Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

5-Aminoimidazole-4-Carboxamide-1-β-D-Ribofuranoside (AICAR) 对三阴性乳腺癌 (TNBC) 细胞的抗癌作用:线粒体调节作为潜在机制

卷 22, 期 3, 2022

发表于: 17 March, 2022

页: [245 - 256] 页: 12

弟呕挨: 10.2174/1568009622666220207101212

价格: $65

摘要

背景:三阴性乳腺癌 (TNBC) 以 Warburg 效应和线粒体缺陷而闻名。 AMP 依赖性激酶 (AMPK) 激活参与线粒体生物发生的下游转录因子 PGC-1α、PGC-1β 或 FOXO1。 5-氨基咪唑-4-甲酰胺核苷 (AICAR) 是单磷酸腺苷的类似物,是 AMPK 的直接激活剂。 目的:在本研究中,我们试图了解 AICAR 对 TNBC 细胞 MDA-MB-231 的影响,以及线粒体生物发生的潜在变化(如果有的话)。 方法:我们研究了 AICAR 诱导的细胞活力、细胞凋亡、迁移潜力的变化以及阿霉素敏感性的变化。 结果:响应于用 750 μM AICAR 处理 MDA-MB-231 乳腺癌细胞 72 小时,然后在没有 AICAR 的新鲜培养基中处理 48 小时,我们通过 MTT 测定观察到活力下降,细胞数量减少随着细胞凋亡的出现,ELISA 增加细胞死亡,条件培养基中的乳酸减少,并且通过划痕和 transwell 迁移测定减少迁移。癌症表型的这些变化伴随着线粒体生物合成的增加,如线粒体 DNA 与核 DNA 比率的增加、乳酸浓度的降低、MitoTracker 绿色和红色染色的增加以及转录因子 PGC- 的表达增加所观察到的。 1α、NRF-1、NRF-2 和 TFAM,有助于线粒体生物发生。通过 MTT 试验评估,用 AICAR 预处理细胞 72 小时,然后用 1 μM 阿霉素处理 48 小时显示对阿霉素的敏感性增加。结论:我们的结果表明,AICAR 对 TNBC 细胞发挥有益作用,可能是通过关闭 Warburg 效应和通过线粒体调节开启抗 Warburg 效应。

关键词: AICAR,细胞凋亡,迁移,活力,化学敏感性,线粒体调节。

图形摘要
[1]
Zajkowicz, A.; Rusin, M. The activation of the p53 pathway by the AMP mimetic AICAR is reduced by inhibitors of the ATM or mTOR kinases. Mech. Ageing Dev., 2011, 132(11-12), 543-551.
[http://dx.doi.org/10.1016/j.mad.2011.09.002] [PMID: 21945951]
[2]
Steinberg, G.R.; Jørgensen, S.B. The AMP-activated protein kinase: Role in regulation of skeletal muscle metabolism and insulin sensitivity. Mini Rev. Med. Chem., 2007, 7(5), 519-526.
[http://dx.doi.org/10.2174/138955707780619662] [PMID: 17504187]
[3]
Fodor, T.; Szántó, M.; Abdul-Rahman, O.; Nagy, L.; Dér, Á.; Kiss, B.; Bai, P. Combined treatment of MCF-7 cells with AICAR and methotrexate, arrests cell cycle and reverses Warburg metabolism through AMP-Activated Protein Kinase (AMPK) and FOXO1. PLoS One, 2016, 11(2), e0150232.
[http://dx.doi.org/10.1371/journal.pone.0150232] [PMID: 26919657]
[4]
Su, C.C.; Hsieh, K.L.; Liu, P.L.; Yeh, H.C.; Huang, S.P.; Fang, S.H.; Cheng, W.C.; Huang, K.H.; Chiu, F.Y.; Lin, I.L.; Huang, M.Y.; Li, C.Y. AICAR induces apoptosis and inhibits migration and invasion in prostate cancer cells through an AMPK/mTOR-dependent pathway. Int. J. Mol. Sci., 2019, 20(7), 1647.
[http://dx.doi.org/10.3390/ijms20071647] [PMID: 30987073]
[5]
López, J.M.; Santidrián, A.F.; Campàs, C.; Gil, J. 5-Aminoimidazole-4-carboxamide riboside induces apoptosis in Jurkat cells, but the AMP-activated protein kinase is not involved. Biochem. J., 2003, 370(Pt 3), 1027-1032.
[http://dx.doi.org/10.1042/bj20021053] [PMID: 12452797]
[6]
Jacobs, R.L.; Lingrell, S.; Dyck, J.R.; Vance, D.E. Inhibition of hepatic phosphatidylcholine synthesis by 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside is independent of AMP-activated protein kinase activation. J. Biol. Chem., 2007, 282(7), 4516-4523.
[7]
Fogarty, S.; Hardie, D.G. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim. Biophys. Acta, 2010, 1804(3), 581-591.
[8]
Hardie, D.G. Molecular pathways: Is AMPK a friend or a foe in cancer? Clin. Cancer Res., 2015, 21(17), 3836-3840.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3300] [PMID: 26152739]
[9]
Jose, C.; Hébert-Chatelain, E.; Bellance, N.; Larendra, A.; Su, M.; Nouette-Gaulain, K.; Rossignol, R. AICAR inhibits cancer cell growth and triggers cell-type distinct effects on OXPHOS biogenesis, oxidative stress and Akt activation. Biochim. Biophys. Acta, 2011, 1807(6), 707-718.
[http://dx.doi.org/10.1016/j.bbabio.2010.12.002] [PMID: 21692240]
[10]
Kishton, R.J.; Barnes, C.E.; Nichols, A.G.; Cohen, S.; Gerriets, V.A.; Siska, P.J.; Macintyre, A.N.; Goraksha-Hicks, P.; de Cubas, A.A.; Liu, T.; Warmoes, M.O.; Abel, E.D.; Yeoh, A.E.; Gershon, T.R.; Rathmell, W.K.; Richards, K.L.; Locasale, J.W.; Rathmell, J.C.; Macintyre, A.N.; Goraksha-Hicks, P.; de Cubas, A.A.; Liu, T.; Warmoes, M.O. AMPK is essential to balance glycolysis and mitochondrial metabolism to control T-ALL cell stress and survival. Cell Metab., 2016, 23(4), 649-662.
[http://dx.doi.org/10.1016/j.cmet.2016.03.008] [PMID: 27076078]
[11]
Cheng, X.; Kim, J.Y.; Ghafoory, S.; Duvaci, T.; Rafiee, R.; Theobald, J.; Alborzinia, H.; Holenya, P.; Fredebohm, J.; Merz, K.H.; Mehrabi, A.; Hafezi, M.; Saffari, A.; Eisenbrand, G.; Hoheisel, J.D.; Wölfl, S. Methylisoindigo preferentially kills cancer stem cells by interfering cell metabolism via inhibition of LKB1 and activation of AMPK in PDACs. Mol. Oncol., 2016, 10(6), 806-824.
[http://dx.doi.org/10.1016/j.molonc.2016.01.008] [PMID: 26887594]
[12]
Park, S.Y.; Lee, Y.K.; Kim, H.J.; Park, O.J.; Kim, Y.M. AMPK interacts with β-catenin in the regulation of hepatocellular carcinoma cell proliferation and survival with selenium treatment. Oncol. Rep., 2016, 35(3), 1566-1572.
[http://dx.doi.org/10.3892/or.2015.4519] [PMID: 26707164]
[13]
Choudhury, Y.; Yang, Z.; Ahmad, I.; Nixon, C.; Salt, I.P.; Leung, H.Y. AMP-activated protein kinase (AMPK) as a potential therapeutic target independent of PI3K/Akt signaling in prostate cancer. Oncoscience, 2014, 1(6), 446-456.
[http://dx.doi.org/10.18632/oncoscience.49] [PMID: 25594043]
[14]
Seyfried, T.N.; Shelton, L.M. Cancer as a metabolic disease. Nutr. Metab. (Lond.), 2010, 7(7), 7.
[http://dx.doi.org/10.1186/1743-7075-7-7] [PMID: 20181022]
[15]
Coller, H.A. Is cancer a metabolic disease? Am. J. Pathol., 2014, 184(1), 4-17.
[http://dx.doi.org/10.1016/j.ajpath.2013.07.035] [PMID: 24139946]
[16]
Ward, P.S.; Thompson, C.B. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell, 2012, 21(3), 297-308.
[http://dx.doi.org/10.1016/j.ccr.2012.02.014] [PMID: 22439925]
[17]
Fadaka, A.; Ajiboye, B.; Ojo, O.; Adewale, O.; Olayide, I.; Emuowhochere, R. Biology of glucose metabolization in cancer cells. J. Oncol. Sci, 2017, 3(2), 45-51.
[http://dx.doi.org/10.1016/j.jons.2017.06.002]
[18]
Avagliano, A.; Ruocco, M.R.; Aliotta, F.; Belviso, I.; Accurso, A.; Masone, S.; Montagnani, S.; Arcucci, A. Mitochondrial flexibility of breast cancers: A growth advantage and a therapeutic opportunity. Cells, 2019, 8(5), 401.
[http://dx.doi.org/10.3390/cells8050401]
[19]
Lee, H.C.; Li, S.H.; Lin, J.C.; Wu, C.C.; Yeh, D.C.; Wei, Y.H. Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutat. Res., 2004, 547(1-2), 71-78.
[http://dx.doi.org/10.1016/j.mrfmmm.2003.12.011] [PMID: 15013701]
[20]
Wu, C.W.; Yin, P.H.; Hung, W.Y.; Li, A.F.; Li, S.H.; Chi, C.W.; Wei, Y.H.; Lee, H.C. Mitochondrial DNA mutations and mitochondrial DNA depletion in gastric cancer. Genes Chromosomes Cancer, 2005, 44(1), 19-28.
[http://dx.doi.org/10.1002/gcc.20213] [PMID: 15892105]
[21]
Tseng, L.M.; Yin, P.H.; Chi, C.W.; Hsu, C.Y.; Wu, C.W.; Lee, L.M.; Wei, Y.H.; Lee, H.C. Mitochondrial DNA mutations and mitochondrial DNA depletion in breast cancer. Genes Chromosomes Cancer, 2006, 45(7), 629-638.
[http://dx.doi.org/10.1002/gcc.20326] [PMID: 16568452]
[22]
Yamada, S.; Nomoto, S.; Fujii, T.; Kaneko, T.; Takeda, S.; Inoue, S.; Kanazumi, N.; Nakao, A. Correlation between copy number of mitochondrial DNA and clinico-pathologic parameters of hepatocellular carcinoma. Eur. J. Surg. Oncol., 2006, 32(3), 303-307.
[http://dx.doi.org/10.1016/j.ejso.2006.01.002] [PMID: 16478656]
[23]
Yu, M.; Zhou, Y.; Shi, Y.; Ning, L.; Yang, Y.; Wei, X.; Zhang, N.; Hao, X.; Niu, R. Reduced mitochondrial DNA copy number is correlated with tumor progression and prognosis in Chinese breast cancer patients. IUBMB Life, 2007, 59(7), 450-457.
[http://dx.doi.org/10.1080/15216540701509955] [PMID: 17654121]
[24]
Xing, J.; Chen, M.; Wood, C.G.; Lin, J.; Spitz, M.R.; Ma, J.; Amos, C.I.; Shields, P.G.; Benowitz, N.L.; Gu, J.; de Andrade, M.; Swan, G.E.; Wu, X. Mitochondrial DNA content: its genetic heritability and association with renal cell carcinoma. J. Natl. Cancer Inst., 2008, 100(15), 1104-1112.
[http://dx.doi.org/10.1093/jnci/djn213] [PMID: 18664653]
[25]
Kim, M.M.; Clinger, J.D.; Masayesva, B.G.; Ha, P.K.; Zahurak, M.L.; Westra, W.H.; Califano, J.A. Mitochondrial DNA quantity increases with histopathologic grade in premalignant and malignant head and neck lesions. Clin. Cancer Res., 2004, 10(24), 8512-8515.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0734] [PMID: 15623632]
[26]
Wang, Y.; Liu, V.W.; Xue, W.C.; Cheung, A.N.; Ngan, H.Y. Association of decreased mitochondrial DNA content with ovarian cancer progression. Br. J. Cancer, 2006, 95(8), 1087-1091.
[http://dx.doi.org/10.1038/sj.bjc.6603377] [PMID: 17047655]
[27]
Lin, C.S.; Chang, S.C.; Wang, L.S.; Chou, T.Y.; Hsu, W.H.; Wu, Y.C.; Wei, Y.H. The role of mitochondrial DNA alterations in esophageal squamous cell carcinomas. J. Thorac. Cardiovasc. Surg., 2010, 139(1), 189-197.e4.
[http://dx.doi.org/10.1016/j.jtcvs.2009.04.007] [PMID: 19660406]
[28]
Ayyasamy, V.; Owens, K.M.; Desouki, M.M.; Liang, P.; Bakin, A.; Thangaraj, K.; Buchsbaum, D.J.; LoBuglio, A.F.; Singh, K.K. Cellular model of Warburg effect identifies tumor promoting function of UCP2 in breast cancer and its suppression by genipin. PLoS One, 2011, 6(9), e24792.
[http://dx.doi.org/10.1371/journal.pone.0024792] [PMID: 21935467]
[29]
Kim, S.; Kim, D.H.; Jung, W.H.; Koo, J.S. Metabolic phenotypes in triple-negative breast cancer. Tumour Biol., 2013, 34(3), 1699-1712.
[http://dx.doi.org/10.1007/s13277-013-0707-1] [PMID: 23443971]
[30]
Feng, W.; Gentles, A.; Nair, R.V.; Huang, M.; Lin, Y.; Lee, C.Y.; Cai, S.; Scheeren, F.A.; Kuo, A.H.; Diehn, M. Targeting unique metabolic properties of breast tumor initiating cells. Stem Cells, 2014, 32(7), 1734-1745.
[http://dx.doi.org/10.1002/stem.1662] [PMID: 24497069]
[31]
Tang, X.; Lin, C.C.; Spasojevic, I.; Iversen, E.S.; Chi, J.T.; Marks, J.R. A joint analysis of metabolomics and genetics of breast cancer. Breast Cancer Res., 2014, 16(4), 415.
[http://dx.doi.org/10.1186/s13058-014-0415-9] [PMID: 25091696]
[32]
Suhane, S.; Ramanujan, V.K. Thyroid hormone differentially modulates Warburg phenotype in breast cancer cells. Biochem. Biophys. Res. Commun., 2011, 414(1), 73-78.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.024] [PMID: 21945435]
[33]
Pineda, C.T.; Ramanathan, S.; Fon Tacer, K.; Weon, J.L.; Potts, M.B.; Ou, Y.H.; White, M.A.; Potts, P.R. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell, 2015, 160(4), 715-728.
[http://dx.doi.org/10.1016/j.cell.2015.01.034] [PMID: 25679763]
[34]
Isidoro, A.; Casado, E.; Redondo, A.; Acebo, P.; Espinosa, E.; Alonso, A.M.; Cejas, P.; Hardisson, D.; Fresno Vara, J.A.; Belda-Iniesta, C.; González-Barón, M.; Cuezva, J.M. Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis, 2005, 26(12), 2095-2104.
[http://dx.doi.org/10.1093/carcin/bgi188] [PMID: 16033770]
[35]
Gonzalez-Angulo, A.M.; Iwamoto, T.; Liu, S.; Chen, H.; Do, K.A.; Hortobagyi, G.N.; Mills, G.B.; Meric-Bernstam, F.; Symmans, W.F.; Pusztai, L. Gene expression, molecular class changes, and pathway analysis after neoadjuvant systemic therapy for breast cancer. Clin. Cancer Res., 2012, 18(4), 1109-1119.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2762] [PMID: 22235097]
[36]
Yadav, N.; Chandra, D. Mitochondrial DNA mutations and breast tumorigenesis. Biochim. Biophys. Acta, 2013, 1836(2), 336-344.
[http://dx.doi.org/10.1016/j.bbcan.2013.10.002] [PMID: 24140413]
[37]
Mouradian, M.; Kikawa, K.D.; Dranka, B.P.; Komas, S.M.; Kalyanaraman, B.; Pardini, R.S. Docosahexaenoic acid attenuates breast cancer cell metabolism and the Warburg phenotype by targeting bioenergetic function. Mol. Carcinog., 2015, 54(9), 810-820.
[http://dx.doi.org/10.1002/mc.22151]
[38]
Sauer, H.; Engel, S.; Milosevic, N.; Sharifpanah, F.; Wartenberg, M. Activation of AMP-kinase by AICAR induces apoptosis of DU-145 prostate cancer cells through generation of reactive oxygen species and activation of c-Jun N-terminal kinase. Int. J. Oncol., 2012, 40(2), 501-508.
[39]
Zhang, J.; Xu, H.; Zhou, X.; Li, Y.; Liu, T.; Yin, X.; Zhang, B. Role of metformin in inhibiting estrogen-induced proliferation and regulating ERα and ERβ expression in human endometrial cancer cells. Oncol. Lett., 2017, 14(4), 4949-4956.
[http://dx.doi.org/10.3892/ol.2017.6877]
[40]
Morishita, M.; Kawamoto, T.; Hara, H.; Onishi, Y.; Ueha, T.; Minoda, M.; Katayama, E.; Takemori, T.; Fukase, N.; Kurosaka, M.; Kuroda, R.; Akisue, T. AICAR induces mitochondrial apoptosis in human osteosarcoma cells through an AMPK-dependent pathway. Int. J. Oncol., 2017, 50(1), 23-30.
[http://dx.doi.org/10.3892/ijo.2016.3775] [PMID: 27878239]
[41]
Hu, H.; Dong, Z.; Tan, P.; Zhang, Y.; Liu, L.; Yang, L.; Liu, Y.; Cui, H. Antibiotic drug tigecycline inhibits melanoma progression and metastasis in a p21CIP1/Waf1-dependent manner. Oncotarget, 2016, 7(3), 3171-3185.
[http://dx.doi.org/10.18632/oncotarget.6419] [PMID: 26621850]
[42]
Nasser, M.I.; Masood, M.; Wei, W.; Li, X.; Zhou, Y.; Liu, B.; Li, J.; Li, X. Cordycepin induces apoptosis in SGC 7901 cells through mitochondrial extrinsic phosphorylation of PI3K/Akt by generating ROS. Int. J. Oncol., 2017, 50(3), 911-919.
[http://dx.doi.org/10.3892/ijo.2017.3862] [PMID: 28197639]
[43]
Parmar, H.S.; Houdek, Z.; Pesta, M.; Vaclava, C.; Dvorak, P.; Hatina, J. Protective effect of aspirin against oligomeric Aβ42 induced mitochondrial alterations and neurotoxicity in differentiated EC P19 neuronal cells. Curr. Alzheimer Res., 2017, 14(8), 810-819.
[http://dx.doi.org/10.2174/1567205014666170203104757] [PMID: 28164768]
[44]
Piantadosi, C.A.; Suliman, H.B. Redox regulation of mitochondrial biogenesis. Free Radic. Biol. Med., 2012, 53(11), 2043-2053.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.014] [PMID: 23000245]
[45]
Marin, T.L.; Gongol, B.; Zhang, F.; Martin, M.; Johnson, D.A.; Xiao, H.; Wang, Y.; Subramaniam, S.; Chien, S.; Shyy, J.Y. AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1. Sci. Signal., 2017, 10(464), 74-78.
[http://dx.doi.org/10.1126/scisignal.aaf7478]
[46]
Jiang, B. Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes Dis., 2017, 4(1), 25-27.
[http://dx.doi.org/10.1016/j.gendis.2017.02.003] [PMID: 30258905]
[47]
Barrett, C.S.; Millena, A.C.; Khan, S.A. TGF-beta effects on prostate cancer cell migration and invasion require Fos B. Prostate, 2017, 77(1), 72-81.
[48]
Cao, W.; Li, J.; Hao, Q.; Vadgama, J.V.; Wu, Y. AMP-activated protein kinase: A potential therapeutic target for triple-negative breast cancer. Breast Cancer Res., 2019, 21(1), 29.
[http://dx.doi.org/10.1186/s13058-019-1107-2] [PMID: 30791936]
[49]
Tsouko, E.; Wang, J.; Frigo, D.E.; Aydogdu, E.; Williams, C. miR-200a inhibits migration of triple-negative breast cancer cells through direct repression of the EPHA2 oncogene. Carcinogenesi, 2015, 36(9), 1051-1060.
[50]
Scott, K.E.; Wheeler, F.B.; Davis, A.L.; Thomas, M.J.; Ntambi, J.M.; Seals, D.F.; Kridel, S.J. Metabolic regulation of invadopodia and invasion by acetyl-CoA carboxylase 1 and de novo lipogenesis. PLoS One, 2012, 7(1), e29761.
[http://dx.doi.org/10.1371/journal.pone.0029761]
[51]
Doria, M.L.; Ribeiro, A.S.; Wang, J.; Cotrim, C.Z.; Domingues, P.; Williams, C.; Domingues, M.R.; Helguero, L.A. Fatty acid and phospholipid biosynthetic pathways are regulated throughout mammary epithelial cell differentiation and correlate to breast cancer survival. FASEB J., 2014, 28(10), 4247-4264.
[http://dx.doi.org/10.1096/fj.14-249672]
[52]
Kikuno, N.; Shiina, H.; Urakami, S.; Kawamoto, K.; Hirata, H.; Tanaka, Y.; Place, R.F.; Pookot, D.; Majid, S.; Igawa, M.; Dahiya, R. Knockdown of astrocyte-elevated gene-1 inhibits prostate cancer progression through upregulation of FOXO3a activity. Oncogene, 2007, 26(55), 7647-7655.
[53]
Sarkar, D.; Park, E.S.; Emdad, L.; Lee, S.G.; Su, Z.Z.; Fisher, P.B. Molecular basis of nuclear factor-kappaB activation by astrocyte elevated gene-1. Cancer Res., 2008, 68(5), 1478-1484.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6164] [PMID: 18316612]
[54]
Rae, C.; Mairs, R.J. AMPK activation by AICAR sensitizes prostate cancer cells to radiotherapy. Oncotarget, 2019, 10(7), 749-759.
[http://dx.doi.org/10.18632/oncotarget.26598] [PMID: 30774777]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy