Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Mini-Review Article Section: Regenerative Medicine

Regenerative Medicine for Neonatal Wound Healing

Author(s): Genieve Ee Chia Yeo* and Jia Xian Law*

Volume 2, Issue 2, 2022

Published on: 24 March, 2022

Page: [160 - 167] Pages: 8

DOI: 10.2174/2210298102666220215150512

Open Access Journals Promotions 2
Abstract

Neonates, especially premature newborns, have delicate skin that is susceptible to injury. Furthermore, they may acquire congenital skin diseases such as epidermolysis bullosa and aplasia cutis congenita that need prompt and effective treatment to reduce morbidity and mortality. Conventional management involves the covering of wound with a dressing, e.g., hydrogel, hydrocolloid and hydrofiber, which can maintain a moist wound environment that favours wound healing. More recently, regenerative medicine approaches using stem cells and skin substitutes have been introduced as bioactive substitutes to conventional wound dressings to promote and expedite neonatal wound healing, especially the difficulty to treat wounds that are deep and affect a large surface area. To date, the number of preclinical and clinical studies using stem cells and skin substitutes to treat neonatal skin diseases is still very limited. Results from these studies showed that regenerative medicine approaches are safe and effective in promoting the healing of neonatal skin diseases. In future, stem cells and skin substitutes can be combined with gene therapy to ameliorate injured skin in neonatal patients. Besides, cell-free approaches using the stem cell-derived secretome and extracellular vesicles are also gaining popularity as they are associated with fewer risks and hazards compared to stem cells. Herein, we discuss neonatal skin diseases, neonatal wound healing, the standard therapy for neonatal skin diseases, regenerative medicine approaches to promote neonatal skin regeneration and the future perspective of regenerative medicine in neonatal wound care.

Keywords: Neonate, skin, regenerative medicine, stem cells, skin substitute, wound healing.

Graphical Abstract
[1]
Fluhr, J.W.; Darlenski, R.; Taieb, A.; Hachem, J-P.; Baudouin, C.; Msika, P.; De Belilovsky, C.; Berardesca, E. Functional skin adaptation in infancy - almost complete but not fully competent. Exp. Dermatol., 2010, 19(6), 483-492.
[http://dx.doi.org/10.1111/j.1600-0625.2009.01023.x] [PMID: 20353516]
[2]
Quinn, J-A.; Munoz, F.M.; Gonik, B.; Frau, L.; Cutland, C.; Mallett-Moore, T.; Kissou, A.; Wittke, F.; Das, M.; Nunes, T.; Pye, S.; Watson, W.; Ramos, A.A.; Cordero, J.F.; Huang, W-T.; Kochhar, S.; Buttery, J. Brighton Collaboration Preterm Birth Working Group. Preterm birth: Case definition & guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine, 2016, 34(49), 6047-6056.
[http://dx.doi.org/10.1016/j.vaccine.2016.03.045] [PMID: 27743648]
[3]
Kinney, M.V.; Lawn, J.E.; Howson, C.P.; Belizan, J. 15 Million preterm births annually: what has changed this year? Reprod. Health, 2012, 9, 28.
[http://dx.doi.org/10.1186/1742-4755-9-28] [PMID: 23148557]
[4]
August, D.L.; New, K.; Ray, R.A.; Kandasamy, Y. Frequency, location and risk factors of neonatal skin injuries from mechanical forces of pressure, friction, shear and stripping: A systematic literature review. J. Neonatal Nurs., 2018, 24(4), 173-180.
[http://dx.doi.org/10.1016/j.jnn.2017.08.003]
[5]
Pope, E. Epidermolysis bullosa: A 2020 perspective. Br. J. Dermatol., 2020, 183(4), 603.
[http://dx.doi.org/10.1111/bjd.19125] [PMID: 32390183]
[6]
Schierz, I.A.M.; Giuffrè, M.; Del Vecchio, A.; Antona, V.; Corsello, G.; Piro, E. Recognizable neonatal clinical features of aplasia cutis congenita. Ital. J. Pediatr., 2020, 46(1), 25.
[http://dx.doi.org/10.1186/s13052-020-0789-5] [PMID: 32070410]
[7]
Hsieh, W-S.; Yang, P-H.; Chao, H.C.; Lai, J-Y.; Yeh, T-F. Neonatal necrotizing fasciitis: a report of three cases and review of the literature. Pediatrics, 1999, 103(4), e53.
[http://dx.doi.org/10.1542/peds.103.4.e53] [PMID: 10103345]
[8]
Dhawan, S.R.; Vaidya, P.C.; John, J.R.; Saikia, B.; Samujh, R.; Saxena, A.; Singhi, P.D. Necrotizing fasciitis of scalp and neck in neonates. APSP J. Case Rep., 2017, 8(3), 23.
[http://dx.doi.org/10.21699/ajcr.v8i3.554] [PMID: 28540194]
[9]
Idrus, R.B.H.; Rameli, M.A.B.P.; Cheong, L.K.; Xian, L.J.; Hui, C.K.; Latiff, M.B.A.; Saim, A. Bin Allogeneic bilayered tissue-engineered skin promotes full-thickness wound healing in ovine model. Biomed. Res., 2014, 25(2), 192-198.
[10]
Benichou, G.; Yamada, Y.; Yun, S-H.; Lin, C.; Fray, M.; Tocco, G. Immune recognition and rejection of allogeneic skin grafts. Immunotherapy, 2011, 3(6), 757-770.
[http://dx.doi.org/10.2217/imt.11.2] [PMID: 21668313]
[11]
Christ, G.J.; Saul, J.M.; Furth, M.E.; Andersson, K-E. The pharmacology of regenerative medicine. Pharmacol. Rev., 2013, 65(3), 1091-1133.
[http://dx.doi.org/10.1124/pr.112.007393] [PMID: 23818131]
[12]
Gonzalez, A.C. de O.; Costa, T.F.; Andrade, Z.A.; Medrado, A.R.A.P. Wound healing - A literature review. An. Bras. Dermatol., 2016, 91(5), 614-620.
[http://dx.doi.org/10.1590/abd1806-4841.20164741] [PMID: 27828635]
[13]
Reinke, J.M.; Sorg, H. Wound repair and regeneration. Eur. Surg. Res., 2012, 49(1), 35-43.
[http://dx.doi.org/10.1159/000339613] [PMID: 22797712]
[14]
Subramaniam, T.; Fauzi, M.B.; Lokanathan, Y.; Law, J.X. The role of calcium in wound healing. Int. J. Mol. Sci., 2021, 22(12), 6486.
[http://dx.doi.org/10.3390/ijms22126486] [PMID: 34204292]
[15]
Mateu, R.; Živicová, V.; Krejčí, E.D.; Grim, M.; Strnad, H.; Vlček, Č.; Kolář, M.; Lacina, L.; Gál, P.; Borský, J.; Smetana, K., Jr; Dvořánková, B. Functional differences between neonatal and adult fibroblasts and keratinocytes: Donor age affects epithelial-mesenchymal crosstalk in vitro. Int. J. Mol. Med., 2016, 38(4), 1063-1074.
[http://dx.doi.org/10.3892/ijmm.2016.2706] [PMID: 27513730]
[16]
Eming, S.A.; Krieg, T.; Davidson, J.M. Inflammation in wound repair: molecular and cellular mechanisms. J. Invest. Dermatol., 2007, 127(3), 514-525.
[http://dx.doi.org/10.1038/sj.jid.5700701] [PMID: 17299434]
[17]
Landén, N.X.; Li, D.; Ståhle, M. Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci., 2016, 73(20), 3861-3885.
[http://dx.doi.org/10.1007/s00018-016-2268-0] [PMID: 27180275]
[18]
Qian, L-W.; Fourcaudot, A.B.; Yamane, K.; You, T.; Chan, R.K.; Leung, K.P. Exacerbated and prolonged inflammation impairs wound healing and increases scarring. Wound Repair Regen., 2016, 24(1), 26-34.
[http://dx.doi.org/10.1111/wrr.12381] [PMID: 26562746]
[19]
Steen, E.H.; Wang, X.; Boochoon, K.S.; Ewing, D.C.; Strang, H.E.; Kaul, A.; Masri, L.; Balaji, S.; Hollier, L.H.J., Jr; Keswani, S. Wound healing and wound care in neonates: Current therapies and novel options. Adv. Skin Wound Care, 2020, 33(6), 294-300.
[http://dx.doi.org/10.1097/01.ASW.0000661804.09496.8c] [PMID: 32427785]
[20]
Skórkowska-Telichowska, K.; Czemplik, M.; Kulma, A.; Szopa, J. The local treatment and available dressings designed for chronic wounds. J. Am. Acad. Dermatol., 2013, 68(4), e117-e126.
[http://dx.doi.org/10.1016/j.jaad.2011.06.028] [PMID: 21982060]
[21]
Boateng, J.S.; Matthews, K.H.; Stevens, H.N.E.; Eccleston, G.M. Wound healing dressings and drug delivery systems: a review. J. Pharm. Sci., 2008, 97(8), 2892-2923.
[http://dx.doi.org/10.1002/jps.21210] [PMID: 17963217]
[22]
Varkey, M.; Visscher, D.O.; van Zuijlen, P.P.M.; Atala, A.; Yoo, J.J. Skin bioprinting: the future of burn wound reconstruction? Burns Trauma, 2019, 7(1), 4.
[http://dx.doi.org/10.1186/s41038-019-0142-7] [PMID: 30805375]
[23]
Tayman, C.; Rayyan, M.; Allegaert, K. Neonatal pharmacology: extensive interindividual variability despite limited size. J. Pediatr. Pharmacol. Ther., 2011, 16(3), 170-184.
[http://dx.doi.org/10.5863/1551-6776-16.3.170] [PMID: 22479159]
[24]
Law, J.X.; Chowdhury, S.R.; Saim, A.B.; Idrus, R.B.H. Platelet-rich plasma with keratinocytes and fibroblasts enhance healing of full-thickness wounds. J. Tissue Viability, 2017, 26(3), 208-215.
[http://dx.doi.org/10.1016/j.jtv.2017.05.003] [PMID: 28615133]
[25]
Werner, S.; Krieg, T.; Smola, H. Keratinocyte-fibroblast interactions in wound healing. J. Invest. Dermatol., 2007, 127(5), 998-1008.
[http://dx.doi.org/10.1038/sj.jid.5700786] [PMID: 17435785]
[26]
Law, J.X.; Chowdhury, S.R.; Aminuddin, B.S.; Ruszymah, B.H.I. Role of plasma-derived fibrin on keratinocyte and fibroblast wound healing. Cell Tissue Bank., 2017, 18(4), 585-595.
[http://dx.doi.org/10.1007/s10561-017-9645-2] [PMID: 28748415]
[27]
Xian, L.J.; Chowdhury, S.R.; Bin Saim, A.; Idrus, R.B. Concentration-dependent effect of platelet-rich plasma on keratinocyte and fibroblast wound healing. Cytotherapy, 2015, 17(3), 293-300.
[http://dx.doi.org/10.1016/j.jcyt.2014.10.005] [PMID: 25456581]
[28]
Li, Z.; Maitz, P. Cell therapy for severe burn wound healing. Burns Trauma, 2018, 6(1), 13.
[http://dx.doi.org/10.1186/s41038-018-0117-0] [PMID: 29854856]
[29]
Hassan, M.N.F.B.; Yazid, M.D.; Yunus, M.H.M.; Chowdhury, S.R.; Lokanathan, Y.; Idrus, R.B.H.; Ng, A.M.H.; Law, J.X. Large-scale expansion of human mesenchymal stem cells. Stem Cells Int., 2020, 2020, 9529465.
[http://dx.doi.org/10.1155/2020/9529465] [PMID: 32733574]
[30]
Looi, Q.H.; Eng, S.P.; Liau, L.L.; Tor, Y.S.; Bajuri, M.Y.; Ng, M.H.; Law, J.X. Mesenchymal stem cell therapy for sports injuries-from research to clinical practice. Sains Malays., 2020, 49(4), 825-838.
[http://dx.doi.org/10.17576/jsm-2020-4904-12]
[31]
Lee, C.H.; Moioli, E.K.; Mao, J.J. Fibroblastic differentiation of human mesenchymal stem cells using connective tissue growth factor. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2006, 2006, 775-778.
[http://dx.doi.org/10.1109/IEMBS.2006.259866]
[32]
Dos Santos, J.F.; Borçari, N.R.; da Silva Araújo, M.; Nunes, V.A. Mesenchymal stem cells differentiate into keratinocytes and express epidermal kallikreins: Towards an in vitro model of human epidermis. J. Cell. Biochem., 2019, 120(8), 13141-13155.
[http://dx.doi.org/10.1002/jcb.28589] [PMID: 30891818]
[33]
Hu, M.S.; Borrelli, M.R.; Lorenz, H.P.; Longaker, M.T.; Wan, D.C. Mesenchymal stromal cells and cutaneous wound healing: A comprehensive review of the background, role, and therapeutic potential. Stem Cells Int., 2018, 2018, 6901983.
[http://dx.doi.org/10.1155/2018/6901983] [PMID: 29887893]
[34]
Lim, J.; Razi, Z.R.M.; Law, J.X.; Nawi, A.M.; Idrus, R.B.H.; Chin, T.G.; Mustangin, M.; Ng, M.H. Mesenchymal stromal cells from the maternal segment of human umbilical cord is ideal for bone regeneration in allogenic setting. Tissue Eng. Regen. Med., 2017, 15(1), 75-87.
[http://dx.doi.org/10.1007/s13770-017-0086-6] [PMID: 30603536]
[35]
Liau, L.L.; Ruszymah, B.H.I.; Ng, M.H.; Law, J.X. Characteristics and clinical applications of Wharton’s jelly-derived mesenchymal stromal cells. Curr. Res. Transl. Med., 2020, 68(1), 5-16.
[http://dx.doi.org/10.1016/j.retram.2019.09.001] [PMID: 31543433]
[36]
Law, J.X.; Liau, L.L.; Saim, A.; Yang, Y.; Idrus, R. Electrospun collagen nanofibers and their applications in skin tissue engineering. Tissue Eng. Regen. Med., 2017, 14(6), 699-718.
[http://dx.doi.org/10.1007/s13770-017-0075-9] [PMID: 30603521]
[37]
Shevchenko, R.V.; James, S.L.; James, S.E. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J. R. Soc. Interface, 2010, 7(43), 229-258.
[http://dx.doi.org/10.1098/rsif.2009.0403] [PMID: 19864266]
[38]
Ding, S.; Xu, Y.; Yan, X.; Lin, Y.; Tan, Q. Effect of collagen scaffold with Bcl-2-modified adipose-derived stem cells on diabetic mice wound healing. Int. J. Low. Extrem. Wounds, 2020, 19(2), 139-147.
[http://dx.doi.org/10.1177/1534734619880055] [PMID: 31680592]
[39]
Lu, T-Y.; Yu, K-F.; Kuo, S-H.; Cheng, N-C.; Chuang, E-Y.; Yu, J-S. Enzyme-crosslinked gelatin hydrogel with adipose-derived stem cell spheroid facilitating wound repair in the murine burn model. Polymers (Basel), 2020, 12(12), E2997.
[http://dx.doi.org/10.3390/polym12122997] [PMID: 33339100]
[40]
Wong, M.L.; Griffiths, L.G. Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization. Acta Biomater., 2014, 10(5), 1806-1816.
[http://dx.doi.org/10.1016/j.actbio.2014.01.028] [PMID: 24486910]
[41]
Kim, H.; Kong, W.H.; Seong, K-Y.; Sung, D.K.; Jeong, H.; Kim, J.K.; Yang, S.Y.; Hahn, S.K. Hyaluronate-epidermal growth factor conjugate for skin wound healing and regeneration. Biomacromolecules, 2016, 17(11), 3694-3705.
[http://dx.doi.org/10.1021/acs.biomac.6b01216] [PMID: 27775884]
[42]
Losi, P.; Briganti, E.; Errico, C.; Lisella, A.; Sanguinetti, E.; Chiellini, F.; Soldani, G. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater., 2013, 9(8), 7814-7821.
[http://dx.doi.org/10.1016/j.actbio.2013.04.019] [PMID: 23603001]
[43]
do Amaral, R.J.F.C.; Zayed, N.M.A.; Pascu, E.I.; Cavanagh, B.; Hobbs, C.; Santarella, F.; Simpson, C.R.; Murphy, C.M.; Sridharan, R.; González-Vázquez, A.; O’Sullivan, B.; O’Brien, F.J.; Kearney, C.J. Functionalising collagen-based scaffolds with platelet-rich plasma for enhanced skin wound healing potential. Front. Bioeng. Biotechnol., 2019, 7, 371.
[http://dx.doi.org/10.3389/fbioe.2019.00371] [PMID: 31921799]
[44]
Zhou, P.; Li, X.; Zhang, B.; Shi, Q.; Li, D.; Ju, X. A human umbilical cord mesenchymal stem cell-conditioned medium/chitosan/collagen/β-glycerophosphate thermosensitive hydrogel promotes burn injury healing in mice. BioMed Res. Int., 2019, 2019, 5768285.
[http://dx.doi.org/10.1155/2019/5768285] [PMID: 31886229]
[45]
Bardania, H.; Mahmoudi, R.; Bagheri, H.; Salehpour, Z.; Fouani, M.H.; Darabian, B.; Khoramrooz, S.S.; Mousavizadeh, A.; Kowsari, M.; Moosavifard, S.E.; Christiansen, G.; Javeshghani, D.; Alipour, M.; Akrami, M. Facile preparation of a novel biogenic silver-loaded Nanofilm with intrinsic anti-bacterial and oxidant scavenging activities for wound healing. Sci. Rep., 2020, 10(1), 6129.
[http://dx.doi.org/10.1038/s41598-020-63032-5] [PMID: 32273549]
[46]
Hajialyani, M.; Tewari, D.; Sobarzo-Sánchez, E.; Nabavi, S.M.; Farzaei, M.H.; Abdollahi, M. Natural product-based nanomedicines for wound healing purposes: therapeutic targets and drug delivery systems. Int. J. Nanomedicine, 2018, 13, 5023-5043.
[http://dx.doi.org/10.2147/IJN.S174072] [PMID: 30214204]
[47]
Shamloo, A.; Aghababaie, Z.; Afjoul, H.; Jami, M.; Bidgoli, M.R.; Vossoughi, M.; Ramazani, A.; Kamyabhesari, K. Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: An in vitro, in vivo study. Int. J. Pharm., 2021, 592, 120068.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120068] [PMID: 33188894]
[48]
Seyedian, R.; Isavi, F.; Najafiasl, M.; Zaeri, S. Electrospun fibers loaded with cordia Myxa L. fruit extract: Fabrication, characterization, biocompatibility and efficacy in wound healing. J. Drug Deliv. Sci. Technol., 2021, 63, 102528.
[http://dx.doi.org/10.1016/j.jddst.2021.102528]
[49]
Has, C.; Bruckner-Tuderman, L.; Uitto, J.B.T-R.M.B.S. Epidermolysis Bullosa; Elsevier, 2014.
[50]
Marinkovich, M.P.; Tang, J.Y. Gene therapy for epidermolysis bullosa. J. Invest. Dermatol., 2019, 139(6), 1221-1226.
[http://dx.doi.org/10.1016/j.jid.2018.11.036] [PMID: 31068252]
[51]
Nuutila, K.; Singh, M.; Eriksson, E. Gene therapy in skin and wound healing.Gene Therapy in Reconstructive and Regenerative Surgery; Giatsidis, G., Ed.; Springer International Publishing: Cham, 2018, pp. 11-35.
[http://dx.doi.org/10.1007/978-3-319-78957-6_2]
[52]
Meuli, M.; Liu, Y.; Liggitt, D.; Kashani-Sabet, M.; Knauer, S.; Meuli-Simmen, C.; Harrison, M.R.; Adzick, N.S.; Heath, T.D.; Debs, R.J. Efficient gene expression in skin wound sites following local plasmid injection. J. Invest. Dermatol., 2001, 116(1), 131-135.
[http://dx.doi.org/10.1046/j.1523-1747.2001.00139.x] [PMID: 11168808]
[53]
Talebpour Amiri, F.; Fadaei Fathabadi, F.; Mahmoudi Rad, M.; Piryae, A.; Ghasemi, A.; Khalilian, A.; Yeganeh, F.; Mosaffa, N. The effects of insulin-like growth factor-1 gene therapy and cell transplantation on rat acute wound model. Iran. Red Crescent Med. J., 2014, 16(10), e16323-e16323.
[http://dx.doi.org/10.5812/ircmj.16323] [PMID: 25558384]
[54]
Nauta, A.; Seidel, C.; Deveza, L.; Montoro, D.; Grova, M.; Ko, S.H.; Hyun, J.; Gurtner, G.C.; Longaker, M.T.; Yang, F. Adipose-derived stromal cells overexpressing vascular endothelial growth factor accelerate mouse excisional wound healing. Mol. Ther., 2013, 21(2), 445-455.
[http://dx.doi.org/10.1038/mt.2012.234] [PMID: 23164936]
[55]
Yue, C.; Guo, Z.; Luo, Y.; Yuan, J.; Wan, X.; Mo, Z. c-Jun overexpression accelerates wound healing in diabetic rats by human umbilical cord-derived mesenchymal stem cells. Stem Cells Int., 2020, 2020, 7430968.
[http://dx.doi.org/10.1155/2020/7430968] [PMID: 32399050]
[56]
Walter, M.N.M.; Wright, K.T.; Fuller, H.R.; MacNeil, S.; Johnson, W.E.B. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays. Exp. Cell Res., 2010, 316(7), 1271-1281.
[http://dx.doi.org/10.1016/j.yexcr.2010.02.026] [PMID: 20206158]
[57]
Mildner, M.; Hacker, S.; Haider, T.; Gschwandtner, M.; Werba, G.; Barresi, C.; Zimmermann, M.; Golabi, B.; Tschachler, E.; Ankersmit, H.J. Secretome of peripheral blood mononuclear cells enhances wound healing. PLoS One, 2013, 8(3), e60103.
[http://dx.doi.org/10.1371/journal.pone.0060103] [PMID: 23533667]
[58]
Topouzi, H.; Boyle, C.J.; Williams, G.; Higgins, C.A. Harnessing the secretome of hair follicle fibroblasts to accelerate ex vivo healing of human skin Wounds. J. Invest. Dermatol., 2020, 140(5), 1075-1084.e11.
[http://dx.doi.org/10.1016/j.jid.2019.09.019] [PMID: 31682842]
[59]
Hao, D.; He, C.; Ma, B.; Lankford, L.; Reynaga, L.; Farmer, D.L.; Guo, F.; Wang, A. Hypoxic preconditioning enhances survival and proangiogenic capacity of human first trimester chorionic villus-derived mesenchymal stem cells for fetal tissue engineering. Stem Cells Int., 2019, 2019, 9695239.
[http://dx.doi.org/10.1155/2019/9695239] [PMID: 31781252]
[60]
Noronha, N.C.; Mizukami, A.; Caliári-Oliveira, C.; Cominal, J.G.; Rocha, J.L.M.; Covas, D.T.; Swiech, K.; Malmegrim, K.C.R. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res. Ther., 2019, 10(1), 131.
[http://dx.doi.org/10.1186/s13287-019-1224-y] [PMID: 31046833]
[61]
Doyle, L.M.; Wang, M.Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 2019, 8(7), 727.
[http://dx.doi.org/10.3390/cells8070727] [PMID: 31311206]
[62]
Casado-Díaz, A.; Quesada-Gómez, J.M.; Dorado, G. Extracellular vesicles derived from Mesenchymal Stem Cells (MSC) in regenerative medicine: Applications in skin wound healing. Front. Bioeng. Biotechnol., 2020, 8, 146.
[http://dx.doi.org/10.3389/fbioe.2020.00146] [PMID: 32195233]
[63]
Hu, L.; Wang, J.; Zhou, X.; Xiong, Z.; Zhao, J.; Yu, R.; Huang, F.; Zhang, H.; Chen, L. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci. Rep., 2016, 6, 32993.
[http://dx.doi.org/10.1038/srep32993] [PMID: 27615560]
[64]
Liau, L.L.; Al-Masawa, M.E.; Koh, B.; Looi, Q.H.; Foo, J.B.; Lee, S.H.; Cheah, F.C.; Law, J.X. The potential of mesenchymal stromal cell as therapy in neonatal diseases. Front Pediatr., 2020, 8, 591693.
[http://dx.doi.org/10.3389/fped.2020.591693] [PMID: 33251167]
[65]
Nilforoushzadeh, M.A.; Sisakht, M.M.; Seifalian, A.M.; Amirkhani, M.A.; Banafshe, H.R.; Verdi, J.; Sharifzad, F.; Taghiabadi, E. Regenerative medicine applications in wound care. Curr. Stem Cell Res. Ther., 2017, 12(8), 658-674.
[http://dx.doi.org/10.2174/1574888X12666170929123842] [PMID: 28969578]
[66]
Falabella, A.F.; Schachner, L.A.; Valencia, I.C.; Eaglstein, W.H. The use of tissue-engineered skin (Apligraf) to treat a newborn with epidermolysis bullosa. Arch. Dermatol., 1999, 135(10), 1219-1222.
[http://dx.doi.org/10.1001/archderm.135.10.1219] [PMID: 10522669]
[67]
Alferink, J.; Tafuri, A.; Vestweber, D.; Hallmann, R.; Hämmerling, G. J.; Arnold, B. Control of neonatal tolerance to tissue antigens by peripheral t cell trafficking. Science (80-. )., 1998, 282(5392), 1338 LP-1341.
[68]
Pan, H.; Gazarian, A.; Dubernard, J-M.; Belot, A.; Michallet, M-C.; Michallet, M. Transplant tolerance induction in newborn infants: Mechanisms, advantages, and potential strategies. Front. Immunol., 2016, 7, 116.
[http://dx.doi.org/10.3389/fimmu.2016.00116] [PMID: 27092138]
[69]
Gao, Q.; Rouse, T.M.; Kazmerzak, K.; Field, E.H. CD4+CD25+ cells regulate CD8 cell anergy in neonatal tolerant mice. Transplantation, 1999, 68(12), 1891-1897.
[http://dx.doi.org/10.1097/00007890-199912270-00013] [PMID: 10628770]
[70]
Velilla, P.A.; Rugeles, M.T.; Chougnet, C.A. Defective antigen-presenting cell function in human neonates. Clin. Immunol., 2006, 121(3), 251-259.
[http://dx.doi.org/10.1016/j.clim.2006.08.010] [PMID: 17010668]
[71]
Le, N.K.; Billington, A.; Harrington, M.; Seminario-Vidal, L. Management of recessive dystrophic epidermolysis bullosa in a newborn with porcine-derived extracellular matrix. Plast. Reconstr. Surg. Glob. Open, 2019, 7(11), e2519.
[http://dx.doi.org/10.1097/GOX.0000000000002519] [PMID: 31942309]

© 2024 Bentham Science Publishers | Privacy Policy