Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Current Perspective of Synthesis of Medicinally Relevant Benzothiazole based Molecules: Potential for Antimicrobial and Anti-Inflammatory Activities

Author(s): Kamini Gupta*, Anup Kumar Sirbaiya*, Vishal Kumar and Mohammad Azizur Rahman

Volume 22, Issue 14, 2022

Published on: 06 April, 2022

Page: [1895 - 1935] Pages: 41

DOI: 10.2174/1389557522666220217101805

Price: $65

Abstract

The therapeutic potential of the majority of the marketed drugs is due to the presence of a heterocyclic nucleus, which constitutes a huge role in the field of medicinal chemistry. These heterocyclic scaffolds could act as a template in order to design potential therapeutic agents against several diseases. Benzothiazole scaffold is one of the influential heteroaromatic rings in the field of medicinal chemistry owing to its extensive pharmacological features. Herein, we have focused on the synthesis of benzothiazole-based medicinal molecules, which possess antimicrobial and anti-inflammatory activities. This review covers a systematic description of synthetic routes for biologically relevant benzothiazole derivatives in the last five years. The main aim of this study is to show the diversification of benzothiazole-based molecules into their pharmacologically more active derivatives. This review's synthetic protocols include metal-free, metal-catalyzed, and metal precursor azo dyes strategies for the development of benzothiazole derived bioactive compounds. The discussion under the various headings covers synthetic schemes and biological activities of the most potent molecules in the form of minimum inhibitory concentration.

Keywords: Benzothiazole, heterocyclic scaffolds, antimicrobial, anti-inflammatory activity, synthetic method, COX.

« Previous
Graphical Abstract
[1]
Kraljević, T.G.; Harej, A.; Sedić, M.; Pavelić, S.K.; Stepanić, V.; Drenjančević, D.; Talapko, J.; Raić-Malić, S. Synthesis, in vitro anticancer and antibacterial activities and in silico studies of new 4-substituted 1,2,3-triazole-coumarin hybrids. Eur. J. Med. Chem., 2016, 124, 794-808.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.062] [PMID: 27639370]
[2]
Horton, D.A.; Bourne, G.T.; Smythe, M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev., 2003, 103(3), 893-930.
[http://dx.doi.org/10.1021/cr020033s] [PMID: 12630855]
[3]
Gao, X.; Liu, J.; Zuo, X.; Feng, X.; Gao, Y. Recent advances in synthesis of benzothiazole compounds related to green chemistry. Molecules, 2020, 25(7), 1675.
[http://dx.doi.org/10.3390/molecules25071675] [PMID: 32260500]
[4]
Dolle, R.E. Discovery of enzyme inhibitors through combinatorial chemistry. Mol. Divers., 1997, 2(4), 223-236.
[http://dx.doi.org/10.1007/BF01715638] [PMID: 9249758]
[5]
Gunawardana, G.P.; Koehn, F.E.; Lee, A.Y.; Clardy, J.; He, H.Y.; Faulkner, D.J. Pyridoacridine alkaloids from deep water marine sponges of the family Pachastrellidae : structure revision of dercitin and related compounds and correlation with the Kuanoniamines. J. Org. Chem., 1992, 57, 1523-1526.
[http://dx.doi.org/10.1021/jo00031a035]
[6]
Shaista, A.; Amrita, P. Benzothiazole - A magic molecule. Int. J. Pharm. Sci. Res., 2017, 8(12), 4909-4929.
[7]
Hegde, M.; Vartak, S.V.; Kavitha, C.V.; Ananda, H.; Prasanna, D.S.; Gopalakrishnan, V.; Choudhary, B.; Rangappa, K.S.; Raghavan, S.C. A benzothiazole derivative (5g) induces DNA damage and potent G2/M arrest in cancer cells. Sci. Rep., 2017, 7(1), 2533.
[http://dx.doi.org/10.1038/s41598-017-02489-3] [PMID: 28566733]
[8]
Kini, S.; Swain, S.P.; Gandhi, A.M. Synthesis and evaluation of novel benzothiazole derivatives against human cervical cancer cell lines. Indian J. Pharm. Sci., 2007, 69, 46-50.
[http://dx.doi.org/10.4103/0250-474X.32107]
[9]
Emami, S.; Dadashpour, S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem., 2015, 102, 611-630.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.033] [PMID: 26318068]
[10]
Leong, C.O.; Gaskell, M.; Martin, E.A.; Heydon, R.T.; Farmer, P.B.; Bibby, M.C.; Cooper, P.A.; Double, J.A.; Bradshaw, T.D.; Stevens, M.F.G. Antitumour 2-(4-aminophenyl)benzothiazoles generate DNA adducts in sensitive tumour cells in vitro and in vivo. Br. J. Cancer, 2003, 88(3), 470-477.
[http://dx.doi.org/10.1038/sj.bjc.6600719] [PMID: 12569393]
[11]
Bradshaw, T.D.; Chua, M.S.; Orr, S.; Matthews, C.S.; Stevens, M.F.G. Mechanisms of acquired resistance to 2-(4-aminophenyl)benzothiazole (CJM 126, NSC 34445). Br. J. Cancer, 2000, 83(2), 270-277.
[http://dx.doi.org/10.1054/bjoc.2000.1231] [PMID: 10901382]
[12]
Gabr, M.T.; El-Gohary, N.S.; El-Bendary, E.R.; El-Kerdawy, M.M.; Ni, N. Synthesis, in vitro antitumor activity and molecular modeling studies of a new series of benzothiazole Schiff bases. Eur. J. Med. Chem., 2014, 85, 576-592.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.097] [PMID: 25127150]
[13]
Amir, M.; Asif, S.; Ali, I.; Hassan, M.Z. Synthesis of benzothiazole derivatives having acetamido and carbothioamido pharmacophore as anticonvulsant agents. Med. Chem. Res., 2012, 21, 2661-2670.
[http://dx.doi.org/10.1007/s00044-011-9791-1]
[14]
Suresh, C.H.; Rao, J.V.; Jayaveera, K.N.; Subudhi, S.K. Synthesis and anthelmintic activity of 3-(2-hydrozinobenzothiazole)- substituted indole-2-one. Int. Res. J. Pharm., 2011, 2, 257-261.
[15]
Thakkar, S.S.; Thakor, P.; Ray, A.; Doshi, H.; Thakkar, V.R. Benzothiazole analogues: Synthesis, characterization, MO calculations with PM6 and DFT, in silico studies and in vitro antimalarial as DHFR inhibitors and antimicrobial activities. Bioorg. Med. Chem., 2017, 25(20), 5396-5406.
[http://dx.doi.org/10.1016/j.bmc.2017.07.057] [PMID: 28789907]
[16]
Suresh, A.J.; Bharathi, K.; Surya, P.R. Design, synthesis, characterization and biological evaluation of some novel benzothiazole derivatives as anti tubercular agents targeting glutamine synthetase-I. J. Pharm. Chem. Biol. Sci., 2017, 5, 312-319.
[17]
Gollapalli, M.; Taha, M.; Javid, M.T.; Almandil, N.B.; Rahim, F.; Wadood, A.; Mosaddik, A.; Ibrahim, M.; Alqahtani, M.A.; Bamarouf, Y.A. Synthesis of benzothiazole derivatives as a potent α-glucosidase inhibitor. Bioorg. Chem., 2019, 85, 33-48.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.021] [PMID: 30599411]
[18]
Ramaiah, M.J.; Karthikeyan, D.; Mathavan, S.; Yamajala, R.B.R.D.; Ramachandran, S.; Vasavi, P.J.; Chandana, N.V. Synthesis, in vitro and structural aspects of benzothiazole analogs as anti-oxidants and potential neuroprotective agents. Environ. Toxicol. Pharmacol., 2020, 79, 103415.
[http://dx.doi.org/10.1016/j.etap.2020.103415] [PMID: 32470609]
[19]
Pejchal, V.; Pejchalova, M.; Ruzickova, Z. Synthesis, structural characterization, antimicrobial and antifungal activity of substituted 6-fluorobenzo[d]thiazole amides. Med. Chem. Res., 2015, 24, 3660-3670.
[http://dx.doi.org/10.1007/s00044-015-1410-0]
[20]
Haroun, M.; Tratrat, C.; Kositsi, K.; Tsolaki, E.; Petrou, A.; Aldhubiab, B.; Attimarad, M.; Harsha, S.; Geronikaki, A.; Venugopala, K.N.; Elsewedy, H.S.; Sokovic, M.; Glamoclija, J.; Ciric, A. New benzothiazole-based thiazolidinones as potent antimicrobial agents. Design synthesis and biological evaluation. Curr. Top. Med. Chem., 2018, 18(1), 75-87.
[http://dx.doi.org/10.2174/1568026618666180206101814] [PMID: 29412109]
[21]
Abbas, E.M.H.; Amin, K.M.; El-Hamouly, W.S.; Dawood, D.H.; Abdalla, M.M. Synthesis, anti-inflammatory and antinociceptive activity of some novel benzothiazole derivatives. Res. Chem. Intermed., 2015, 41, 2537-2555.
[http://dx.doi.org/10.1007/s11164-013-1367-x]
[22]
Kumar, G.; Singh, N.P. Synthesis, anti-inflammatory and analgesic evaluation of thiazole/oxazole substituted benzothiazole derivatives. Bioorg. Chem., 2021, 107, 104608.
[http://dx.doi.org/10.1016/j.bioorg.2020.104608] [PMID: 33465668]
[23]
Zhao, Y.; Cui, K.; Xu, C.; Wang, Q.; Wang, Y.; Zhang, Z.; Liu, F.; Mu, W. Proteomic profile of the Bradysia odoriphaga in response to the microbial secondary metabolite benzothiazole. Sci. Rep., 2016, 6, 37730.
[http://dx.doi.org/10.1038/srep37730] [PMID: 27883048]
[24]
Hunger, K.; Gregory, P.; Miederer, P.; Berneth, H.; Heid, C.; Mennicke, W. Important Chemical Chromophores of Dye Classes. Industrial Dyes: Chemistry, Properties, Applications; Academic Press: San Diego, 2002.
[25]
Gaylord, N.G.; Bauman, R.P. Advances in spectroscopy. Interscience; Thompson, H.W., Ed.; 483.New York, 1961, II, p.
[26]
Nurioglu, A.G.; Akpinar, H.; Sendur, M.; Toppare, L. Multichromic benzimidazole‐containing polymers: Comparison of donor and acceptor unit effects. J. Polym. Sci. Part A, 2012, 50, 3499-3506.
[http://dx.doi.org/10.1002/pola.26144]
[27]
Keri, R.S.; Patil, M.R.; Patil, S.A.; Budagumpi, S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem., 2015, 89, 207-251.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.059] [PMID: 25462241]
[28]
Azam, M.A.; Suresh, B. Biological activities of 2-mercaptobenzothiazole derivatives: A review. Sci. Pharm., 2012, 80(4), 789-823.
[http://dx.doi.org/10.3797/scipharm.1204-27] [PMID: 23264933]
[29]
Si, W.J.; Chen, M.; Wang, X.L.; Wang, M.Q.; Jiao, J.; Fu, X.C.; Yang, C.L. Synthesis and insecticidal activity of novel benzothiazole derivatives containing the coumarin moiety. Arch. Org. Chem., 2018, 8, 86-99.
[http://dx.doi.org/10.24820/ark.5550190.p010.664]
[30]
Görlach, J.; Volrath, S.; Knauf-Beiter, G.; Hengy, G.; Beckhove, U.; Kogel, K.H.; Oostendorp, M.; Staub, T.; Ward, E.; Kessmann, H.; Ryals, J. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell, 1996, 8(4), 629-643.
[PMID: 8624439]
[31]
Parton, R.L.; Stegman, D.A.; Williams, K.W.; Chand, V.L. Benzothiazole, benzoselenazole or benzooxazole sensitizers for photographic films. U.S. Patent 5516628 A 1995.
[32]
Gan, C.; Zhou, L.; Zhao, Z.; Wang, H. Benzothiazole Schiff-bases as potential imaging agents for b-amyloid plaques in Alzheimer’s disease. Med. Chem. Res., 2013, 22, 4069-4074.
[http://dx.doi.org/10.1007/s00044-012-0416-0]
[33]
Antimicrobial resistance: Global report on surveillance: World Health Organization, Geneva, Switzerland. Available from: https://www.who.int/drugresistance/documents/surveillancereport/en/ (Accessed April, 2014).
[34]
Ali, R.; Siddiqui, N. Biological aspects of emerging benzothiazoles: A short review. J. Chem., 2013, 2013, 345198.
[http://dx.doi.org/10.1155/2013/345198]
[35]
Přikryl, J.; Cerny, M.; Bělohlavová, H.; Macháček, V. Structure of azo coupling products of 5-nitro-2,1-benzisothiazole-3-diazonium hydrogensulphate with aromatic amines. Dyes Pigments, 2007, 72, 392-402.
[http://dx.doi.org/10.1016/j.dyepig.2005.10.003]
[36]
Kaur, H.; Kumar, S.; Singh, I.; Saxena, K.K.; Kumar, A. Synthesis, characterization and biological activity of various substituted benzothiazole derivatives. Dig. J. Nanomater. Biostruct., 2010, 5, 67-76.
[37]
Edwards, S.H. Chemical mediators of inflammation. MSD Manual Veterinary Manual, Available from: https://www.msdvetmanual.com/pharmacology/inflammation/chemical-mediators-of-inflammation-in-animals?autoredirectid=16870
[38]
Martel-Pelletier, J.; Lajeunesse, D.; Reboul, P.; Pelletier, J.P. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Ann. Rheum. Dis., 2003, 62(6), 501-509.
[http://dx.doi.org/10.1136/ard.62.6.501] [PMID: 12759283]
[39]
Kharbanda, C.; Alam, M.S.; Hamid, H.; Javed, K.; Bano, S.; Dhulap, A.; Ali, Y.; Nazreen, S.; Haider, S. Synthesis and evaluation of pyrazolines bearing benzothiazole as anti-inflammatory agents. Bioorg. Med. Chem., 2014, 22(21), 5804-5812.
[http://dx.doi.org/10.1016/j.bmc.2014.09.028] [PMID: 25311566]
[40]
Antiinflammatory, Wikipedia. Available from: https://en.wikipedia.org/w/index.php?title=Anti-inflammatory&oldid=1006578336 (Accessed 13 February, 2021).
[41]
Ram, V.J.; Sethi, A.; Nath, M.; Pratap, R. Five-membered heterocycles. In:The Chemistry of Heterocycles; Ram, V.J.; Sethi, A.; Nath, M.; Pratap, R., Eds.; Elsevier: Amsterdam, 2019, pp. 149-478.
[42]
Wojciechowska, J.K.; Mrozek, A.; Czylkwski, R.; Gulbas, B.T.; Sener, E.A.; Yalcin, I. Five-membered heterocycles. Part IV: Impact of heteroatom on benzazole aromaticity. J. Mol. Struct., 2007, 839, 125-131.
[http://dx.doi.org/10.1016/j.molstruc.2006.11.023]
[43]
Fan, X.; He, Y.; Wang, Y.; Zhang, X.; Wang, J. A novel and practical synthesis of 2- benzoylbenzothiazoles and 2-benzylbenzothiazoles. Tetrahedron Lett., 2011, 52, 899-902.
[http://dx.doi.org/10.1016/j.tetlet.2010.12.057]
[44]
Khokra, S.L.; Arora, K.; Mehta, H.; Aggarwal, A.; Yadav, M. Common methods to synthesize benzothiazole derivatives and their medicinal significance. Int. J. Pharm. Sci. Res., 2011, 2, 1356-1378.
[45]
Liu, X.; Dong, Z.B. A review on domino condensation/cyclization reactions for the synthesis of 2-substituted 1,3-benzothiazole derivatives. Eur. J. Org. Chem., 2020, 2020(4), 408-419.
[http://dx.doi.org/10.1002/ejoc.201901502]
[46]
Sun, Y.; Jiang, H.; Wu, W.; Zeng, W.; Wu, X. Copper-catalyzed synthesis of substituted benzothiazoles via condensation of 2-aminobenzenethiols with nitriles. Org. Lett., 2013, 15(7), 1598-1601.
[http://dx.doi.org/10.1021/ol400379z] [PMID: 23496117]
[47]
Ma, J.; Shen, X.; Harms, K.; Meggers, E. Expanding the family of bis-cyclometalated chiral-at-metal rhodium(iii) catalysts with a benzothiazole derivative. Dalton Trans., 2016, 45(20), 8320-8323.
[http://dx.doi.org/10.1039/C6DT01063F] [PMID: 27143346]
[48]
Janani, M.; Senejani, M.A.; Isfahani, T.M. An efficient synthesis of benzimidazole and benzothiazole derivatives using a nickel(ii) metal-organic framework. Curr. Org. Synth., 2020, 17(2), 109-116.
[http://dx.doi.org/10.2174/1570179417666200117110758] [PMID: 32003698]
[49]
Wang, Z.; Ng, S.W.B.; Jiang, L.; Leong, W.J.; Zhao, J.; Hor, T.S.A.; Cyclopentadienyl Molybdenum, N. II C-Chelating benzothiazole-carbene complexes: Synthesis, structure, and application in cyclooctene epoxidation catalysis. Organometallics, 2014, 33, 2457-2466.
[http://dx.doi.org/10.1021/om401128z]
[50]
Elagab, H.A. Zr(IV), Ti(IV) and V(III) complexes of some benzimidazole, benzothiazole, and benzoxazole ligands: Characterization and catalyst efficiency in ethylene polymerization. Turk. J. Chem., 2016, 40, 742-761.
[http://dx.doi.org/10.3906/kim-1512-44]
[51]
Khemnar, A.B.; Bhanage, B.M. Iron catalyzed efficient synthesis of 2-arylbenzothiazoles from benzothiazole and olefins using environmentally benign molecular oxygen as oxidant. RSC Advances, 2014, 4, 8939-8942.
[http://dx.doi.org/10.1039/C3RA46955G]
[52]
Gan, Z.; Li, G.; Yang, X.; Yan, Q.; Xu, G.; Li, G.; Jiang, Y.Y.; Yang, D. Visible-light-induced regioselective cross-dehydrogenative coupling of 2-isothiocyanatonaphthalenes with amines using molecular oxygen. Sci. China Chem., 2020, 63(11), 1652-1658.
[http://dx.doi.org/10.1007/s11426-020-9811-6]
[53]
Zhao, S.; Zhao, L.; Zhang, X.; Liu, C.; Hao, C.; Xie, H.; Sun, B.; Zhao, D.; Cheng, M. Design, synthesis, and structure-activity relationship studies of benzothiazole derivatives as antifungal agents. Eur. J. Med. Chem., 2016, 123, 514-522.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.067] [PMID: 27494168]
[54]
Kukreja, S.; Sidhu, A.; Sharma, V.K. Synthesis of novel 7-fluoro-3-substituted-1,2,4- triazolo[3,4-b]benzothiazoles (FTBs) as potent antifungal agents: Molecular docking and in silico evaluation. Res. Chem. Intermed., 2016, 42, 8329-8344.
[http://dx.doi.org/10.1007/s11164-016-2599-3]
[55]
Padalkar, V.S.; Borse, B.N.; Gupta, V.D.; Phatangare, K.R.; Patil, V.S.; Umape, P.G.; Sekar, N. Synthesis and antimicrobial activity of novel 2-substituted benzimidazole, benzoxazole and benzothiazole derivatives. Arab. J. Chem., 2016, 9, S1125-S1130.
[http://dx.doi.org/10.1016/j.arabjc.2011.12.006]
[56]
Bhat, M.; Belagali, S.L. Guanidinyl benzothiazole derivatives: Synthesis and structure activity relationship studies of a novel series of potential antimicrobial and antioxidants. Res. Chem. Intermed., 2016, 42, 6195-6208.
[http://dx.doi.org/10.1007/s11164-016-2454-6]
[57]
Pejchalová, M.; Havelek, R.; Královec, K.; Růžičková, Z.; Pejchal, V. Novel derivatives of substituted 6-fluorobenzothiazole diamides: Synthesis, antifungal activity and cytotoxicity. Med. Chem. Res., 2017, 26, 1847-1862.
[http://dx.doi.org/10.1007/s00044-017-1894-x]
[58]
Palkar, M.B.; Patil, A.; Hampannavar, G.A.; Shaikh, M.S.; Patel, H.M.; Kanhed, A.M.; Yadav, M.R.; Karpoormath, R.V. Design, synthesis and QSAR studies of 2-aminobenzo[d]thiazolyl substituted pyrazol-5-ones: Novel class of promising antibacterial agents. Med. Chem. Res., 2017, 26, 1969-1987.
[http://dx.doi.org/10.1007/s00044-017-1898-6]
[59]
Ballari, M.S.; Herrera Cano, N.; Lopez, A.G.; Wunderlin, D.A.; Feresín, G.E.; Santiago, A.N. Green synthesis of potential antifungal agents: 2-Benzyl substituted thiobenzoazoles. J. Agric. Food Chem., 2017, 65(47), 10325-10331.
[http://dx.doi.org/10.1021/acs.jafc.7b04130] [PMID: 29099589]
[60]
Suram, D.; Thatha, S.; Venkatapuram, P.; Adivireddy, P. Synthesis and antimicrobial activity of a new class of benzazolyl pyrazoles. J. Heterocycl. Chem., 2017, 54, 3152-3162.
[http://dx.doi.org/10.1002/jhet.2929]
[61]
Subhashini, N.J.P.; Chinthala, S.; Raj, S. Design, synthesis, characterization, and antimicrobial evaluation of novel 2-(3, 5-di methoxy- 4-((1-aryl-1h-1, 2, 3-triazole-4-yl) methoxy) phenyl) benzo[ d]thiazoles. J. Heterocycl. Chem., 2017, 55, 251-257.
[62]
Kumari, B.; Chauhan, K.; Trivedi, J.; Jaiswal, V.; Kanwar, S.S.; Pokharel, Y.R. Benzothiazole-based-bioconjugates with improved antimicrobial, anticancer and antioxidant potential. ChemistrySelect, 2018, 3, 11326-11332.
[http://dx.doi.org/10.1002/slct.201801936]
[63]
Naaz, F.; Srivastava, R.; Singh, A.; Singh, N.; Verma, R.; Singh, V.K.; Singh, R.K. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. Bioorg. Med. Chem., 2018, 26(12), 3414-3428.
[http://dx.doi.org/10.1016/j.bmc.2018.05.015] [PMID: 29778528]
[64]
Mallikarjuna, N.M.; Keshavayya, J.; Ravi, B.N. Synthesis, spectroscopic characterization, antimicrobial, antitubercular and DNA cleavage studies of 2-(1H-indol-3-yldiazenyl)-4, 5, 6, 7-tetrahydro-1, 3-benzothiazole and its metal complexes. J. Mol. Struct., 2018, 1173, 557-566.
[http://dx.doi.org/10.1016/j.molstruc.2018.07.007]
[65]
Chavan, A.P.; Deshpande, R.R.; Borade, N.A.; Shinde, A.; Mhaske, P.C.; Sarkar, D.; Bobade, V.D. Synthesis of new 1,3,4-oxadiazole and benzothiazolylthioether derivatives of 4-arylmethylidene-3-substituted-isoxazol-5(4H)-one as potential antimycobacterial agents. Med. Chem. Res., 2019, 28, 1873-1884.
[http://dx.doi.org/10.1007/s00044-019-02420-7]
[66]
Cheraiet, Z.; Meliani, S.; Nessaib, M.; Hessainia, S.; Boukhari, A.; Djahoudi, A.; Regainia, Z. Scalable synthesis and antibacterial evaluation of 2-(3-(N-(substituted phenyl)sulfamoyl)ureido)benzothiazoles. Arch. Pharm. (Weinheim), 2019, 352(8), e1800341.
[http://dx.doi.org/10.1002/ardp.201800341] [PMID: 31245880]
[67]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Qureshi, S.I.; Chaudhari, H.K.; Sekar, N. Design, synthesis, antimicrobial activity and computational studies of novel azo linked substituted benzimidazole, benzoxazole and benzothiazole derivatives. Comput. Biol. Chem., 2019, 78, 330-337.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.003] [PMID: 30639681]
[68]
Kamal, R.; Kumar, V.; Kumar, R.; Kumar, V.; Sharma, P.C.; Bansal, K.K. Chloramine-T mediated facile one pot synthesis of pyrazolyltriazolobenzothiazole hybrids as potent anti-infective agents. ChemistrySelect, 2019, 4, 9190-9193.
[http://dx.doi.org/10.1002/slct.201901312]
[69]
Fadda, A.A.; Soliman, N.N.; Bayoumy, N.M. Antimicrobial properties of some new synthesized benzothiazole linked carboxamide, acetohydrazide, and sulfonamide systems. J. Heterocycl. Chem., 2019, 56, 2369-2378.
[http://dx.doi.org/10.1002/jhet.3624]
[70]
Mora, S.; Sindhua, S.; Khatria, M.; Singhb, N.; Vasudeva, N.; Panihar, N. Synthesis, type ii diabetes inhibitory activity, and antimicrobial tests of benzothiazole derivatives bridged with indenedione by methylenehydrazone. Russ. J. Gen. Chem., 2019, 89, 1867-1873.
[http://dx.doi.org/10.1134/S1070363219090226]
[71]
Mishra, N.; Gound, S.S.; Mondal, R.; Yadav, R.; Pandey, R. Synthesis, characterization and antimicrobial activities of benzothiazoleimino- benzoic acid ligands and their Co(II), Ni(II), Cu(II), Zn(II) and Cd (II) complexes, 2019, 1, 100006.
[http://dx.doi.org/10.1016/j.rechem.2019.100006]
[72]
Wang, Y.; Li, P.; Jiang, S.; Chen, Y.; Su, S.; He, J.; Chen, M.; Zhang, J.; Xu, W.; He, M.; Xue, W. Synthesis and antibacterial evaluation of novel chalcone derivatives containing a benzothiazole scaffold. Monatsh. Chem., 2019, 150, 1147-1154.
[http://dx.doi.org/10.1007/s00706-019-02399-2]
[73]
Sirgamalla, R.; Kommakula, A.; Konduru, S.; Ponakanti, R.; Devaram, J.; Boda, S. Cupper-catalyzed an efficient synthesis, characterization of 2-substituted benzoxazoles, 2-substituted benzothiazoles derivatives and their anti-fungal activity. Chemical Data Collections, 2020, 27, 100362.
[http://dx.doi.org/10.1016/j.cdc.2020.100362]
[74]
Dkhar, L.; Banothu, V.; Kaminsky, W.; Kollipara, M.R. Synthesis of half sandwich platinum group metal complexes containing pyridyl benzothiazole hydrazones: Study of bonding modes and antimicrobial activity. J. Organomet. Chem., 2020, 914, 121225.
[http://dx.doi.org/10.1016/j.jorganchem.2020.121225]
[75]
Singh, K.S.; Joy, F.; Devi, P. Ruthenium(II)-catalyzed synthesis of 2-arylbenzimidazole and 2-arylbenzothiazole in water. Transit. Met. Chem., 2020, 46, 181-190.
[http://dx.doi.org/10.1007/s11243-020-00435-3]
[76]
Kaushik, C.P.; Chahal, M. Synthesis and antibacterial activity of benzothiazole and benzoxazole-appended substituted 1,2,3-triazoles. J. Chem. Sci., 2020, 132, 1-10.
[http://dx.doi.org/10.1007/s12039-020-01844-8]
[77]
Ravi, B.N.; Keshavayya, J.; Mallikarjuna, N.M. Synthesis, spectral characterization and pharmacological evaluation of Ni(ii) complexes of 6-nitro-benzothiazole incorporated azo dyes. J. Inorg. Organomet. Polym. Mater., 2020, 30, 3781-3796.
[http://dx.doi.org/10.1007/s10904-020-01632-4]
[78]
Stermski, Y.; Kirkova, D.; Abeghe, S.S.; Angelov, P.; Ivanov, I.; Georgiev, D. Synthesis and antibacterial activity of hydroxylated 2-arylbenzothiazole derivatives. Synth. Commun., 2020, 50, 3007-3015.
[http://dx.doi.org/10.1080/00397911.2020.1791342]
[79]
Shadap, L.; Tyagi, J.L.; Poluri, K.M.; Novikov, S.; Timothy Lo, C.W.; Mozharivskyj, Y.; Kollipara, M.R. Synthesis and biological evaluation of some new class of benzothiazole–pyrazole ligands containing arene ruthenium, rhodium and iridium complexes. Transit. Met. Chem., 2021, 46, 231-240.
[http://dx.doi.org/10.1007/s11243-020-00439-z]
[80]
Srivastava, P.; Vyas, V.K.; Variya, B.; Patel, P.; Qureshi, G.; Ghate, M. Synthesis, anti-inflammatory, analgesic, 5-lipoxygenase (5-LOX) inhibition activities, and molecular docking study of 7-substituted coumarin derivatives. Bioorg. Chem., 2016, 67, 130-138.
[http://dx.doi.org/10.1016/j.bioorg.2016.06.004] [PMID: 27376460]
[81]
Tariq, S.; Kamboj, P.; Alam, O.N.; Amir, M. 1,2,4-Triazole-based benzothiazole/benzoxazole derivatives: Design, synthesis, p38α MAP kinase inhibition, anti-inflammatory activity and molecular docking studies. Bioorg. Chem., 2018, 81, 630-641.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.015] [PMID: 30253336]
[82]
Ugwu, D.I.; Okoro, U.C.; Ukoha, P.O.; Gupta, A.; Okafor, S.N. Novel anti-inflammatory and analgesic agents: Synthesis, molecular docking and in vivo studies. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 405-415.
[http://dx.doi.org/10.1080/14756366.2018.1426573] [PMID: 29372659]
[83]
Ghonim, A.E.; Ligresti, A.; Rabbito, A.; Mahmoud, A.M.; Di Marzo, V.; Osman, N.A.; Abadi, A.H. Structure-activity relationships of thiazole and benzothiazole derivatives as selective cannabinoid CB2 agonists with in vivo anti-inflammatory properties. Eur. J. Med. Chem., 2019, 180, 154-170.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.002] [PMID: 31302448]
[84]
Yatam, S.; Jadav, S.S.; Gundla, K.P.; Paidikondala, K.; Ankireddy, A.R.; Babu, B.N.; Ahsan, M.J.; Gundla, R. 2-Mercapto benzthiazole coupled benzyl triazoles as new cox-2 inhibitors: Design, synthesis, biological testing and molecular modeling studies. ChemistrySelect, 2019, 4, 11081-11092.
[http://dx.doi.org/10.1002/slct.201902972]
[85]
Harisha, S.; Keshavayya, J.; Prasanna, S.M.; Hoskeri, H.J. Synthesis, characterization, pharmacological evaluation and molecular docking studies of benzothiazole azo derivatives. J. Mol. Struct., 2020, 1218, 128477.
[http://dx.doi.org/10.1016/j.molstruc.2020.128477]
[86]
Zheng, X.J.; Li, C.S.; Cui, M.Y.; Song, Z.W.; Bai, X.Q.; Liang, C.W.; Wang, H.Y.; Zhang, T.Y. Synthesis, biological evaluation of benzothiazole derivatives bearing a 1,3,4-oxadiazole moiety as potential anti-oxidant and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2020, 30(13), 127237.
[http://dx.doi.org/10.1016/j.bmcl.2020.127237] [PMID: 32386981]
[87]
Raut, D.G.; Patil, S.B.; Choudhari, P.B.; Kadu, V.D.; Lawand, A.S.; Hublikar, M.G.; Bhosale, R.B. POCl3 mediated syntheses, pharmacological evaluation and molecular docking studies of some novel benzofused thiazole derivatives as a potential antioxidant and anti-inflammatory agents. Curr. Chem. Biol., 2020, 14, 58-68.
[http://dx.doi.org/10.2174/2212796813666191118100520]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy