Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Exogenous Enzymes in Cheese Making: An Overview

Author(s): Emilia Caputo, Carlos Alberto Meinardi and Luigi Mandrich*

Volume 18, Issue 5, 2022

Published on: 06 April, 2022

Page: [487 - 497] Pages: 11

DOI: 10.2174/1573401318666220218111515

Price: $65

Open Access Journals Promotions 2
Abstract

The flavour in mature cheese results from a complex series of biochemical events that occur in the curd during ripening. More than 500 varieties of cheese are produced in the world, and each of them possesses its typical sensory characteristics. Flavour depends on milk variety, starter bacteria used in cheese-making and ripening.

Amino acids and Free Fatty Acids (FFA) act mainly as precursors of a series of catabolic reactions, still not well understood. These reactions lead to the production of aroma compounds such as esters, fatty acids, aldehydes, alcohols, ketones, hydrocarbons, lactones, and sulphur.

Enzymes involved in all these processes are derived from milk, Lactic Acid Bacteria (LAB), Non-Starter Lactic Acid Bacteria (NSLAB), rennet, or fungi. In cheese industrial production, the milk pasteurization process leads to the removal of endogenous bacteria; therefore it is necessary to add exogenous enzymes to enrich and standardize cheeses flavour.

Here, we reviewed some exogenous enzymes used in industrial cheeses production or which have interesting potential in cheese making and ripening.

Keywords: Cheese making enzymes, flavour formation in cheese, cheese ripening, Lactic Acid Bacteria (LAB), Non-Starter Lactic Acid Bacteria (NSLAB), EST2 from Alicyclobacillus acidocaldarius in lipolysis.

Graphical Abstract
[1]
Rai AK, Kumari R, Sanjukta S, Sahoo D. Production of bioactive protein hydrolysate using the yeasts isolated from soft chhurpi. Bioresour Technol 2016; 219: 239-45.
[http://dx.doi.org/10.1016/j.biortech.2016.07.129] [PMID: 27494105]
[2]
Rosa DD, Dias MMS. Grześ kowiak LM, Reis SA, Conceição LL, Peluzio MDCG. Milk kefir: Nutritional, microbiological and health benefits. Nutr Res Rev 2017; 30(1): 82-96.
[http://dx.doi.org/10.1017/S0954422416000275] [PMID: 28222814]
[3]
Leksir C, Boudalia S, Moujahed N, Chemmam M. Traditional dairy products in Algeria: Case of Klila cheese. J Ethn Foods 2019; 6: 7.
[4]
Dunne J, Evershed RP, Salque M, et al. First dairying in green Saharan Africa in the fifth millennium BC. Nature 2012; 486(7403): 390-4.
[http://dx.doi.org/10.1038/nature11186] [PMID: 22722200]
[5]
Salque M, Bogucki PI, Pyzel J, et al. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 2013; 493(7433): 522-5.
[http://dx.doi.org/10.1038/nature11698] [PMID: 23235824]
[6]
Yang Y, Shevchenko A, Knaust A, et al. Proteomics evidence for kefir dairy in Early Bronze Age China. J Archaeol Sci 2014; 45: 178-86.
[http://dx.doi.org/10.1016/j.jas.2014.02.005]
[7]
Greco E, El-Aguizy O, Ali MF, et al. Proteomic analyses on an ancient Egyptian cheese and biomolecular evidence of brucellosis. Anal Chem 2018; 90(16): 9673-6.
[http://dx.doi.org/10.1021/acs.analchem.8b02535] [PMID: 30044608]
[8]
Caramia G, Losi G, Frega N, et al. Milk and butter. From the Neolithic to the current nutritional aspects. Pediatr Med Chir 2012; 34(6): 266-82.
[http://dx.doi.org/10.4081/pmc.2012.51] [PMID: 24364133]
[9]
Fox PF, McSweeney PLH. Cheese: An overview Cheese: Chemistry, Physics and Microbiology. Cambridge, Massachusetts: Academic Press 2004; pp. 1-18.
[http://dx.doi.org/10.1016/S1874-558X(04)80060-5]
[10]
Johnson MEA. 100-Year Review: Cheese production and quality. J Dairy Sci 2017; 100(12): 9952-65.
[http://dx.doi.org/10.3168/jds.2017-12979] [PMID: 29153182]
[11]
Robinson RK, Wilbey RA. Cheese-making practice. 3rd ed. Dordrecht: Kluwer Academic 1998.
[12]
Stocco G, Cipolat-Gotet C, Cecchinato A, Calamari L, Bittante G. Milk skimming, heating, acidification, lysozyme, and rennet affect the pattern, repeatability, and predictability of milk coagulation properties and of curd-firming model parameters: A case study of Grana Padano. J Dairy Sci 2015; 98(8): 5052-67.
[http://dx.doi.org/10.3168/jds.2014-9146] [PMID: 26051315]
[13]
Kethireddipalli P, Hill AR. Rennet coagulation and cheese making properties of thermally processed milk: Overview and recent developments. J Agric Food Chem 2015; 63(43): 9389-403.
[http://dx.doi.org/10.1021/jf504167v] [PMID: 25607716]
[14]
Vignolles ML, Jeantet R, Lopez C, Schuck P. Free fat, surface fat, and dairy powders: Interactions between process and product. A review. Lait 2007; 87: 187-236.
[http://dx.doi.org/10.1051/lait:2007010]
[15]
Bava L, Bacenetti J, Gislon G, et al. Impact assessment of traditional food manufacturing: The case of Grana Padano cheese. Sci Total Environ 2018; 626: 1200-9.
[http://dx.doi.org/10.1016/j.scitotenv.2018.01.143] [PMID: 29898527]
[16]
Mayo B, Rodríguez J, Vázquez L, Flórez AB. Microbial interactions within the cheese ecosystem and their application to improve quality and safety. Foods 2021; 10(3): 602-30.
[http://dx.doi.org/10.3390/foods10030602] [PMID: 33809159]
[17]
Settanni L, Moschetti G. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol 2010; 27(6): 691-7.
[http://dx.doi.org/10.1016/j.fm.2010.05.023] [PMID: 20630311]
[18]
Castellano P, Pérez Ibarreche M, Blanco Massani M, Fontana C, Vignolo GM. Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: A focus on meat ecosystems and industrial environments. Microorganisms 2017; 5(3): 38-63.
[http://dx.doi.org/10.3390/microorganisms5030038] [PMID: 28696370]
[19]
Campbell RE, Drake MA. The effect of native and non-native enzymes on the flavor of dried ingredients. J Dairy Sci 2013; 96(8): 4773-83.
[http://dx.doi.org/10.3168/jds.2013-6598] [PMID: 23769377]
[20]
Khan U, Selamoglu Z. Use of enzymes in dairy industry: A review of current progress. Arch Razi Inst 2020; 75(1): 131-6.
[PMID: 32292011]
[21]
Neelakantan S, Mohanty AK, Kaushik M, Kaushik JK. Production and use of microbial enzymes for dairy processing. Curr Sci 1999; 77(1): 143-8.
[22]
Ben Amira A, Besbes S, Attia H, Blecker C. Milk-clotting properties of plant rennets and their enzymatic, rheological, and sensory role in cheese making: A review. Int J Food Prop 2017; 20(sup1): S76-93.
[23]
Kumar A, Grover S, Sharma J, Batish VK. Chymosin and other milk coagulants: Sources and biotechnological interventions. Crit Rev Biotechnol 2010; 30(4): 243-58.
[http://dx.doi.org/10.3109/07388551.2010.483459] [PMID: 20524840]
[24]
Nishimori K, Kawaguchi Y, Hidaka M, Uozumi T, Beppu T. Expression of cloned calf prochymosin gene sequence in Escherichia coli. Gene 1982; 19(3): 337-44.
[http://dx.doi.org/10.1016/0378-1119(82)90024-5] [PMID: 6295885]
[25]
Foltman B. Cheese-chemistry, physics and microbiology-general aspects. 2nd ed. London: Chapman & Hall 1993; Vol. 1: pp. 37-68.
[http://dx.doi.org/10.1007/978-1-4615-2650-6_2]
[26]
Meisel H. Characterization of rennet preparations produced by genetic engineering in comparison to calf rennet. 2. Results. Milchwissenschaft 1988; 43: 71-5.
[27]
Kawaguchi Y, Kosugi S, Sasaki K, Uozumi T, Beppu T. Production of chymosin in Escherichia coli cells and its enzymatic properties. Agric Biol Chem 1987; 51: 1871-7.
[http://dx.doi.org/10.1271/bbb1961.51.1871]
[28]
Joutsjoki V, Luoma S, Tamminen M, Kilpi M, Johansen E, Palva A. Recombinant Lactococcus starters as a potential source of additional peptidolytic activity in cheese ripening. J Appl Microbiol 2002; 92(6): 1159-66.
[http://dx.doi.org/10.1046/j.1365-2672.2002.01652.x] [PMID: 12010556]
[29]
Bansal N, Drake MA, Piraino P, et al. Suitability of recombinant camel (Camelus dromedarius) chymosin as a coagulant for Cheddar cheese. Int Dairy J 2009; 19(9): 510-7.
[http://dx.doi.org/10.1016/j.idairyj.2009.03.010]
[30]
Al-Zoreky NS, Almathen FS. Using recombinant camel chymosin to make white soft cheese from camel milk. Food Chem 2021; 337127994
[http://dx.doi.org/10.1016/j.foodchem.2020.127994] [PMID: 32919273]
[31]
Alihanğlu S, Ektiren D, Akbulut Çakır Ç, Vardin H, Karaaslan A, Karaaslan M. Effect of Oryctolagus cuniculus (rabbit) rennet on the texture, rheology, and sensory properties of white cheese. Food Sci Nutr 2018; 6(4): 1100-8.
[http://dx.doi.org/10.1002/fsn3.649] [PMID: 29983974]
[32]
Morellon-Sterling R, El-Siar H, Tavano OL, Berenguer-Murcia Á, Fernández-Lafuente R. Ficin: A protease extract with relevance in biotechnology and biocatalysis. Int J Biol Macromol 2020; 162: 394-404.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.144] [PMID: 32574740]
[33]
Woychik JH, Holsinger VH. Use of lactase in the manufacture of dairy products.In: Ory RL, Angelo AJ, Eds Enzyme in Food and Beverage Processing Washington DC, USA: ACS Symp Series. 1977; 47: pp. 67-79.
[http://dx.doi.org/10.1021/bk-1977-0047.ch005]
[34]
Dutra Rosolen M, Gennari A, Volpato G, Volken de Souza CF. Lactose hydrolysis in milk and dairy whey using microbial β-. Galactosidades Enzyme Res 2015; 2015806240
[35]
Hirvi Y, Griffiths MW. Milk catalase activity as an indicator of thermization treatments used in the manufacture of cheddar cheese. J Dairy Sci 1998; 81(2): 338-45.
[http://dx.doi.org/10.3168/jds.S0022-0302(98)75582-1] [PMID: 9532488]
[36]
Kaushal J, Mehandia S, Singh G, Raina A, Arya SK. Catalase enzyme: Application in bioremediation and food industry. Biocatal Agric Biotechnol 2018; 16: 192-9.
[http://dx.doi.org/10.1016/j.bcab.2018.07.035]
[37]
Battistotti B, Corradini C. Cheese: Chemistry, Physics and Microbiology. London: Chapman & Hall 1993; 2: 221-43.
[38]
Collins YF, McSweeney PLH, Wilkinson MG. Lipolysis and free fatty acid catabolism in cheese: A review of current knowledge. Int Dairy J 2003; 13: 841-66.
[http://dx.doi.org/10.1016/S0958-6946(03)00109-2]
[39]
Spelbrink RE, Lensing H, Egmond MR, Giuseppin ML. Potato patatin generates short-chain fatty acids from milk fat that contribute to flavour development in cheese ripening. Appl Biochem Biotechnol 2015; 176(1): 231-43.
[http://dx.doi.org/10.1007/s12010-015-1569-3] [PMID: 25809992]
[40]
Gibbs BF, Kermasha S, Alli I, Mulligan CN. Encapsulation in the food industry: A review. Int J Food Sci Nutr 1999; 50(3): 213-24.
[http://dx.doi.org/10.1080/096374899101256] [PMID: 10627837]
[41]
El Soda M. Accelerated cheese ripening Encyclopedia of Dairy Science. Cornwall, U.K.: Academic Press (Pub) 2003; pp. 327-8.
[42]
Upadhyay V, Sousa M, Ravn P, Israelsen H, Kelly A, McSweeney PLH. Use of exogenous streptokinase to accelerate proteolysis in Cheddar cheese. Lait 2004; 84: 527-38.
[http://dx.doi.org/10.1051/lait:2004022]
[43]
Thierry A, Collins YF, Abeijon Mukdsi MC, McSweeney PLH, Wilkinson MG, Spinnler HE. Lipolysis and metabolism of fatty acids in cheese Cheese: Chemistry, physics and microbiology 4. Cambridge, Massachusetts, USA: Academic Press-Elsevier 2017; p. 1302.
[44]
Deeth H. Lipoprotein lipase and lipolysis in milk. Int Dairy J 2006; 16: 555-62.
[http://dx.doi.org/10.1016/j.idairyj.2005.08.011]
[45]
Nelson JH, Jensen RG, Pitas RE. Pregastric esterase and other oral lipases-a review. J Dairy Sci 1977; 60(3): 327-62.
[http://dx.doi.org/10.3168/jds.S0022-0302(77)83873-3] [PMID: 321489]
[46]
Hickey DK, Kilcawley KN, Beresford TP, Wilkinson MG. Starter bacteria are the prime agents of lipolysis in cheddar cheese. J Agric Food Chem 2006; 54(21): 8229-35.
[http://dx.doi.org/10.1021/jf060819h] [PMID: 17032033]
[47]
McSweeney PLH, Sousa MJ. Biochemical pathways for the production of flavour compounds in cheese during ripening: A review. Lait 2000; 80(3): 293-324.
[http://dx.doi.org/10.1051/lait:2000127]
[48]
Hernández I, de Renobales M, Virto M, et al. Assessment of industrial lipases for flavour development in commercial Idiazabal (ewe’s raw milk) cheese. Enzyme Microb Technol 2005; 36: 870-9.
[http://dx.doi.org/10.1016/j.enzmictec.2004.12.032]
[49]
Yvon M, Rijnen L. Cheese flavour formation by amino acid catabolism. Int Dairy J 2001; 11: 185-201.
[http://dx.doi.org/10.1016/S0958-6946(01)00049-8]
[50]
Ianni A, Bennato F, Martino C, Grotta L, Martino G. Volatile flavour compounds in cheese as affected by ruminant diet. Molecules 2020; 25(3): 461.
[http://dx.doi.org/10.3390/molecules25030461] [PMID: 31979062]
[51]
Harboe MK. Use of lipases in cheese-making. Bull Int Dairy Fed 1994; 294: 11-6.
[52]
Kilara A. Lipases encyclopedia of dairy science. Cornowall, UK: Academic Press 2003; pp. 914-8.
[53]
Mandrich L, Manco G, Rossi M, et al. Thermophilic esterase EST2 from Alyciclobacillus acidocaldarius acts in milk and cheese model. Appl Environ Microbiol 2006; 72: 3191-7.
[http://dx.doi.org/10.1128/AEM.72.5.3191-3197.2006] [PMID: 16672457]
[54]
De Luca V, Perotti MC, Wolf IV, Meinardi CA, Mandrich L. The addition of the thermophilic esterase EST2 influences the fatty acids and volatile compound profiles of semi-hard cheeses. Food Sci Technol (Campinas) 2019; 39(3): 711-20.
[http://dx.doi.org/10.1590/fst.06018]
[55]
Manco G, Adinolfi E, Pisani FM, Ottolina G, Carrea G, Rossi M. Overexpression and properties of a new thermophilic and thermostable esterase from Bacillus acidocaldarius with sequence similarity to hormone-sensitive lipase subfamily. Biochem J 1998; 332(Pt 1): 203-12.
[http://dx.doi.org/10.1042/bj3320203] [PMID: 9576869]
[56]
Manco G, Mandrich L, Rossi M. Residues at the active site of the esterase 2 from Alicyclobacillus acidocaldarius involved in substrate specificity and catalytic activity at high temperature. J Biol Chem 2001; 276(40): 37482-90.
[http://dx.doi.org/10.1074/jbc.M103017200] [PMID: 11447219]
[57]
De Simone G, Galdiero S, Manco G, Lang D, Rossi M, Pedone C. A snapshot of a transition state analogue of a novel thermophilic esterase belonging to the subfamily of mammalian hormone-sensitive lipase. J Mol Biol 2000; 303(5): 761-71.
[http://dx.doi.org/10.1006/jmbi.2000.4195] [PMID: 11061974]
[58]
Nardi M, Fiez-Vandal C, Tailliez P, Monnet V. The EstA esterase is responsible for the main capacity of Lactococcus lactis to synthesize short chain fatty acid esters in vitro. J Appl Microbiol 2002; 93(6): 994-1002.
[http://dx.doi.org/10.1046/j.1365-2672.2002.01793.x] [PMID: 12452955]
[59]
Molimard P, Spinnler HE. Compounds involved in the flavour of surface Mold-ripened cheeses: Origins and properties. J Dairy Sci 1996; 79: 169-84.
[http://dx.doi.org/10.3168/jds.S0022-0302(96)76348-8]
[60]
Curioni PMG, Bosset JO. Key odorant in various cheeses type as determinant by gas chromatography-olfactometry. Int Dairy J 2002; 12: 959-84.
[http://dx.doi.org/10.1016/S0958-6946(02)00124-3]
[61]
Frank DC, Owen CM, Patterson J. Solid Phase Microextraction (SPME) combined with gas chromatography and olfactometry-mass spectrometry for characterization of cheese aroma compounds. Lebensm Wiss Technol 2004; 37: 139-54.
[http://dx.doi.org/10.1016/S0023-6438(03)00144-0]
[62]
Sablé S, Cottenceau G. Current knowledge of soft cheeses flavor and related compounds. J Agric Food Chem 1999; 47(12): 4825-36.
[http://dx.doi.org/10.1021/jf990414f] [PMID: 10606538]
[63]
Ziino M, Condurso C, Romeo V, Giuffrida D, Verzura A. Characterization of “Provola dei Nebridi” a typical Sicilian cheese, by volatile analysis using SPME-GC/MS. Int Dairy J 2005; 15: 585-93.
[http://dx.doi.org/10.1016/j.idairyj.2004.07.024]
[64]
Barbieri G, Bolzoni L, Careri M, et al. Study of the volatile fraction in Parmesan cheese. J Agric Food Chem 1994; 42: 1170-6.
[http://dx.doi.org/10.1021/jf00041a023]
[65]
Fenster KM, Rankin SA, Steele JL. Accumulation of short n-chain ethyl esters by esterases of lactic acid bacteria under conditions simulating ripening Parmesan cheese. J Dairy Sci 2003; 86(9): 2818-25.
[http://dx.doi.org/10.3168/jds.S0022-0302(03)73879-X] [PMID: 14507018]
[66]
Liu S-Q, Holland R, Crow VL. Esters and their biosynthesis in fermented dairy products. Int Dairy J 2004; 14: 923-45.
[http://dx.doi.org/10.1016/j.idairyj.2004.02.010]
[67]
Holland R, Liu S, Crow V, et al. Esterases of lactic acid bacteria and cheese flavour: Milk fat hydrolysis, alcoholysis and esterification. Int Dairy J 2005; 15: 711-8.
[http://dx.doi.org/10.1016/j.idairyj.2004.09.012]
[68]
Moio L, Piombino P, Addeo F. Odour-impact compounds of Gorgonzola cheese. J Dairy Res 2000; 67(2): 273-85.
[http://dx.doi.org/10.1017/S0022029900004106] [PMID: 10840681]
[69]
Qian M, Nelson C, Bloomer S. Evaluation of fat-derived aroma compounds in blue cheese by dynamic headspace GC/olfactometry-MS. J Am Oil Chem Soc 2002; 79: 663-7.
[http://dx.doi.org/10.1007/s11746-002-0540-4]
[70]
Qian M, Reineccius G. Identification of aroma compounds in Parmigiano-Reggiano cheese by gas chromatography/olfactometry. J Dairy Sci 2002; 85(6): 1362-9.
[http://dx.doi.org/10.3168/jds.S0022-0302(02)74202-1] [PMID: 12146465]
[71]
Addis M, Cabiddu A, Pinna G, et al. Milk and cheese fatty acid composition in sheep fed Mediterranean forages with reference to conjugated linoleic acid cis-9,trans-11. J Dairy Sci 2005; 88(10): 3443-54.
[http://dx.doi.org/10.3168/jds.S0022-0302(05)73028-9] [PMID: 16162517]
[72]
Shah MA, Mir SA, Paray MA. Plant protease as milk-clotting enzymes in cheese-making: A review. Dairy Sci Technol 2014; 94: 5-16.
[http://dx.doi.org/10.1007/s13594-013-0144-3]
[73]
Nishimori K, Shimizu N, Kawaguchi Y, Hidaka M, Uozumi T, Beppu T. Expression of cloned calf prochymosin cDNA under control of the tryptophan promoter. Gene 1984; 29(1-2): 41-9.
[http://dx.doi.org/10.1016/0378-1119(84)90164-1] [PMID: 6092230]
[74]
Fox PF, Lucey JA, Cogan TM. Glycolysis and related reactions during cheese manufacture and ripening. Crit Rev Food Sci Nutr 1990; 29(4): 237-53.
[http://dx.doi.org/10.1080/10408399009527526] [PMID: 2257078]
[75]
Campbell RE, Gerard PD, Drake MA. Characterizing endogenous and exogenous peroxidase activity for bleaching of fluid whey and retentate. J Dairy Sci 2014; 97(3): 1225-32.
[http://dx.doi.org/10.3168/jds.2013-7236] [PMID: 24440264]
[76]
Rani S, Jagtap S. Acceleration of Swiss cheese ripening by microbial lipase without affecting its quality characteristics. J Food Sci Technol 2019; 56(1): 497-506.
[http://dx.doi.org/10.1007/s13197-018-3482-6] [PMID: 30728594]
[77]
Najafi MBH, Miri MA. Production and evaluation of enzyme-modified lighvan cheese using different levels of commercial enzymes. Int J Clin Microbiol Biochem Technol 2020; 3: 011-6.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy