z.J.; Lin, Z.T.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis., 2020, 11(2), 88.
[http://dx.doi.org/10.1038/s41419-020-2298-2] [PMID: 32015325]
[15]
Fang, X.; Wang, H.; Han, D.; Xie, E.; Yang, X.; Wei, J.; Gu, S.; Gao, F.; Zhu, N.; Yin, X.; Cheng, Q.; Zhang, P.; Dai, W.; Chen, J.; Yang, F.; Yang, H.T.; Linkermann, A.; Gu, W.; Min, J.; Wang, F. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl. Acad. Sci. USA, 2019, 116(7), 2672-2680.
[http://dx.doi.org/10.1073/pnas.1821022116] [PMID: 30692261]
[16]
Wang, H.; Liu, C.; Zhao, Y.; Gao, G. Mitochondria regulation in ferroptosis. Eur. J. Cell Biol., 2020, 99(1), 151058.
[http://dx.doi.org/10.1016/j.ejcb.2019.151058] [PMID: 31810634]
[17]
Liang, H.; Van Remmen, H.; Frohlich, V.; Lechleiter, J.; Richardson, A.; Ran, Q. Gpx4 protects mitochondrial ATP generation against oxidative damage. Biochem. Biophys. Res. Commun., 2007, 356(4), 893-898.
[http://dx.doi.org/10.1016/j.bbrc.2007.03.045] [PMID: 17395155]
[18]
Stamenkovic, A.; Pierce, G.N.; Ravandi, A. Phospholipid oxidation products in ferroptotic myocardial cell death. Am. J. Physiol. Heart Circ. Physiol., 2019, 317(1), H156-H163.
[http://dx.doi.org/10.1152/ajpheart.00076.2019] [PMID: 31050558]
[19]
Stockwell, B.R.; Jiang, X.; Gu, W. Emerging Mechanisms and Disease Relevance of Ferroptosis. Trends Cell Biol., 2020, 30(6), 478-490.
[http://dx.doi.org/10.1016/j.tcb.2020.02.009] [PMID: 32413317]
[20]
Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; Kapralov, A.A.; Amoscato, A.A.; Jiang, J.; Anthonymuthu, T.; Mohammadyani, D.; Yang, Q.; Proneth, B.; Klein-Seetharaman, J.; Watkins, S.; Bahar, I.; Greenberger, J.; Mallampalli, R.K.; Stockwell, B.R.; Tyurina, Y.Y.; Conrad, M.; Bayır, H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol., 2017, 13(1), 81-90.
[http://dx.doi.org/10.1038/nchembio.2238] [PMID: 27842066]
[21]
Barrera, G.; Pizzimenti, S.; Ciamporcero, E.S.; Daga, M.; Ullio, C.; Arcaro, A.; Cetrangolo, G.P.; Ferretti, C.; Dianzani, C.; Lepore, A.; Gentile, F. Role of 4-hydroxynonenal-protein adducts in human diseases. Antioxid. Redox Signal., 2015, 22(18), 1681-1702.
[http://dx.doi.org/10.1089/ars.2014.6166] [PMID: 25365742]
[22]
Kuhn, H.; Banthiya, S.; van Leyen, K. Mammalian lipoxygenases and their biological relevance. Biochim. Biophys. Acta, 2015, 1851(4), 308-330.
[http://dx.doi.org/10.1016/j.bbalip.2014.10.002] [PMID: 25316652]
[23]
Stamenkovic, A.; O’Hara, K.A.; Nelson, D.C.; Maddaford, T.G.; Edel, A.L.; Maddaford, G.; Dibrov, E.; Aghanoori, M.; Kirshenbaum, L.A.; Fernyhough, P.; Aliani, M.; Pierce, G.N.; Ravandi, A. Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol., 2021, 320(3), H1170-H1184.
[http://dx.doi.org/10.1152/ajpheart.00237.2020] [PMID: 33513080]
[24]
Feng, H.; Stockwell, B.R. Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS Biol., 2018, 16(5), e2006203.
[http://dx.doi.org/10.1371/journal.pbio.2006203] [PMID: 29795546]
[25]
Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular mechanisms and health implications. Cell Res., 2021, 31(2), 107-125.
[http://dx.doi.org/10.1038/s41422-020-00441-1] [PMID: 33268902]
[26]
Chen, X.; Yu, C.; Kang, R.; Tang, D. Iron metabolism in ferroptosis. Front. Cell Dev. Biol., 2020, 8(1089), 590226.
[http://dx.doi.org/10.3389/fcell.2020.590226] [PMID: 33117818]
[27]
Kumfu, S.; Chattipakorn, S.; Srichairatanakool, S.; Settakorn, J.; Fucharoen, S.; Chattipakorn, N. T-type calcium channel as a portal of iron uptake into cardiomyocytes of beta-thalassemic mice. Eur. J. Haematol., 2011, 86(2), 156-166.
[http://dx.doi.org/10.1111/j.1600-0609.2010.01549.x] [PMID: 21059103]
[28]
Bulluck, H.; Rosmini, S.; Abdel-Gadir, A.; White, S.K.; Bhuva, A.N.; Treibel, T.A.; Fontana, M.; Ramlall, M.; Hamarneh, A.; Sirker, A.; Herrey, A.S.; Manisty, C.; Yellon, D.M.; Kellman, P.; Moon, J.C.; Hausenloy, D.J. Residual myocardial iron following intramyocardial hemorrhage during the convalescent phase of reperfused st-segment-elevation myocardial infarction and adverse left ventricular remodeling. Circ. Cardiovasc. Imaging, 2016, 9(10), e004940.
[http://dx.doi.org/10.1161/CIRCIMAGING.116.004940] [PMID: 27894068]
[29]
Tang, W.H.; Wu, S.; Wong, T.M.; Chung, S.K.; Chung, S.S. Polyol pathway mediates iron-induced oxidative injury in ischemic-reperfused rat heart. Free Radic. Biol. Med., 2008, 45(5), 602-610.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.05.003] [PMID: 18549825]
[30]
Otterbein, L.E.; Foresti, R.; Motterlini, R. Heme oxygenase-1 and carbon monoxide in the heart: The balancing act between danger signaling and pro-survival. Circ. Res., 2016, 118(12), 1940-1959.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.306588] [PMID: 27283533]
[31]
Tang, Z.; Ju, Y.; Dai, X.; Ni, N.; Liu, Y.; Zhang, D.; Gao, H.; Sun, H.; Zhang, J.; Gu, P. HO-1-mediated ferroptosis as a target for protection against retinal pigment epithelium degeneration. Redox Biol., 2021, 43, 101971.
[http://dx.doi.org/10.1016/j.redox.2021.101971] [PMID: 33895485]
[32]
Menon, A.V.; Liu, J.; Tsai, H.P.; Zeng, L.; Yang, S.; Asnani, A.; Kim, J. Excess heme upregulates heme oxygenase 1 and promotes cardiac ferroptosis in mice with sickle cell disease. Blood, 2021., blood.2020008455.
[http://dx.doi.org/10.1182/blood.2020008455] [PMID: 34388243]
[33]
Li, S.; Wang, W.; Niu, T.; Wang, H.; Li, B.; Shao, L.; Lai, Y.; Li, H.; Janicki, J.S.; Wang, X.L.; Tang, D.; Cui, T. Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction. Oxid. Med. Cell. Longev., 2014, 2014, 748524.
[http://dx.doi.org/10.1155/2014/748524] [PMID: 24895528]
[34]
Song, D.; Cheng, Y.; Li, X.; Wang, F.; Lu, Z.; Xiao, X.; Wang, Y. Biogenic nanoselenium particles effectively attenuate oxidative stress-induced intestinal epithelial barrier injury by activating the Nrf2 antioxidant pathway. ACS Appl. Mater. Interfaces, 2017, 9(17), 14724-14740.
[http://dx.doi.org/10.1021/acsami.7b03377] [PMID: 28406025]
[35]
Conrad, M.; Proneth, B. Broken hearts: Iron overload, ferroptosis and cardiomyopathy. Cell Res., 2019, 29(4), 263-264.
[http://dx.doi.org/10.1038/s41422-019-0150-y] [PMID: 30809018]
[36]
Zuo, S.; Yu, J.; Pan, H.; Lu, L. Novel insights on targeting ferroptosis in cancer therapy. Biomark. Res., 2020, 8(1), 50.
[http://dx.doi.org/10.1186/s40364-020-00229-w] [PMID: 33024562]
[37]
Duran, J.M.; Makarewich, C.A.; Trappanese, D.; Gross, P.; Husain, S.; Dunn, J.; Lal, H.; Sharp, T.E.; Starosta, T.; Vagnozzi, R.J.; Berretta, R.M.; Barbe, M.; Yu, D.; Gao, E.; Kubo, H.; Force, T.; Houser, S.R. Sorafenib cardiotoxicity increases mortality after myocardial infarction. Circ. Res., 2014, 114(11), 1700-1712.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303200] [PMID: 24718482]
[38]
Angeli, J.P.F.; Shah, R.; Pratt, D.A.; Conrad, M. Ferroptosis inhibition: Mechanisms and opportunities. Trends Pharmacol. Sci., 2017, 38(5), 489-498.
[http://dx.doi.org/10.1016/j.tips.2017.02.005] [PMID: 28363764]
[39]
Krainz, T.; Gaschler, M.M.; Lim, C.; Sacher, J.R.; Stockwell, B.R.; Wipf, P. A mitochondrial-targeted nitroxide is a potent inhibitor of ferroptosis. ACS Cent. Sci., 2016, 2(9), 653-659.
[http://dx.doi.org/10.1021/acscentsci.6b00199] [PMID: 27725964]
[40]
Miotto, G.; Rossetto, M.; Di Paolo, M.L.; Orian, L.; Venerando, R.; Roveri, A.; Vučković, A.M.; Bosello Travain, V.; Zaccarin, M.; Zennaro, L.; Maiorino, M.; Toppo, S.; Ursini, F.; Cozza, G. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol., 2020, 28, 101328.
[http://dx.doi.org/10.1016/j.redox.2019.101328] [PMID: 31574461]
[41]
Bao, C.; Zhang, J.; Xian, S.Y.; Chen, F. MicroRNA-670-3p suppresses ferroptosis of human glioblastoma cells through targeting ACSL4. Free Radic. Res., 2021, 55(7), 853-864.
[http://dx.doi.org/10.1080/10715762.2021.1962009] [PMID: 34323631]
[42]
Guerrero-Hue, M.; García-Caballero, C.; Palomino-Antolín, A.; Rubio-Navarro, A.; Vázquez-Carballo, C.; Herencia, C.; Martín-Sanchez, D.; Farré-Alins, V.; Egea, J.; Cannata, P.; Praga, M.; Ortiz, A.; Egido, J.; Sanz, A.B.; Moreno, J.A. Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. FASEB J., 2019, 33(8), 8961-8975.
[http://dx.doi.org/10.1096/fj.201900077R] [PMID: 31034781]
[43]
Dong, S.; Li, X.; Jiang, W.; Chen, Z.; Zhou, W. Current understanding of ferroptosis in the progression and treatment of pancreatic cancer. Cancer Cell Int., 2021, 21(1), 480.
[http://dx.doi.org/10.1186/s12935-021-02166-6] [PMID: 34503532]
[44]
Zhang, S.; Hu, R.; Geng, Y.; Chen, K.; Wang, L.; Imam, M.U. The regulatory effects and the signaling pathways of natural bioactive compounds on ferroptosis. Foods, 2021, 10(12), 2952.
[45]
Yeh, C.H.; Ma, K.H.; Liu, P.S.; Kuo, J.K.; Chueh, S.H. Baicalein decreases hydrogen peroxide-induced damage to NG108-15 cellsviaupregulation of Nrf2. J. Cell. Physiol., 2015, 230(8), 1840-1851.
[http://dx.doi.org/10.1002/jcp.24900] [PMID: 25557231]
[46]
Wang, Y.; Quan, F.; Cao, Q.; Lin, Y.; Yue, C.; Bi, R.; Cui, X.; Yang, H.; Yang, Y.; Birnbaumer, L.; Li, X.; Gao, X. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J. Adv. Res., 2020, 28, 231-243.
[http://dx.doi.org/10.1016/j.jare.2020.07.007] [PMID: 33364059]
[47]
Liu, Y.; Li, X.; Hua, Y.; Zhang, W.; Zhou, X.; He, J.; Chen, D. Tannic acid as a natural ferroptosis inhibitor: Mechanisms and beneficial role of 3′-O-galloylation. ChemistrySelect, 2021, 6(7), 1562-1569.
[http://dx.doi.org/10.1002/slct.202004392]
[48]
Peng, X.; Tan, Q.; Zhou, H.; Xu, J.; Gu, Q. Discovery of phloroglucinols from Hypericum japonicum as ferroptosis inhibitors. Fitoterapia, 2021, 153, 104984.
[http://dx.doi.org/10.1016/j.fitote.2021.104984] [PMID: 34216691]
[49]
Liu, B.; Zhao, C.; Li, H.; Chen, X.; Ding, Y.; Xu, S. Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem. Biophys. Res. Commun., 2018, 497(1), 233-240.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.061] [PMID: 29427658]
[50]
Shah, R.; Shchepinov, M.S.; Pratt, D.A. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent. Sci., 2018, 4(3), 387-396.
[http://dx.doi.org/10.1021/acscentsci.7b00589] [PMID: 29632885]
[51]
Kajarabille, N.; Latunde-Dada, G.O. Programmed cell-death by ferroptosis: Antioxidants as mitigators. Int. J. Mol. Sci., 2019, 20(19), 4968.
[http://dx.doi.org/10.3390/ijms20194968] [PMID: 31597407]
[52]
Li, Y.; Feng, D.; Wang, Z.; Zhao, Y.; Sun, R.; Tian, D.; Liu, D.; Zhang, F.; Ning, S.; Yao, J.; Tian, X. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ., 2019, 26(11), 2284-2299.
[http://dx.doi.org/10.1038/s41418-019-0299-4] [PMID: 30737476]
[53]
Sha, W.; Hu, F.; Xi, Y.; Chu, Y.; Bu, S. Mechanism of ferroptosis and its role in type 2 diabetes mellitus. J. Diabetes Res., 2021, 2021, 9999612.
[http://dx.doi.org/10.1155/2021/9999612] [PMID: 34258295]
[54]
Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; Prokisch, H.; Trümbach, D.; Mao, G.; Qu, F.; Bayir, H.; Füllekrug, J.; Scheel, C.H.; Wurst, W.; Schick, J.A.; Kagan, V.E.; Angeli, J.P.; Conrad, M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol., 2017, 13(1), 91-98.
[http://dx.doi.org/10.1038/nchembio.2239] [PMID: 27842070]
[55]
Zhu, Z.Y.; Liu, Y.D.; Gong, Y. Mitochondrial aldehyde dehydrogenase (ALDH2) rescues cardiac contractile dysfunction in an APP/PS1 murine model of Alzheimer’s diseaseviainhibition of ACSL4-dependent ferroptosis. Acta Pharmacol. Sin., 2022, 43(1), 39-49.
[http://dx.doi.org/10.1038/s41401-021-00635-2] [PMID: 33767380]
[56]
Sun, X.; Ou, Z.; Xie, M.; Kang, R.; Fan, Y.; Niu, X.; Wang, H.; Cao, L.; Tang, D. HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene, 2015, 34(45), 5617-5625.
[http://dx.doi.org/10.1038/onc.2015.32] [PMID: 25728673]
[57]
Gao, M.; Monian, P.; Quadri, N.; Ramasamy, R.; Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell, 2015, 59(2), 298-308.
[http://dx.doi.org/10.1016/j.molcel.2015.06.011] [PMID: 26166707]
[58]
Yu, Y.; Yan, Y.; Niu, F.; Wang, Y.; Chen, X.; Su, G.; Liu, Y.; Zhao, X.; Qian, L.; Liu, P.; Xiong, Y. Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov., 2021, 7(1), 193.
[http://dx.doi.org/10.1038/s41420-021-00579-w] [PMID: 34312370]
[59]
Feng, Y.; Madungwe, N.B.; Imam Aliagan, A.D.; Tombo, N.; Bopassa, J.C. Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels. Biochem. Biophys. Res. Commun., 2019, 520(3), 606-611.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.006] [PMID: 31623831]
[60]
Baba, Y.; Higa, J.K.; Shimada, B.K.; Horiuchi, K.M.; Suhara, T.; Kobayashi, M.; Woo, J.D.; Aoyagi, H.; Marh, K.S.; Kitaoka, H.; Matsui, T. Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol., 2018, 314(3), H659-H668.
[http://dx.doi.org/10.1152/ajpheart.00452.2017] [PMID: 29127238]
[61]
Bai, Y.T.; Chang, R.; Wang, H.; Xiao, F.J.; Ge, R.L.; Wang, L.S. ENPP2 protects cardiomyocytes from erastin-induced ferroptosis. Biochem. Biophys. Res. Commun., 2018, 499(1), 44-51.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.113] [PMID: 29551679]
[62]
Wang, C.; Yuan, W.; Hu, A.; Lin, J.; Xia, Z.; Yang, C.F.; Li, Y.; Zhang, Z. Dexmedetomidine alleviated sepsis-induced myocardial ferroptosis and septic heart injury. Mol. Med. Rep., 2020, 22(1), 175-184.
[http://dx.doi.org/10.3892/mmr.2020.11114] [PMID: 32377745]
[63]
Tang, S.; Wang, Y.; Ma, T.; Lu, S.; Huang, K.; Li, Q.; Wu, M.; Yang, H.; Zhong, J. MiR-30d inhibits cardiomyocytes autophagy promoting ferroptosis after myocardial infarction. Panminerva Med., 2020. Online ahad of print.
[http://dx.doi.org/10.23736/S0031-0808.20.03979-8] [PMID: 32720797]
[64]
Song, Y.; Wang, B.; Zhu, X.; Hu, J.; Sun, J.; Xuan, J.; Ge, Z. Human umbilical cord blood-derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice. Cell Biol. Toxicol., 2021, 37(1), 51-64.
[http://dx.doi.org/10.1007/s10565-020-09530-8] [PMID: 32535745]
[65]
Zhou, X.; Zhuo, M.; Zhang, Y.; Shi, E.; Ma, X.; Li, H. miR-190a-5p regulates cardiomyocytes response to ferroptosisviadirectly targeting GLS2. Biochem. Biophys. Res. Commun., 2021, 566, 9-15.
[http://dx.doi.org/10.1016/j.bbrc.2021.05.100] [PMID: 34111670]
[66]
Li, R-L.; Fan, C-H.; Gong, S-Y.; Kang, S. CircRNA1615 inhibits ferroptosis via modulation of autophagy by the miRNA152-3p/LRP6 axis in cardiomyocytes of myocardial infarction. 2021.
[http://dx.doi.org/10.21203/rs.3.rs-497013/v1]
[67]
Sun, Y.; Chen, P.; Zhai, B.; Zhang, M.; Xiang, Y.; Fang, J.; Xu, S.; Gao, Y.; Chen, X.; Sui, X.; Li, G. The emerging role of ferroptosis in inflammation. Biomed. Pharmacother., 2020, 127, 110108.
[http://dx.doi.org/10.1016/j.biopha.2020.110108] [PMID: 32234642]
[68]
Tanai, E.; Frantz, S. Pathophysiology of heart failure. Compr. Physiol., 2015, 6(1), 187-214.
[http://dx.doi.org/10.1002/cphy.c140055] [PMID: 26756631]
[69]
Chen, X.; Xu, S.; Zhao, C.; Liu, B. Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem. Biophys. Res. Commun., 2019, 516(1), 37-43.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.015] [PMID: 31196626]
[70]
Zhao, L.; Feng, Y.; Xu, Z-J.; Zhang, N.Y.; Zhang, W.P.; Zuo, G.; Khalil, M.M.; Sun, L.H. Selenium mitigated aflatoxin B1-induced cardiotoxicity with potential regulation of 4 selenoproteins and ferroptosis signaling in chicks. Food Chem. Toxicol., 2021, 154, 112320.
[http://dx.doi.org/10.1016/j.fct.2021.112320] [PMID: 34116104]
[71]
Liu, J.; Thewke, D.P.; Su, Y.R.; Linton, M.F.; Fazio, S.; Sinensky, M.S. Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice. Arterioscler. Thromb. Vasc. Biol., 2005, 25(1), 174-179.
[http://dx.doi.org/10.1161/01.ATV.0000148548.47755.22] [PMID: 15499039]
[72]
Xiong, Y.; Yu, Y.; Montani, J.P.; Yang, Z.; Ming, X.F. Arginase-II induces vascular smooth muscle cell senescence and apoptosis through p66Shc and p53 independently of its l-arginine ureahydrolase activity: Implications for atherosclerotic plaque vulnerability. J. Am. Heart Assoc., 2013, 2(4), e000096.
[http://dx.doi.org/10.1161/JAHA.113.000096] [PMID: 23832324]
[73]
Bai, T.; Li, M.; Liu, Y.; Qiao, Z.; Wang, Z. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic. Biol. Med., 2020, 160, 92-102.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.07.026] [PMID: 32768568]
[74]
Guo, Z.; Ran, Q.; Roberts, L.J., II; Zhou, L.; Richardson, A.; Sharan, C.; Wu, D.; Yang, H. Suppression of atherogenesis by overexpression of glutathione peroxidase-4 in apolipoprotein E-deficient mice. Free Radic. Biol. Med., 2008, 44(3), 343-352.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.09.009] [PMID: 18215741]
[75]
Swain, J.; Gutteridge, J.M. Prooxidant iron and copper, with ferroxidase and xanthine oxidase activities in human atherosclerotic material. FEBS Lett., 1995, 368(3), 513-515.
[http://dx.doi.org/10.1016/0014-5793(95)00726-P] [PMID: 7635210]
[76]
Yang, K.; Song, H.; Yin, D. PDSS2 inhibits the ferroptosis of vascular endothelial cells in atherosclerosis by activating Nrf2. J. Cardiovasc. Pharmacol., 2021, 77(6), 767-776.
[http://dx.doi.org/10.1097/FJC.0000000000001030] [PMID: 33929387]
[77]
Su, G.; Yang, W.; Wang, S.; Geng, C.; Guan, X. SIRT1-autophagy axis inhibits excess iron-induced ferroptosis of foam cells and subsequently increases IL-1Β and IL-18. Biochem. Biophys. Res. Commun., 2021, 561, 33-39.
[http://dx.doi.org/10.1016/j.bbrc.2021.05.011] [PMID: 34000515]
[78]
Li, L.; Wang, H.; Zhang, J.; Chen, X.; Zhang, Z.; Li, Q. Effect of endothelial progenitor cell-derived extracellular vesicles on endothelial cell ferroptosis and atherosclerotic vascular endothelial injury. Cell Death Discov., 2021, 7(1), 235.
[http://dx.doi.org/10.1038/s41420-021-00610-0] [PMID: 34493702]
[79]
Li, W.; Feng, G.; Gauthier, J.M.; Lokshina, I.; Higashikubo, R.; Evans, S.; Liu, X.; Hassan, A.; Tanaka, S.; Cicka, M.; Hsiao, H.M.; Ruiz-Perez, D.; Bredemeyer, A.; Gross, R.W.; Mann, D.L.; Tyurina, Y.Y.; Gelman, A.E.; Kagan, V.E.; Linkermann, A.; Lavine, K.J.; Kreisel, D. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J. Clin. Invest., 2019, 129(6), 2293-2304.
[http://dx.doi.org/10.1172/JCI126428] [PMID: 30830879]
[80]
Li, W.; Li, W.; Leng, Y.; Xiong, Y.; Xia, Z. Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol., 2020, 39(2), 210-225.
[http://dx.doi.org/10.1089/dna.2019.5097] [PMID: 31809190]
[81]
Tang, L.J.; Luo, X.J.; Tu, H.; Chen, H.; Xiong, X.M.; Li, N.S.; Peng, J. Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(2), 401-410.
[http://dx.doi.org/10.1007/s00210-020-01932-z] [PMID: 32621060]
[82]
Yang, W.; Liu, X.; Song, C.; Ji, S.; Yang, J.; Liu, Y.; You, J.; Zhang, J.; Huang, S.; Cheng, W.; Shao, Z.; Li, L.; Yang, S. Structure-activity relationship studies of phenothiazine derivatives as a new class of ferroptosis inhibitors together with the therapeutic effect in an ischemic stroke model. Eur. J. Med. Chem., 2021, 209, 112842.
[http://dx.doi.org/10.1016/j.ejmech.2020.112842] [PMID: 33065375]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy