Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Perspective

Domino/Cascade and Multicomponent Reactions for the Synthesis of Thiazole Derivatives

Author(s): Mohammad A. Alam*

Volume 26, Issue 4, 2022

Published on: 24 March, 2022

Page: [343 - 347] Pages: 5

DOI: 10.2174/1385272826666220214110118

Open Access Journals Promotions 2
Abstract

Substituted thiazoles are widely known as natural products, approved drugs, and a number of synthetic compounds as bioactive agents. Due to the worth of this heterocycle nucleus, a large number of synthetic methodologies have been reported over the years to synthesize its derivatives. In this perspective, recent advances in the synthesis of thiazole compounds by using domino/cascade and multicomponent approaches have been summarized.

Keywords: Domino/cascade reaction, multicomponent reaction, thiazole, thiazoline, fused-thiazole, anticancer, thiazolo-androstenone, isothiazole.

Next »
[1]
Horner, K.E.; Karadakov, P.B. Shielding in and around oxazole, imidazole, and thiazole: How does the second heteroatom affect aromaticity and bonding? J. Org. Chem., 2015, 80(14), 7150-7157.
[http://dx.doi.org/10.1021/acs.joc.5b01010] [PMID: 26083580]
[2]
Favre, H.A.; Powell, W.H. Nomenclature of organic chemistry: IUPAC recommendations and preferred names; Royal Society of Chemistry: London, UK, 2014.
[3]
Mandrioli, R.; Protti, M.; Mercolini, L. Evaluation of the pharmacokinetics, safety and clinical efficacy of ziprasidone for the treatment of schizophrenia and bipolar disorder. Expert Opin. Drug Metab. Toxicol., 2015, 11(1), 149-174.
[http://dx.doi.org/10.1517/17425255.2015.991713] [PMID: 25483358]
[4]
Ishibashi, T.; Ohno, Y. Perospirone hydrochloride: The novel atypical antipsychotic agent with high affinities for 5-HT2, D2 and 5-HT1A receptors. In: Advances in neuroregulation and neuroprotection; Collin, C.; Minami, M.; Parvez, H.; Saito, H.; Parvez, S.; Qureshi; Reiss, C., Ed.; CRC Press: FL, USA, 2005; pp. 347-357.
[5]
Pawar, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Synthetic and medicinal perspective of fused-thiazoles as anticancer agents. Anticancer. Agents Med. Chem., 2021, 21(11), 1379-1402.
[http://dx.doi.org/10.2174/1871520620666200728133017] [PMID: 32723259]
[6]
Petrou, A.; Fesatidou, M.; Geronikaki, A. Thiazole ring-A biologically active scaffold. Molecules, 2021, 26(11), 3166.
[http://dx.doi.org/10.3390/molecules26113166] [PMID: 34070661]
[7]
Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem., 2015, 97, 699-718.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.015] [PMID: 25934508]
[8]
Sharma, D.; Bansal, K.K.; Sharma, A.; Pathak, M.; Sharma, P.C. A brief literature and review of patents on thiazole related derivatives. Curr. Bioact. Compd., 2019, 15(3), 304-315.
[http://dx.doi.org/10.2174/1573407214666180827094725]
[9]
Mishra, R.; Sharma, P.K.; Verma, P.K.; Tomer, I.; Mathur, G.; Dhakad, P.K. Biological potential of thiazole derivatives of synthetic origin. J. Heterocycl. Chem., 2017, 54(4), 2103-2116.
[http://dx.doi.org/10.1002/jhet.2827]
[10]
Zhen, Z.; Bing, S.; Yaodong, Z.; Girdhar, S.D.; Qing-Shan, L. 2,4,5-trisubstituted thiazole: A privileged scaffold in drug design and activity improvement. Curr. Top. Med. Chem., 2020, 20(28), 2535-2577.
[http://dx.doi.org/10.2174/1568026620999200917153856] [PMID: 32942975]
[11]
Gümüş, M.; Yakan, M.; Koca, İ. Recent advances of thiazole hybrids in biological applications. Future Med. Chem., 2019, 11(15), 1979-1998.
[http://dx.doi.org/10.4155/fmc-2018-0196] [PMID: 31517529]
[12]
Bel, J.S.; Tai, T.C.; Khaper, N.; Lees, S.J. Mirabegron: The most promising adipose tissue beiging agent. Physiol. Rep., 2021, 9(5), e14779.
[http://dx.doi.org/10.14814/phy2.14779] [PMID: 33650753]
[13]
Leis, K.; Mazur, E.; Racinowski, M.; Świerczyński, W.; Baska, A.; Gałązka, P. Effect of mirabegron on the body’s exercise capacity: A review. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(9), 1448-1455.
[http://dx.doi.org/10.2174/1871530320666200516164434] [PMID: 32416711]
[14]
Allison, S.J.; Gibson, W. Mirabegron, alone and in combination, in the treatment of overactive bladder: Real-world evidence and experience. Ther. Adv. Urol., 2018, 10(12), 411-419.
[http://dx.doi.org/10.1177/1756287218801282] [PMID: 30574201]
[15]
Borukhova, S. Domino reactions: Concepts for efficient organic synthesis. Green Proc. Synth., 2014, 3(6), 501-501.
[http://dx.doi.org/10.1515/gps-2014-0078]
[16]
Walsh, C.T.; Moore, B.S. Enzymatic cascade reactions in biosynthesis. Angew. Chem. Int. Ed. Engl., 2019, 58(21), 6846-6879.
[http://dx.doi.org/10.1002/anie.201807844] [PMID: 30156048]
[17]
Nelson, G.; Alam, M.A.; Atkinson, T.; Gurrapu, S.; Sravan Kumar, J.; Bicknese, C.; Johnson, J.L.; Williams, M. Synthesis and evaluation of p-N,N-dialkyl substituted chalcones as anti-cancer agents. Med. Chem. Res., 2013, 22(10), 4610-4614.
[http://dx.doi.org/10.1007/s00044-013-0469-8]
[18]
Whitt, J.; Duke, C.; Ali, M.A.; Chambers, S.A.; Khan, M.M.K.; Gilmore, D.; Alam, M.A. Synthesis and antimicrobial studies of 4-[3-(3-fluorophenyl)-4-formyl-1H-pyrazol-1-yl]benzoic acid and 4-[3-(4-fluorophenyl)-4-formyl-1H-pyrazol-1-yl]benzoic acid as potent growth inhibitors of drug-resistant bacteria. ACS Omega, 2019, 4(10), 14284-14293.
[http://dx.doi.org/10.1021/acsomega.9b01967] [PMID: 31508552]
[19]
Alam, M. A. Synthesis of 3,4-thiazolo steroids for treating cancer. WO2020018997A1, 2020.
[20]
Alam, M.A.; Alsharif, Z.; Alkhattabi, H.; Jones, D.; Delancey, E.; Gottsponer, A.; Yang, T. Hexafluoroisopropyl alcohol mediated synthesis of 2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-ones. Sci. Rep., 2016, 6(1), 36316.
[http://dx.doi.org/10.1038/srep36316] [PMID: 27805054]
[21]
Alsharif, Z.; Ali, M.A.; Alkhattabi, H.; Jones, D.; Delancey, E.; Ravikumar, P.C.; Alam, M.A. Hexafluoroisopropanol mediated benign synthesis of 2H-pyrido[1,2-a]pyrimidin-2-ones by using a domino protocol. New J. Chem., 2017, 41(24), 14862-14870.
[http://dx.doi.org/10.1039/C7NJ03376A] [PMID: 29430169]
[22]
Alsharif, Z.A.; Alam, M.A. Modular synthesis of thiazoline and thiazole derivatives by using a cascade protocol. RSC Advances, 2017, 7(52), 32647-32651.
[http://dx.doi.org/10.1039/C7RA05993K] [PMID: 29170713]
[23]
Ali, M.A.; Okolo, C.; Alsharif, Z.A.; Whitt, J.; Chambers, S.A.; Varma, R.S.; Alam, M.A. Benign synthesis of thiazolo-androstenone derivatives as potent anticancer agents. Org. Lett., 2018, 20(18), 5927-5932.
[http://dx.doi.org/10.1021/acs.orglett.8b02587] [PMID: 30204455]
[24]
Okolo, C.; Ali, M.A.; Newman, M.; Chambers, S.A.; Whitt, J.; Alsharif, Z.A.; Day, V.W.; Alam, M.A. Hexafluoroisopropanol-mediated domino reaction for the synthesis of thiazolo-androstenones: Potent anticancer agents. ACS Omega, 2018, 3(12), 17991-18001.
[http://dx.doi.org/10.1021/acsomega.8b02840] [PMID: 30613817]
[25]
Chambers, S.A.; Newman, M.; Frangie, M.M.; Savenka, A.V.; Basnakian, A.G.; Alam, M.A. Antimelanoma activities of chimeric thiazole-androstenone derivatives. R. Soc. Open Sci., 2021, 8(8), 210395.
[http://dx.doi.org/10.1098/rsos.210395] [PMID: 34430045]
[26]
Alnufaie, R.; Ali, M.A.; Alkhaibari, I.S.; Roy, S.; Day, V.W.; Alam, M.A. Benign synthesis of fused-thiazoles with enone-based natural products and drugs for lead dis-covery. New J. Chem., 2021, 45(13), 6001-6017.
[http://dx.doi.org/10.1039/D1NJ00380A] [PMID: 33840994]
[27]
Alkhaibari, I.S.; Raj, K.C.H.; Alnufaie, R.; Gilmore, D.; Alam, M.A. Synthesis of chimeric thiazolo-nootkatone derivatives as potent antimicrobial agents. ChemMedChem, 2021, 16(17), 2628-2637.
[http://dx.doi.org/10.1002/cmdc.202100230] [PMID: 33955181]
[28]
Karamthulla, S.; Pal, S.; Khan, M.N.; Choudhury, L.H. “On-water” synthesis of novel trisubstituted 1,3-thiazoles via microwave-assisted catalyst-free domino reactions. RSC Advances, 2014, 4(71), 37889-37899.
[http://dx.doi.org/10.1039/C4RA06239F]
[29]
Mahata, A.; Bhaumick, P.; Panday, A.K.; Yadav, R.; Parvin, T.; Choudhury, L.H. Multicomponent synthesis of diphenyl-1,3-thiazole-barbituric acid hybrids and their fluorescence property studies. New J. Chem., 2020, 44(12), 4798-4811.
[http://dx.doi.org/10.1039/D0NJ00406E]
[30]
Saroha, M.; Khurana, J.M. Acetic acid mediated regioselective synthesis of 2,4,5-trisubstituted thiazoles by a domino multicomponent reaction. New J. Chem., 2019, 43(22), 8644-8650.
[http://dx.doi.org/10.1039/C9NJ01717H]
[31]
Castagnolo, D.; Scalacci, N.; Pelloja, C.; Radi, M. Microwave-assisted domino reactions of propargylamines with isothiocyanates: Selective synthesis of 2-aminothiazoles and 2-amino-4-methylenethiazolines. Synlett, 2016, 27(12), 1883-1887.
[http://dx.doi.org/10.1055/s-0035-1561985]
[32]
Dai, T.; Cui, C.; Qi, X.; Cheng, Y.; He, Q.; Zhang, X.; Luo, X.; Yang, C. Regioselective synthesis of substituted thiazoles via cascade reactions from 3-chlorochromones and thioamides. Org. Biomol. Chem., 2020, 18(31), 6162-6170.
[http://dx.doi.org/10.1039/D0OB01019G] [PMID: 32716017]
[33]
Wang, Z-J.; Chen, W-T.; He, C.; Luo, H-F.; Zhang, G-L.; Yu, Y-P. Cascade reactions to 2,4-disubstituted thiazoles via ligand-free palladium(II)-catalyzed C(sp)–C(sp2) coupling. Tetrahedron, 2020, 76(9), 130953.
[http://dx.doi.org/10.1016/j.tet.2020.130953]
[34]
Tong, W.; Li, W-H.; He, Y.; Mo, Z-Y.; Tang, H-T.; Wang, H-S.; Pan, Y-M. Palladium-metalated porous organic polymers as recyclable catalysts for the chemioselective synthesis of thiazoles from thiobenzamides and isonitriles. Org. Lett., 2018, 20(8), 2494-2498.
[http://dx.doi.org/10.1021/acs.orglett.8b00886] [PMID: 29620903]
[35]
Richter, F.; Seifert, J.; Korb, M.; Lang, H.; Banert, K. Real multicomponent reactions: Synthesis of highly substituted 2-aminothiazoles. Eur. J. Org. Chem., 2018, 2018(34), 4673-4682.
[http://dx.doi.org/10.1002/ejoc.201800701]
[36]
Jiang, J.; Huang, H.; Deng, G-J. Four-component thiazole formation from simple chemicals under metal-free conditions. Green Chem., 2019, 21(5), 986-990.
[http://dx.doi.org/10.1039/C8GC03895C]
[37]
Ben Mohamed, S.; Rachedi, Y.; Hamdi, M.; Le Bideau, F.; Dejean, C.; Dumas, F. An efficient synthetic access to substituted thiazolyl-pyrazolyl-chromene-2-ones from dehydroacetic acid and coumarin derivatives by a multicomponent approach. Eur. J. Org. Chem., 2016, 2016(15), 2628-2636.
[http://dx.doi.org/10.1002/ejoc.201600173]
[38]
Guan, Z-R.; Liu, Z-M.; Wan, Q.; Ding, M-W. One-pot four-component synthesis of polysubstituted thiazoles via cascade Ugi/Wittig cyclization starting from odorless Isocyano(triphenylphosphoranylidene)-acetates. Tetrahedron, 2020, 76(15), 131101.
[http://dx.doi.org/10.1016/j.tet.2020.131101]

© 2024 Bentham Science Publishers | Privacy Policy