Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Letter to the Editor Section: Bioinformatics

Computational Studies of Budesonide vs. Vilanterol: Asthma Drugs Against SARS-CoV-2 Mpro

Author(s): Afzal Hussain* and Ashfaq Hussain

Volume 2, Issue 2, 2022

Published on: 24 March, 2022

Page: [97 - 100] Pages: 4

DOI: 10.2174/2210298102666220214114300

Open Access Journals Promotions 2
Abstract

The global spread of SARS-CoV-2 and the mortality it has caused have prompted research organizations to develop novel medications to combat COVID-19 infection. The main protease (Mpro) of SARS-CoV-2 is crucial for the virus's replication and propagation in host cells. Therefore, it is a promising therapeutic target. There are officially no certified specific drugs or available interventions for COVID-19 infection. Repurposing standard pharmaceutical drugs for COVID-19 interventions is a promising way of identifying potent therapeutic candidates quickly. In this work, vilanterol over budesonide was studied using molecular docking, ADMET, and MMGBSA analysis via Schrodinger Software to find more potent drugs that can diminish the risk of rigorous SARS-CoV-2 infection and shorten the time to recovery. We have identified that vilanterol showed more promising potential as an inhibitor of COVID-19 Mpro than budesonide (studied by the University of Oxford). Vilanterol has indicated a docking score of -8.727, human oral absorption of 88.786%, and the free binding energy of -60.457, whereas budesonide presented a docking score of -6.077, human oral absorption of 83.863, and the free binding energy of -36.078. Finally, our computational strategy identified vilanterol over budesonide as a promising and efficacious SARSCoV- 2 inhibitor that could be investigated further in clinical trials.

Keywords: Asthma drugs, COVID-19, vilanterol, drug design, budesonide, molecular docking.

Graphical Abstract
[1]
Hu, B.; Guo, H.; Zhou, P.; Shi, Z-L. Characteristics of SARS- CoV-2 and COVID-19. Nat. Rev. Microbiol., 2020, 1-14.
[PMID: 33024307 ]
[2]
Liu, Y-C.; Kuo, R-L.; Shih, S-R. COVID-19: The first documented coronavirus pandemic in history. Biomed. J., 2020, 43(4), 328-333.
[http://dx.doi.org/10.1016/j.bj.2020.04.007] [PMID: 32387617]
[3]
Organization WH. WHO Coronavirus (COVID-19) Dashboard. Available from: https://covid19.who.int/ (Accessed on July 5, 2021)
[4]
Soufi, G.J.; Hekmatnia, A.; Nasrollahzadeh, M.; Shafiei, N.; Sajjadi, M.; Iravani, P.; Fallah, S.; Iravani, S.; Varma, R.S. SARS-CoV-2 (COVID-19): New discoveries and current challenges. Appl. Sci. (Basel), 2020, 10(10), 3641.
[http://dx.doi.org/10.3390/app10103641]
[5]
Marois, G.; Muttarak, R.; Scherbov, S. Assessing the potential impact of COVID-19 on life expectancy. PLoS One, 2020, 15(9), e0238678.
[http://dx.doi.org/10.1371/journal.pone.0238678] [PMID: 32941467]
[6]
Arya, R.; Kumari, S.; Pandey, B.; Mistry, H.; Bihani, S.C.; Das, A.; Prashar, V.; Gupta, G.D.; Panicker, L.; Kumar, M. Structural insights into SARS-CoV-2 proteins. J. Mol. Biol., 2021, 433(2), 166725.
[http://dx.doi.org/10.1016/j.jmb.2020.11.024] [PMID: 33245961]
[7]
Gioia, M.; Ciaccio, C.; Calligari, P.; De Simone, G.; Sbardella, D.; Tundo, G.; Fasciglione, G.F.; Di Masi, A.; Di Pierro, D.; Bocedi, A.; Ascenzi, P.; Coletta, M. Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches. Biochem. Pharmacol., 2020, 182, 114225.
[http://dx.doi.org/10.1016/j.bcp.2020.114225] [PMID: 32956643]
[8]
Sohag, A.A.M.; Hannan, M.A.; Rahman, S.; Hossain, M.; Hasan, M.; Khan, M.K.; Khatun, A.; Dash, R.; Uddin, M.J. Revisiting potential druggable targets against SARS-CoV-2 and repurposing therapeutics under preclinical study and clinical trials: A comprehensive review. Drug Dev. Res., 2020, 81(8), 919-941.
[http://dx.doi.org/10.1002/ddr.21709] [PMID: 32632960]
[9]
Shih, H-I.; Wu, C-J.; Tu, Y-F.; Chi, C-Y. Fighting COVID-19: A quick review of diagnoses, therapies, and vaccines. Biomed. J., 2020, 43(4), 341-354.
[http://dx.doi.org/10.1016/j.bj.2020.05.021] [PMID: 32532623]
[10]
Liu, X.; Liu, C.; Liu, G.; Luo, W.; Xia, N. COVID-19: Progress in diagnostics, therapy and vaccination. Theranostics, 2020, 10(17), 7821-7835.
[http://dx.doi.org/10.7150/thno.47987] [PMID: 32685022]
[11]
Mesecar, A. A taxonomically-driven approach to development of potent, broad-spectrum inhibitors of coronavirus main protease including SARS-CoV-2 (COVID-19). 2020.
[http://dx.doi.org/10.2210/pdb6w63/pdb]
[12]
Yu, L.M.; Bafadhel, M.; Dorward, J.; Hayward, G.; Saville, B.R.; Gbinigie, O.; Van Hecke, O.; Ogburn, E.; Evans, P.H.; Thomas, N.P.B.; Patel, M.G.; Richards, D.; Berry, N.; Detry, M.A.; Saunders, C.; Fitzgerald, M.; Harris, V.; Shanyinde, M.; de Lusignan, S.; Andersson, M.I.; Barnes, P.J.; Russell, R.E.K.; Nicolau, D.V., Jr; Ramakrishnan, S.; Hobbs, F.D.R.; Butler, C.C. Inhaled budesonide for COVID-19 in people at high risk of complications in the community in the UK (PRINCIPLE): A randomised, controlled, open-label, adaptive platform trial. Lancet, 2021, 398(10303), 843-855.
[http://dx.doi.org/10.1016/S0140-6736(21)01744-X] [PMID: 34388395]
[13]
Jean, S-S.; Lee, P-I.; Hsueh, P-R. Treatment options for COVID-19: The reality and challenges. J. Microbiol. Immunol. Infect., 2020, 53(3), 436-443.
[http://dx.doi.org/10.1016/j.jmii.2020.03.034] [PMID: 32307245]
[14]
Hussain, A.; Hussain, A.; Verma, C.K. Nigella sativa: An immunity booster as pandemic treatment solution against SARS-CoV-2. Coronaviruses, 2021, 2(7), e250621188926.
[http://dx.doi.org/10.2174/2666796701999201209143642]
[15]
Hussain, A.; Hussain, A.; Verma, C.K. COVID-19 infection: A review of summarized clinical trials study for the treatment. Coronaviruses, 2021, 2(4), 431-444.
[http://dx.doi.org/10.2174/2666796701999200925204309]
[16]
Al-Tawfiq, J.A.; Al-Homoud, A.H.; Memish, Z.A. Remdesivir as a possible therapeutic option for the COVID-19. Travel Med. Infect. Dis., 2020, 34, 101615.
[http://dx.doi.org/10.1016/j.tmaid.2020.101615] [PMID: 32145386]
[17]
Verdugo-Paiva, F.; Izcovich, A.; Ragusa, M.; Rada, G. Lopinavir-ritonavir for COVID-19: A living systematic review. Medwave, 2020, 20(6), e7967.
[http://dx.doi.org/10.5867/medwave.2020.06.7966] [PMID: 32678815]
[18]
Vitiello, A.; Ferrara, F. Remdesivir versus ritonavir/lopinavir in COVID-19 patients. Ir. J. Med. Sci. (1971-), 2020, 1-2.
[19]
Singh, T.U.; Parida, S.; Lingaraju, M.C.; Kesavan, M.; Kumar, D.; Singh, R.K. Drug repurposing approach to fight COVID-19. Pharmacol. Rep., 2020, 72(6), 1479-1508.
[http://dx.doi.org/10.1007/s43440-020-00155-6] [PMID: 32889701]
[20]
GaudĂȘncio, S.P.; Pereira, F. A computer-aided drug design approach to predict marine drug-like leads for SARS-CoV-2 main protease inhibition. Mar. Drugs, 2020, 18(12), 633.
[http://dx.doi.org/10.3390/md18120633] [PMID: 33322052]
[21]
Ferraz, W.R.; Gomes, R.A.; Novaes, S. A.L.; Goulart Trossini, G.H. Ligand and structure-based virtual screening applied to the SARS-CoV-2 main protease: An in silico repurposing study. Future Med. Chem., 2020, 12(20), 1815-1828.
[http://dx.doi.org/10.4155/fmc-2020-0165]] [PMID: 32787684]

© 2024 Bentham Science Publishers | Privacy Policy