Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Analyte Interactions with Oxoporphyrinogen Derivatives: Computational Aspects

Author(s): Jonathan P. Hill*, Paul A. Karr*, Roxanne A. Zuñiga Uy, Navaneetha K. Subbaiyan, Zdeněk Futera, Katsuhiko Ariga, Shinsuke Ishihara, Jan Labuta and Francis D’Souza*

Volume 26, Issue 6, 2022

Published on: 14 March, 2022

Page: [580 - 595] Pages: 16

DOI: 10.2174/1385272826666220208101325

Price: $65

Abstract

The binding of anions by highly-coloured chromophore compounds is of interest from the point-of-view of the development of optical sensors for analyte species. In this review, we have summarised our work on the interactions between oxoporphyrinogen type host compounds and different analyte species using computational methods. The origin of our interest in sensing using oxoporphyrinogens stems from an initial finding involving anion-host interactions involving a conjugated oxoporphyrinogen molecule. This review starts from that point, introducing some additional exemplary anion binding data, which is then elaborated to include descriptions of our synthesis work towards multitopic and ion pair interactions. In all the projects, we have consulted computational data on host structure and host-guest complexes in order to obtain information about the interactions occurring during complexation. Density functional theory and molecular dynamics simulations have been extensively used for these purposes.

Keywords: Oxoporphyrinogen, saddle-distorted porphyrin, chromophore, anion sensor, ion pair sensor, computational methods.

Graphical Abstract
[1]
He, Q.; Vargas-Zuniga, G.I.; Kim, S.H.; Kim, S.K.; Sessler, J.L. Macrocycles as ion pair receptors. Chem. Rev., 2019, 119, 9753-9835.
[http://dx.doi.org/10.1021/acs.chemrev.8b00734]
[2]
Billing, B.K.; Verma, M. Anion recognition employing -NH linked organic moieties. ChemistrySelect, 2021, 6, 4273-4294.
[http://dx.doi.org/10.1002/slct.202100677]
[3]
Manna, U.; Das, G. An overview of anion coordination by hydroxyl, amine and amide based rigid and symmetric neutral dipodal receptors. Coord. Chem. Rev., 2021, 427, 213547.
[http://dx.doi.org/10.1016/j.ccr.2020.213547]
[4]
Gunnlaugsson, T.; Glynn, M.; Tocci, G.M.; Kruger, P.E.; Pfeffer, F.M. Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord. Chem. Rev., 2006, 250, 3094-3117.
[http://dx.doi.org/10.1016/j.ccr.2006.08.017]
[5]
Suksai, C.; Tuntulani, T. Chromogenic anion sensors. Chem. Soc. Rev., 2003, 32, 192-202.
[http://dx.doi.org/10.1039/b209598j]
[6]
Wenzel, M.; Hiscock, J.R.; Gale, P.A. Anion receptor chemistry: Highlights from 2010. Chem. Soc. Rev., 2012, 41, 480-520.
[http://dx.doi.org/10.1039/C1CS15257B]
[7]
Guo, Z.; Park, S.; Yoon, J.; Shin, I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev., 2014, 43, 16-29.
[http://dx.doi.org/10.1039/C3CS60271K]
[8]
Du, J.; Hu, M.; Fan, J.; Peng, X. Fluorescent chemodosimeters using “mild” chemical events for the detection of small anions and cations in biological and environmental media. Chem. Soc. Rev., 2012, 41, 4511-4535.
[http://dx.doi.org/10.1039/c2cs00004k]
[9]
Shundo, A.; Hill, J.P.; Ariga, K. Toward volatile and nonvolatile molecular memories: fluorescence switching based on fluoride-triggered interconver-sion of simple porphyrin derivatives. Chemistry, 2009, 15, 2486-2490.
[http://dx.doi.org/10.1002/chem.200802469]
[10]
Mori, T.; Akamatsu, M.; Okamoto, K.; Sumita, M.; Tateyama, Y.; Sakai, H.; Hill, J.P.; Abe, M.; Ariga, K. Micrometer-level naked-eye detection of caesi-um particulates in the solid state. Sci. Technol. Adv. Mater., 2013, 14, 015002.
[http://dx.doi.org/10.1088/1468-6996/14/1/015002]
[11]
Pal, A.; Karmakar, M.; Bhatta, S.R.; Thakur, A. A detailed insight into anion sensing based on intramolecular charge transfer (ICT) mechanism: A com-prehensive review of the years 2016 to 2021. Coord. Chem. Rev., 2021, 448, 214167.
[http://dx.doi.org/10.1016/j.ccr.2021.214167]
[12]
Mathew, M.M.; Sreekanth, A. N4-dibenzosuberone substituted thiosemi-carbazones based targetable fluorescent probe for multianion recognition. J. Chem. Sci., 2021, 133, 75.
[http://dx.doi.org/10.1007/s12039-021-01942-1]
[13]
Alreja, P.; Kaur, N. Recent advances in 1,10-phenanthroline ligands for chemosensing of cations and anions. RSC Advances, 2016, 6, 23169-23217.
[http://dx.doi.org/10.1039/C6RA00150E]
[14]
Sakai, R.; Satoh, T.; Kakuchi, T. Polyacetylenes as colorimetric and fluores-cent chemosensor for anions. Polym. Rev. (Phila. Pa.), 2017, 57, 159-174.
[http://dx.doi.org/10.1080/15583724.2016.1144613]
[15]
Yu, L.; Wang, S.; Huang, K.; Liu, Z.; Gao, F.; Zeng, W. Fluorescent probes for dual and multi analyte detection. Tetrahedron, 2015, 71, 4679-4706.
[http://dx.doi.org/10.1016/j.tet.2015.04.115]
[16]
Saeed, M.A.; Le, H.T.M.; Miljanic, O.S. Benzobisoxazole cruciform as fluo-rescent sensors. Acc. Chem. Res., 2014, 47, 2074-2083.
[http://dx.doi.org/10.1021/ar500099z]
[17]
Kang, S-O.; Llinares, J.M.; Day, V.W.; Bowman-James, K. Cryptand-like anion receptors. Chem. Soc. Rev., 2010, 39, 3980-4003.
[http://dx.doi.org/10.1039/c0cs00083c]
[18]
Beer, P.D.; Gale, P.A. Anion recognition and sensing: The state of the art and future perspectives. Angew. Chem. Int. Ed., 2001, 40, 486-516.
[http://dx.doi.org/10.1002/1521-3773(20010202)40:3<486:AID-ANIE486>3.0.CO;2-P]
[19]
Choi, K.; Hamilton, A.D. Macrocyclic anion receptors based on directed hydrogen bonding interactions. Coord. Chem. Rev., 2003, 240, 101-110.
[http://dx.doi.org/10.1016/S0010-8545(02)00305-3]
[20]
Gale, P.A.; Sessler, J.L.; Kral, V.; Lynch, V. Calix[4]pyrroles: Old yet new anion-binding agents. J. Am. Chem. Soc., 1996, 118, 5240-5141.
[http://dx.doi.org/10.1021/ja960307r]
[21]
Depraetere, S.; Smet, M.; Dehaen, W. N-Confused calix[4]pyrroles. Angew. Chem. Int. Ed., 1999, 38, 3359-3361.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19991115)38:22<3359::AIDANIE3359>3.0.CO;2-K]
[22]
Yano, M.; Tong, C.C.; Light, M.E.; Schmidtchen, F.P.; Gale, P.A. Ca-lix[4]pyrrole-based anion transporters with tuneable transport properties. Org. Biomol. Chem., 2010, 8, 4356-4363.
[http://dx.doi.org/10.1039/c0ob00128g]
[23]
Tong, C.C.; Quesada, R.; Sessler, J.L.; Gale, P.A. meso-Octamethylcalix[4]pyrrole: An old yet new transmembrane ion-pair trans-porter. Chem. Commun. (Camb.), 2008, 47, 6321-6323.
[http://dx.doi.org/10.1039/b814988g]
[24]
Custelcean, R.; Delmau, L.H.; Moyer, B.A.; Sessler, J.L.; Cho, W-S.; Gross, D.; Bates, G.W.; Brooks, S.J.; Light, M.E.; Gale, P.A. Calix[4]pyrrole: An old yet new ion-pair receptor. Angew. Chem. Int. Ed., 2005, 44, 2537-2542.
[http://dx.doi.org/10.1002/anie.200462945]
[25]
Sessler, J.L.; Anzenbacher, P.; Jursikova, K.; Miyaji, H.; Genge, J.W.; Tver-moes, N.A.; Allen, W.E.; Shriver, J.A.; Gale, P.A.; Kral, V. Functionalized calix[4]pyrroles. Pure Appl. Chem., 1998, 70, 2401-2408.
[http://dx.doi.org/10.1351/pac199870122401]
[26]
Lee, C-H.; Miyaji, H.; Yoon, D-W.; Sessler, J.L. Strapped and other topo-graphically nonplanar calixpyrrole analogues. Improved anion receptors. Chem. Commun. (Camb.), 2008, 47, 24-34.
[http://dx.doi.org/10.1039/B713183F]
[27]
Kim, D.S.; Sessler, J.L. Calix[4]pyrroles: Versatile molecular containers with ion transport, recognition, and molecular switching. Chem. Soc. Rev., 2015, 44, 532-546.
[http://dx.doi.org/10.1039/C4CS00157E]
[28]
Yeon, Y.; Leem, S.; Wagen, C.; Lynch, V.M.; Kim, S.K.; Sessler, J.L. Ca-lix[4]pyrrole-based ion pair receptors. Org. Lett., 2016, 18, 4396-4399.
[http://dx.doi.org/10.1021/acs.orglett.6b02155]
[29]
He, Q.; Zhang, Z.; Brewster, J.T.; Lynch, V.M.; Kim, S.K.; Sessler, J.L. Hemi-spherand-strapped calix[4]pyrrole: An ion pair receptor for the recognition and extraction of lithium nitrate. J. Am. Chem. Soc., 2016, 138, 9779-9782.
[http://dx.doi.org/10.1021/jacs.6b05713]
[30]
Chi, X.; Zhang, H.; Vargas-Zuniga, G.I.; Peters, G.M.; Sessler, J.L. A dual-responsive bola-type supra-amphiphile constructed from a water-soluble ca-lix[4]pyrrole and a tetraphenylethene-containing pyridine bis-N-oxide. J. Am. Chem. Soc., 2016, 138, 5829-5832.
[http://dx.doi.org/10.1021/jacs.6b03159]
[31]
Anzenbacher, P.; Nishiyabu, R.; Palacios, M.A. N-confused calix[4]pyrroles. Coord. Chem. Rev., 2006, 250, 2929-2938.
[http://dx.doi.org/10.1016/j.ccr.2006.09.001]
[32]
Escobar, L.; Aragay, G.; Ballester, P. Super aryl-extended calix[4]pyrroles: synthesis, binding studies, and attempts to gain water solubility. Chemistry, 2016, 22, 13682-13689.
[http://dx.doi.org/10.1002/chem.201602987]
[33]
Galan, A.; Aragay, G.; Ballester, P. A chiral “Siamese-twin” calix[4]pyrrole tetramer. Chem. Sci. (Camb.), 2016, 7, 5976-5982.
[http://dx.doi.org/10.1039/C6SC01843B]
[34]
Samanta, R.; Kumar, B.S.; Panda, P.K. Calix[4]pyrroles with shortest possi-ble strap: exclusively selective toward fluoride ion. Org. Lett., 2015, 17, 4140-4143.
[http://dx.doi.org/10.1021/acs.orglett.5b01866]
[35]
Kumar, C.D.; Sirisha, K.; Dhaked, D.K.; Lokesh, P.; Sarma, A.V.S.; Bhara-tam, P.V.; Kantevari, S.; Sripadi, P. Investigation of anion-π interactions in-volving thiophene walls incorporated calix[4]pyrroles. J. Org. Chem., 2015, 80, 1746-1753.
[http://dx.doi.org/10.1021/jo502673c]
[36]
Labuta, J.; Hill, J.P.; Ishihara, S.; Hanykova, L.; Ariga, K. Chiral sensing by nonchiral tetrapyrroles. Acc. Chem. Res., 2015, 48, 521-529.
[http://dx.doi.org/10.1021/acs.accounts.5b00005]
[37]
Saha, I.; Lee, J.T.; Lee, C-H. Recent advances in calix[4]pyrrole-based anion-receptor chemistry. Eur. J. Org. Chem., 2015, 3859-3885.
[http://dx.doi.org/10.1002/ejoc.201403701]
[38]
Sareen, D.; Lee, J.H.; Hwang, H.; Yoo, S.; Lee, C-H. Ion-mediated single-molecule optical switching and sensing based on the fluorophore-tethered calix[4]pyrrole. Chem. Commun. (Camb.), 2016, 52, 5852-5855.
[http://dx.doi.org/10.1039/C6CC01679K]
[39]
Williams, N.J. Bryanstev, V.S.; Custelcean, R.; Seipp, C.A.; Moyer, B.A. α,α′,α”,α”’-meso-tetrahexyltetramethyl-calix[4]pyrrole: an easy-to-prepare, isomerically pure anion extractant with enhanced solubility in organic sol-vents. Supramol. Chem., 2016, 28, 176-187.
[http://dx.doi.org/10.1080/10610278.2015.1120873]
[40]
Ghorpade, T.K.; Patri, M.; Mishra, S.P. Highly sensitive colorimetric and fluorimetric anion sensors based on mono and di- calix[4]pyrrole substitut-ed diketopyrrolopyrroles. Sens. Actuators B Chem., 2016, 225, 428-435.
[http://dx.doi.org/10.1016/j.snb.2015.10.067]
[41]
Amharar, S.; Aydogan, A. Highly sensitive and cost-effective fluorescent turn-on sensors based on octamethylcalix[4]pyrrole receptor for the detec-tion of fluoride anion. Dyes Pigm, 2022, 197, 109918.
[http://dx.doi.org/10.1016/j.dyepig.2021.109918]
[42]
Sun, Q.; Escobar, L.; de Jong, J.; Ballester, P. Self-assembly of a water solu-ble endohedrally functionalized coordination cage including polar guests. Chem. Sci. (Camb.), 2021, 12, 13469-13476.
[http://dx.doi.org/10.1039/D1SC03751J]
[43]
Williams, N.J.; Roy, S.; Reynolds, C.O.; Custelsean, R.; Bryanstev, V.S.; Moyer, B.A. Enhancing selectivity of cation exchange with anion receptors. Chem. Commun. (Camb.), 2019, 55, 3590-3593.
[http://dx.doi.org/10.1039/C9CC00287A]
[44]
Dutta, R.; Samala, S.; Jo, H. K. M.; Lee, C.-H Meso-Bis(ethynyl) versus meso-bis(aryl) calx[4]pyrroles: dimensionally well-modulated receptors that can regulate the anion binding domains. J. Org. Chem., 2019, 84, 6851-6857.
[http://dx.doi.org/10.1021/acs.joc.9b00639]
[45]
He, Y-C.; Yan, Y-M.; Tong, H-B.; Ren, Z-X.; Wang, J-H.; Zhang, Y-B.; Chao, J-B.; Wang, M-L. Benzenebistriazole-strapped calix[4]pyrrole: a neutral re-ceptor with CH and NH donor groups that exhibits high sulfate binding af-finity and selectivity in aqueous solution. Chem. Commun. (Camb.), 2020, 56, 9364-9367.
[http://dx.doi.org/10.1039/D0CC03655B]
[46]
Villaron, D.; Siegler, M.A.; Wezenberg, S.J. A photoswitchable strapped calix[4]pyrrole receptor: highly effective chloride binding and release. Chem. Sci. (Camb.), 2021, 12, 3188-3193.
[http://dx.doi.org/10.1039/D0SC06686A]
[47]
Kumar, B.S.; Chandra, B.; Jovan, J.K.V.; Panda, P.K. 1,2-Phenylene-incorporated smallest expanded calix[4]pyrrole via one-step synthesis of tetrapyrane: A fluorescent host for fluoride ion. J. Org. Chem., 2021, 86, 10536-10543.
[http://dx.doi.org/10.1021/acs.joc.1c01179]
[48]
Deng, Z.; Wang, C.; Li, J.; Zheng, M. Efficicient colorimetric fluoride anion sensor based on a π-conjugated carbazole small molecule. Front Chem., 2021, 9, 732935.
[http://dx.doi.org/10.3389/fchem.2021.732935]
[49]
Grover, N.; Sankar, M. N-Confused porphyrin-a unique “turn-on” chemosensor for CN- and F- ions and “turn-off” sensor for ClO4- ions. Chem. Asian J., 2020, 15, 2192-2197.
[http://dx.doi.org/10.1002/asia.202000557]
[50]
Gowri Sreedevi, K.C.; Thomas, A.P.; Adinareyana, B.; Srinivasan, A. Engi-neering diformyl diaryldipyrromethanes into a molecular keypad lock. New J. Chem., 2020, 44, 11768-11776.
[http://dx.doi.org/10.1039/D0NJ01963A]
[51]
Li, Z.; Rao, C.; Chen, L.; Fu, C.; Zhu, T.; Chen, X.; Liu, C. Addition of p-cyanomethylpyridine fo naphthalimide via trifluormethyl directed CH func-tionalization: Cyanide sensing in aqueous media. J. Org. Chem., 2019, 84, 7518-7522.
[http://dx.doi.org/10.1021/acs.joc.9b00904]
[52]
Milgrom, L.R. The facile aerial oxidation of a porphyrin. Tetrahedron, 1983, 39, 3895-3898.
[http://dx.doi.org/10.1016/S0040-4020(01)90892-0]
[53]
Golder, A. J.; Milgrom, L. R.; Nolan, K. B.; Povey, D. C. 5,10,15,20- Mesotetrakis(3,5-di-t-butyl-4-quinomethide)porphyhrinogen: a highly puckered tetrapyrrolic macrocycle from the aerial oxidation of a phenolic porphyrin. J. Chem. Soc., Chem. Comm., 1989, 1751-1753.
[54]
Hill, J.P.; Schumacher, A.L.; D’Souza, F.; Labuta, J.; Redshaw, C.; Elsegood, M.R.J.; Aoyagi, M.; Nakanishi, T.; Ariga, K. Chromogenic indicator for ani-on reporting based on an N-substituted oxopoprhyrinogen. Inorg. Chem., 2006, 45, 8288-8296.
[http://dx.doi.org/10.1021/ic0611591]
[55]
Shundo, A.; Labuta, J.; Hill, J.P.; Ishihara, S.; Ariga, K. Nuclear magnetic resonance signaling of molecular chiral information using am achiral reagent. J. Am. Chem. Soc., 2009, 131, 9494-9495.
[http://dx.doi.org/10.1021/ja903371d]
[56]
Labuta, J.; Ishihara, S.; Shundo, A.; Arai, S.; Takeoka, S.; Ariga, K.; Hill, J.P. Chiral sensing by nonchiral porphines. Chemistry, 2011, 17, 3558-3561.
[http://dx.doi.org/10.1002/chem.201100052]
[57]
Labuta, J.; Ishihara, S.; Šikorský, T.; Futera, Z.; Shundo, A.; Hanyková, L.; Burda, J.V.; Ariga, K.; Hill, J.P. NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastere-omers. Nat. Commun., 2013, 4, 3188.
[http://dx.doi.org/10.1038/ncomms3188]
[58]
Labuta, J.; Ishihara, S.; Ariga, K.; Hill, J. Dynamic processes in prochiral solvating agents (pro-CSAs) studied by NMR Spectroscopy. Symmetry (Basel), 2014, 6, 345-367.
[http://dx.doi.org/10.3390/sym6020345]
[59]
Ishihara, S.; Labuta, J.; Šikorský, T.; Burda, J.V.; Okamoto, N.; Abe, H.; Ariga, K.; Hill, J.P. Colorimetric detection of trace water in tetrahydrofuran using N-N’-sustituted oxoporphyrinogens. Chem. Commun. (Camb.), 2012, 48, 3933-3935.
[http://dx.doi.org/10.1039/c2cc31118f]
[60]
Shundo, A.; Ishihara, S.; Labuta, J.; Onuma, Y.; Sakai, H.; Abe, M.; Ariga, K.; Hill, J.P. Colorimetric visualization of acid-base equilibria in non-polar solvent. Chem. Commun. (Camb.), 2013, 49, 6870-6872.
[http://dx.doi.org/10.1039/c3cc42859a]
[61]
Milgrom, L.R.; Hill, J.P.; Yahioglu, G. Facile aerial oxidation of a porphyrin. Part 18. N-alkylation of the oxidized product derived from meso-tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)porphyrin. J. Heterocycl. Chem., 1995, 32, 97-101.
[http://dx.doi.org/10.1002/jhet.5570320117]
[62]
Milgrom, L.R.; Hill, J.P.; Dempsey, P.F. Alkylation of 5,10,15-tris(3,5-di-t-butyl-4-hydroxyphenyl)-20-(4-pyridyl)porphyrin. Tetrahedron, 1994, 50, 13477-13484.
[http://dx.doi.org/10.1016/S0040-4020(01)89354-6]
[63]
Dolušić, E.; Toppet, S.; Smeets, S.; Meervelt, L.V.; Tinant, B.; Dehaen, W. Porphotetramethanes with 1,3-alternate conformation of pyrrole rings from oxidative N-alkylation of porphyrin tetraphenols. Tetrahedron, 2003, 59, 395-400.
[http://dx.doi.org/10.1016/S0040-4020(02)01529-6]
[64]
Hill, J.P.; Hewitt, I.J.; Anson, C.E.; Powell, A.K.; McCarty, A.L.; Karr, P.A.; Zandler, M.E.; D’Souza, F. Highly nonplanar, electron deficient, N-substituted tetra-oxocyclohexadienylidene porphyrinogens: Structural, computational, and electrochemical investigations. J. Org. Chem., 2004, 69, 5861-5869.
[http://dx.doi.org/10.1021/jo049401d]
[65]
Hill, J.P.; Schmitt, W.; McCarty, A.L.; Ariga, K.; D’Souza, F. Structures, spectral and electrochemical properties of N-(naphthyl-2-methyl)-appended porphyrinogens. Eur. J. Org. Chem., 2005, 2005, 2893-2902.
[http://dx.doi.org/10.1002/ejoc.200500257]
[66]
Schumacher, A.L.; Hill, J.P.; Ariga, K.; D’Souza, F. Highly effective electro-chemical anion sensing based on an oxoporphyrinogen. Electrochem. Commun., 2007, 9, 2751-2754.
[http://dx.doi.org/10.1016/j.elecom.2007.09.010]
[67]
Hill, J.P.; Sandanayaka, A.S.D.; Schumacher, A.L.; Karr, P.A.; Zandler, M.E.; Charvet, R.; Ariga, K.; Araki, Y.; Ito, O.; D’Souza, F. A novel bis(zinc-porphyrin)-oxoporphyrinogen donor-acceptor triad: Synthesis, electro-chemical, computational and photochemical studies. Eur. J. Org. Chem., 2006, 2006, 595-603.
[http://dx.doi.org/10.1002/ejoc.200500626]
[68]
Xie, Y.; Hill, J.P.; Schumacher, A.L.; Sandanayaka, A.S.D.; Araki, Y.; Karr, P.A.; Labuta, J.; D’Souza, F.; Ito, O.; Anson, C.E.; Powell, A.K.; Ariga, K. Twisted, two-faced porphyrins as hosts for bispyridyl fullerenes: construc-tion and photophysical properties. J. Phys. Chem. C, 2008, 112, 10559-10572.
[http://dx.doi.org/10.1021/jp8028209]
[69]
Schumacher, A.L.; Sandanayaka, A.S.D.; Hill, J.P.; Ariga, K.; Karr, P.A.; Araki, Y.; Ito, O.; D’Souza, F. Supramolecular triad and pentad composed of zinc-porphyrin(s) oxoporphyrinogen, and fullerene(s): design and electron transfer studies. Chemistry, 2007, 13, 4628-4635.
[http://dx.doi.org/10.1002/chem.200601854]
[70]
Xie, Y.; Hill, J.P.; Schumacher, A.L.; Karr, P.A.; D’Souza, F.; Anson, C.E.; Powell, A.K.; Ariga, K. Tautomerism in novel oxocorrologens. Chemistry, 2007, 13, 9824-9833.
[http://dx.doi.org/10.1002/chem.200701428]
[71]
D’Souza, F.; Subbaiyan, N.K.; Xie, Y.; Hill, J.P.; Ariga, K.; Ohkubo, K.; Fukuzumi, S. Anion-complexation-induced stabilization of charge separa-tion. J. Am. Chem. Soc., 2009, 131, 16138.
[http://dx.doi.org/10.1021/ja9048306]
[72]
Webre, W.A.; Hill, J.P.; Matsushita, Y.; Karr, P.A.; Ariga, K.; D’Souza, F. Anion binding, electrochemistry and solvatochromism of β-brominated ox-oporphyrinogens. Dalton Trans., 2016, 45, 4006-4016.
[http://dx.doi.org/10.1039/C5DT04258E]
[73]
Scheidt, W.R.; Duval, H.F.; Oliver, A.G. Ring-strain release in neutral and dicationic 7,8,17,18-tetrabromo-5,10,15,20-tetraphenylporphyrin: Crystal structures of C44H26Br4N4 and C44H28Br4N42+.2ClO4-.3CH2Cl2. Acta Crystallogr. Sect. E Struct. Rep. Online, 2016, 72, 824-828.
[74]
Juillard, S.; Ferrand, Y.; Simonneaux, G.; Toupet, L. Molecular structure of simple mono- and diphenyl meso-substituted porphyrin diacids: influence of protonation and substitution on the distortion. Tetrahedron, 2005, 61, 3489-3495.
[http://dx.doi.org/10.1016/j.tet.2005.01.128]
[75]
Mizuno, Y.; Aida, T.; Yamaguchi, K. Chiral memory molecule: crystallo-graphic and spectroscopic studies on dynamic molecular recognition events by fully substituted chiral porphyrins. J. Am. Chem. Soc., 2000, 122, 5278-5285.
[http://dx.doi.org/10.1021/ja000052o]
[76]
Cheng, B.; Munro, O.Q.; Marques, H.M.; Scheidt, W.R. An analysis of por-phyrin molecular flexibility-Use of porphyrin diacids. J. Am. Chem. Soc., 1997, 119, 10732-10742.
[http://dx.doi.org/10.1021/ja9716214]
[77]
Garate-Morales, J.L.; Tham, F.S.; Reed, C.A. Do sitting-atop metalloporphy-rin complexes exist? Observation of N-H-π bonding in arene solvates of a diprotonated porphyrin dication. Inorg. Chem., 2007, 46, 1514-1516.
[http://dx.doi.org/10.1021/ic062213g]
[78]
Medforth, C.J.; Haddad, R.E.; Muzzi, C.M.; Dooley, N.R.; Jaquinod, L.; Shyr, D.C.; Nurco, D.J.; Olmstead, M.M.; Smith, K.M.; Ma, J-G.; Shelnutt, J.A. Unusual aryl-porphyhrin rotational barriers in peripherally crowded porphyrins. Inorg. Chem., 2003, 42, 2227-2241.
[http://dx.doi.org/10.1021/ic010958a]
[79]
Senge, M.O.; Forsyth, T.P.; Nguyen, L.T.; Smith, K.M. Sterically strained porphyrins-influence of core protonation and peripheral substitution on the conformation of tetra-meso-, octa-β-, and dodeca-substituted porphyrin di-cations. Angew. Chem. Int. Ed. Engl., 1994, 33, 2485.
[http://dx.doi.org/10.1002/anie.199424851]
[80]
Honda, T.; Nakanishi, T.; Ohkubo, K.; Kojima, T.; Fukuzumi, S. Structure and photoinduced electron transfer dynamics of a series of hydrogen-bonded supramolecular complexes composed of electron donors and a sad-dle-distorted diprotonated porphyrin. J. Am. Chem. Soc., 2010, 132, 10155-10163.
[http://dx.doi.org/10.1021/ja103889f]
[81]
Labuta, J.; Futera, Z.; Ishihara, S.; Kourilova, H.; Tateyama, Y.; Ariga, K.; Hill, J.P. Chiral guest binding as a probe of tautomerism and macrocyclic in-version in a conjugated tetrapyrrole. J. Am. Chem. Soc., 2014, 136, 2112-2118.
[http://dx.doi.org/10.1021/ja4124175]
[82]
Ishihara, S.; Labuta, J.; Futera, Z.; Mori, S.; Sato, H.; Ariga, K.; Hill, J.P. NMR spectroscopic determination of enantiomeric excess using small prochiral molecules: intermolecular transfer of magnetic anisotropy in iso-tropic media. J. Phys. Chem. B, 2018, 122, 5114-5120.
[http://dx.doi.org/10.1021/acs.jpcb.8b03684]
[83]
Takimoto, K.; Ishihara, S.; Labuta, J. Březina, V.; Hill, J.P.; Ariga, K.; Su-mita, M.; Mori, S.; Sato, H. Enantiomeric excess dependent splitting of NMR signal through co-ligand dynamic exchange in a coordination complex. J. Phys. Chem. Lett., 2020, 11, 8164-8169.
[http://dx.doi.org/10.1021/acs.jpclett.0c02284]
[84]
Šedivec, V.; Flek, J. Handbook of Analysis of Organic Solvents; John Wiley, Inc.: New York, 1976.
[85]
McMurryJ. Organic Chemistry, 4th ed; Brooks/Cole Pub. Co.: Pacific Grove, CA, 1998.
[86]
Fischer, K. Neues verfahren zur maßanalytischen bestimmung des wasserge-haltes von flüssigkeiten und festen körpern. Angew. Chem., 1935, 48, 394-396.
[http://dx.doi.org/10.1002/ange.19350482605]
[87]
Zhao, Y.; Truhlar, D.G. A new local density functional main-group thermo-chemistry, transition metal bonding, thermochemical kinetics, and noncova-lent interactions. J. Chem. Phys., 2006, 125, 194101.
[http://dx.doi.org/10.1063/1.2370993]
[88]
Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excit-ed states, and transition elements: two new functionals and 12 other func-tionals. Theor. Chem. Acc., 2008, 120, 215-241.
[http://dx.doi.org/10.1007/s00214-007-0310-x]
[89]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cos-si, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian ?09 Revision D.01 2009. Available from: http://wild.life.nctu.edu.tw/~jsyu/compchem/g09/g09ur/m_citation.htm
[90]
Ishihara, S.; Hill, J.P.; Shundo, A.; Ohkubo, K.; Fukuzumi, S.; Elsegood, M.R.J.; Teat, S.J.; Ariga, K. Reversible photoredox switching of porphyrin-bridged bis-2,6-di-t-butyl phenols. J. Am. Chem. Soc., 2011, 133, 16119-16126.
[http://dx.doi.org/10.1021/ja2056165]
[91]
Labuta, J.; Hill, J.P.; Elsegood, M.R.J.; Ariga, K. Synthesis of stable pseudotetrahedral supermolecules based on an oxoporphyrinogen. Tetrahedron Lett., 2010, 51, 2935-2938.
[http://dx.doi.org/10.1016/j.tetlet.2010.03.113]
[92]
Chahal, M.K.; Velychkivska, N.; Webre, W.A.; Labuta, J.; Ishihara, S.; Ariga, K.; D’Souza, F.; Hill, J.P. Increasing the complexity of oxoporphy-rinogen colorimetric sensing chromophores: N-Alkylation and β-Substitution. J. Porphyr. Phthalocyanines, 2019, 23, 1184-1194.
[http://dx.doi.org/10.1142/S1088424619501463]
[93]
Chahal, M.K.; Labuta, J. Březina, V.; Karr, P.A.; Matsushita, Y.; Webre, W.A.; Payne, D.T.; Ariga, K.; D’Souza, F.; Hill, J.P. Knock-on synthesis of tritopic calix[4]pyrrole host for enhanced anion interactions. Dalton Trans., 2019, 48, 15563-15596.
[http://dx.doi.org/10.1039/C9DT02365H]
[94]
Chahal, M.K.; Payne, D.T.; Labuta, J.; Karr, P.A.; D’Souza, F.; Ariga, K.; Hill, J.P. Selective phase transfer reagents (OxP-crowns) for chromogenic de-tection of nitrates especially ammonium nitrate. Chemistry, 2020, 26, 13177-13183.
[http://dx.doi.org/10.1002/chem.202003166]
[95]
Sharifti, H.; Tashkhourian, J.; Hemmateenejad, B. An array of metallic nanozymes can discriminate and detect a large number of anions. Sens. Actuators B Chem., 2021, 339, 129911.
[http://dx.doi.org/10.1016/j.snb.2021.129911]
[96]
Richards, G.J.; Cador, A.; Yamada, S.; Middleton, A.; Webre, W.A.; Labuta, J.; Karr, P.A.; Ariga, K.; D’Souza, F.; Kahlal, S.; Halet, J-F.; Hill, J.P. Am-phiprotism-coupled near-infrared emission in extended pyrazinacenes con-taining seven linearly fused pyrazine units. J. Am. Chem. Soc., 2019, 141, 19570-19574.
[http://dx.doi.org/10.1021/jacs.9b10952]
[97]
Richards, G.J.; Hill, J.P.; Mori, T.; Ariga, K. Putting the ‘N’ in acene: Pyrazi-nacenes and their structural relatives. Org. Biomol. Chem., 2011, 9, 5005-5017.
[http://dx.doi.org/10.1039/c1ob05454f]
[98]
Shetti, N.P.; Mishra, A.; Basu, S.; Aminabhavi, T.M. Versatile fullerenes as sensor materials. Mater. Today Chem., 2021, 20, 100454.
[http://dx.doi.org/10.1016/j.mtchem.2021.100454]
[99]
Sharma, V. The emergence of carbon-dots for optical molecular electronics: from sensors to logic gates, memory devices and security. J. Mater. Chem. C, 2021, 47 doi: 10.1039/D1TC03859A
[http://dx.doi.org/10.1039/D1TC03859A]
[100]
Tay, H.M.; Beer, P. Optical sensing of anions by macrocyclic and interlocked hosts. Org. Biomol. Chem., 2021, 19, 4652-4677.
[http://dx.doi.org/10.1039/D1OB00601K]
[101]
Zavala-Contreras, B.; Santacruz-Ortega, H.; Orozco-Valencia, A.U.; Inoue, M.; Ochoa Lara, K.; Navarro, R.E. Optical anion recptors with urea/thiourea subunits ona tentagel support. ACS Omega, 2021, 8, 9381-9390.
[http://dx.doi.org/10.1021/acsomega.0c05554]
[102]
Qi, X-N.; Dang, L-R.; Qu, W-J.; Zhang, Y-M.; Yao, H.; Lin, Q.; Wei, T-B. Phenazine derivatives for aoptical sensing: A review. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8, 11308-11339.
[http://dx.doi.org/10.1039/D0TC01401J]
[103]
Dikmen, Z.; Turhan, O.; Yaman, M.; Butun, V. An effective fluorescent optical sensor: Thiazolo-thiazole based dye exhibiting anion/cation sensi-tivities and acidochromism. J. Photochem. Photobiol. Chem., 2021, 419, 113456.
[http://dx.doi.org/10.1016/j.jphotochem.2021.113456]
[104]
Marchesi, S.; Bisio, C.; Camiato, F. Novel light-emitting clays with structur-al Tb3+ and Eu3+ for chromate anion detection. RSC Advances, 2020, 10, 29765-29771.
[http://dx.doi.org/10.1039/D0RA05693F]
[105]
Mizuta, T.; Sueyoshi, K.; Endo, T.; Hisamoto, H. Lipophilic fluorescent dye liquids: Förater resonance energy transfer-based fluorescence amplification for ion selective optical sensors based on a solvent polymeric membrane. Anal. Chem., 2021, 93, 4143-4148.
[http://dx.doi.org/10.1021/acs.analchem.0c05007]
[106]
Joshi, R.P.; Kumar, N. Artificial intelligence for autonomous molecular design: A perspective. Molecules, 2021, 28, 6761.
[http://dx.doi.org/10.3390/molecules26226761]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy