Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Choroidal Thickness Measured by Ocular Coherence Tomography (SD-OCT) and Body Mass Index in Healthy Saudi Women: A Cross-sectional Controlled Study

Author(s): Ferial Zeried, Ezinne Ngozika, Mana Al-Anazi, Khathutshelo Mashige and Uchechukwu Osuagwu*

Volume 18, Issue 6, 2022

Published on: 31 January, 2022

Article ID: e310122200722 Pages: 8

DOI: 10.2174/1573405618666220131105957

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Obesity is one of the major public health problems globally, especially among women. Obesity is associated with glaucoma, cataract, age-related macular degeneration and diabetic retinopathy. Although it is clear that the anatomy and physiologic functions of the choroid may be affected by obesity, data investigating the effect of obesity on the choroid is limited and/or unavailable for the Saudi population.

Objective: To assess Choroidal Thickness (CT) changes in a sample of healthy Saudi Arabian women with different Body Mass Index (BMI) using Spectral-domain Ocular Coherence Tomography (SD-OCT).

Methods: A total of 140 healthy women aged 18-29 years (mean age ± standard deviation SD, 24.5 ± 1.7 years) with different BMI, axial length (AL) ≤ 24 ± 1.0 mm, and spherical equivalent refraction (SER) of ≤ ±2.0 dioptres were enrolled for the study. The participants were age and refractionmatched, and grouped into underweight (BMI ≤ 18.0 kg/m2) (n = 30), normal (control group) (18.5–24.9 kg/m2) (n = 43), overweight (25.0–29.9 kg/m2) (n=37), and obese study groups (≥ 30.0 kg/m2) (n = 30). SD-OCT imaging was performed on one eye of each participant. Comparisons among groups for all locations and the associations between CT and other variables were examined.

Results: The mean CT at the subfoveal region (285 ± 31 μm, range: 203 μm to 399 μm) was significantly greater, and it was the lowest in the nasal region (248 ± 26 μm, range 154 to 304) compared with other locations, across all the groups (p < 0.05). Compared with the control, the subfoveal choroid was thinner in the obese group (mean difference: 22.6 μm, 95% Confidence Interval; CI: 8.6 μm to 36.6 μm; p = 0.02) and across all locations (p < 0.05) but thicker at the temporal location in the underweight group (12.4 μm, 95% CI: -23.7 μm to −1.04 μm; p = 0.01). No significant association of subfoveal CT with any of the measured parameters, including age (p-values ranged from 0.10 to 0.90), was found.

Conclusion: BMI may have an influence on the CT of healthy individuals and could be a cofounder in research studies on CT. It is, therefore, recommended that BMI should be evaluated in the clinical diagnosis and management of conditions associated with choroid in healthy individuals.

Keywords: Obesity, body mass index, choroidal thickness, spectral domain ocular coherence tomography, imaging, clinical diagnosis.

Graphical Abstract
[1]
Alqarni MS. A review of prevalence of obesity in saudi arabia. J Obes Eat Disord 2016; 2: 2.
[http://dx.doi.org/10.21767/2471-8203.100025]
[2]
Han JC, Lawlor DA, Kimm SY. Childhood obesity. Lancet 2010; 375(9727): 1737-48.
[http://dx.doi.org/10.1016/S0140-6736(10)60171-7] [PMID: 20451244]
[3]
Roberto CA, Swinburn B, Hawkes C, et al. Patchy progress on obesity prevention: Emerging examples, entrenched barriers, and new thinking. Lancet 2015; 385(9985): 2400-9.
[http://dx.doi.org/10.1016/S0140-6736(14)61744-X] [PMID: 25703111]
[4]
DeNicola E, Aburizaiza OS, Siddique A, Khwaja H, Carpenter DO. Obesity and public health in the Kingdom of Saudi Arabia. Rev Environ Health 2015; 30(3): 191-205.
[http://dx.doi.org/10.1515/reveh-2015-0008] [PMID: 26351801]
[5]
Khan F. 70% of Saudis are obese, says study. 2014. Available from: www.arabnews.com/news/527031
[6]
Memish ZA, El Bcheraoui C, Tuffaha M, et al. Obesity and associated factors- Kingdom of Saudi Arabia, 2013. Prev Chronic Dis 2014; 11: E174.
[http://dx.doi.org/10.5888/pcd11.140236] [PMID: 25299980]
[7]
World Health Organization. Obesity and overweight. 2020. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/
[8]
Kopelman PG. Obesity as a medical problem. Nature 2000; 404(6778): 635-43.
[http://dx.doi.org/10.1038/35007508] [PMID: 10766250]
[9]
Gunes A, Uzun F, Karaca EE, Kalaycı M. Evaluation of Anterior Segment Parameters in Obesity. Korean J Ophthalmol 2015; 29(4): 220-5.
[http://dx.doi.org/10.3341/kjo.2015.29.4.220] [PMID: 26240505]
[10]
Panon N, Luangsawang K, Rugaber C, et al. Correlation between body mass index and ocular parameters. Clin Ophthalmol 2019; 13: 763-9.
[http://dx.doi.org/10.2147/OPTH.S196622] [PMID: 31118554]
[11]
Bhayana AA, Kumar V, Tayade A, Chandra M, Chandra P, Kumar A. Choroidal thickness in normal Indian eyes using swept- source optical coherence tomography. Indian J Ophthalmol 2019; 67(2): 252-5.
[http://dx.doi.org/10.4103/ijo.IJO_668_18] [PMID: 30672480]
[12]
Entezari M, Karimi S, Ramezani A, Nikkhah H, Fekri Y, Kheiri B. Choroidal thickness in healthy subjects. J Ophthalmic Vis Res 2018; 13(1): 39-43.
[http://dx.doi.org/10.4103/jovr.jovr_148_16] [PMID: 29403588]
[13]
Michalewska Z, Michalewski J, Nawrocki J. Swept Source OCT: Wide-field simultaneous choroid, retina and vitreous visualization. Retina Today 2013; 9: 50-6.
[14]
Alonso-Caneiro D, Read SA, Vincent SJ, Collins MJ, Wojtkowski M. Tissue thickness calculation in ocular optical coherence tomography. Biomed Opt Express 2016; 7(2): 629-45.
[http://dx.doi.org/10.1364/BOE.7.000629] [PMID: 26977367]
[15]
Guyer DR. The choroid: Structural considerations. In: Ryan SJ, Ed. Retina. 4th ed. Philadelphia: Elsevier 2006; pp. 34-42.
[http://dx.doi.org/10.1016/B978-0-323-02598-0.50009-4]
[16]
Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y. Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci 2010; 51(4): 2173-6.
[http://dx.doi.org/10.1167/iovs.09-4383] [PMID: 19892874]
[17]
Tan CS, Ouyang Y, Ruiz H, Sadda SR. Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53(1): 261-6.
[http://dx.doi.org/10.1167/iovs.11-8782] [PMID: 22167095]
[18]
Ouyang Y, Heussen FM, Mokwa N, et al. Spatial distribution of posterior pole choroidal thickness by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 2011; 52(9): 7019-26.
[http://dx.doi.org/10.1167/iovs.11-8046] [PMID: 21810980]
[19]
Yilmaz I, Ozkaya A, Kocamaz M, et al. Correlation of choroidal thickness and body mass index. Retina 2015; 35(10): 2085-90.
[http://dx.doi.org/10.1097/IAE.0000000000000582] [PMID: 25932552]
[20]
Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol 2009; 147(5): 811-5.
[http://dx.doi.org/10.1016/j.ajo.2008.12.008] [PMID: 19232559]
[21]
Yumusak E, Ornek K, Durmaz SA, Cifci A, Guler HA, Bacanli Z. Choroidal thickness in obese women. BMC Ophthalmol 2016; 16(1): 48.
[http://dx.doi.org/10.1186/s12886-016-0227-z] [PMID: 27142207]
[22]
Wei WB, Xu L, Jonas JB, et al. Subfoveal choroidal thickness: The Beijing Eye Study. Ophthalmology 2013; 120(1): 175-80.
[http://dx.doi.org/10.1016/j.ophtha.2012.07.048] [PMID: 23009895]
[23]
Bulus AD, Can ME, Baytaroglu A, Can GD, Cakmak HB, Andiran N. Choroidal thickness in childhood obesity. Ophthalmic Surg Lasers Imaging Retina 2017; 48(1): 10-7.
[http://dx.doi.org/10.3928/23258160-20161219-02] [PMID: 28060389]
[24]
Heirani M, Shandiz JH, Shojaei A, Narooie-Noori F. Choroidal thickness profile in normal iranian eyes with different refractive status by spectral-domain optical coherence tomography. J Curr Ophthalmol 2020; 32(1): 58-68.
[http://dx.doi.org/10.1016/j.joco.2019.08.005] [PMID: 32510015]
[25]
Wang W, He M, Zhong X. Sex-dependent choroidal thickness differences in healthy adults: A study based on original and synthesized data. Curr Eye Res 2018; 43(6): 796-803.
[http://dx.doi.org/10.1080/02713683.2018.1428995] [PMID: 29451995]
[26]
Al-Hanawi MK, Chirwa GC, Kamninga TM. Decomposition of gender differences in body mass index in saudi arabia using unconditional quantile regression: Analysis of national-level survey data. Int J Environ Res Public Health 2020; 17(7): 2330.
[http://dx.doi.org/10.3390/ijerph17072330] [PMID: 32235630]
[27]
Ding X, Li J, Zeng J, et al. Choroidal thickness in healthy Chinese subjects. Invest Ophthalmol Vis Sci 2011; 52(13): 9555-60.
[http://dx.doi.org/10.1167/iovs.11-8076] [PMID: 22058342]
[28]
Manjunath V, Taha M, Fujimoto JG, Duker JS. Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography. Am J Ophthalmol 2010; 150(3): 325-329.e1.
[http://dx.doi.org/10.1016/j.ajo.2010.04.018] [PMID: 20591395]
[29]
Ruiz-Moreno JM, Flores-Moreno I, Lugo F, Ruiz-Medrano J, Montero JA, Akiba M. Macular choroidal thickness in normal pediatric population measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 2013; 54(1): 353-9.
[http://dx.doi.org/10.1167/iovs.12-10863] [PMID: 23249703]
[30]
Heirani M, Shandiz JH, Shojaei A, Narooie-Noori F. Choroidal thickness profile in normal iranian eyes with different refractive status by spectral-domain optical coherence tomography. J Cur Ophthalmol 2020; 32(1): 58-68.
[31]
Agawa T, Miura M, Ikuno Y, et al. Choroidal thickness measurement in healthy Japanese subjects by three-dimensional high-penetration optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 2011; 249(10): 1485-92.
[http://dx.doi.org/10.1007/s00417-011-1708-7] [PMID: 21556938]
[32]
Li T, Jiang B, Zhou X. Axial length elongation in primary school-age children: A 3-year cohort study in Shanghai. BMJ Open 2019; 9(10): e029896.
[http://dx.doi.org/10.1136/bmjopen-2019-029896] [PMID: 31676647]
[33]
Park KA, Oh SY. Choroidal thickness in healthy children. Retina 2013; 33(9): 1971-6.
[http://dx.doi.org/10.1097/IAE.0b013e3182923477] [PMID: 23644561]
[34]
Zhang JM, Wu JF, Chen JH, et al. Macular choroidal thickness in children: The Shandong Children Eye Study. Invest Ophthalmol Vis Sci 2015; 56(13): 7646-52.
[http://dx.doi.org/10.1167/iovs.15-17137] [PMID: 26624496]
[35]
Xiong S, He X, Zhang B, et al. Changes in choroidal thickness varied by age and refraction in children and adolescents: A 1-year longitudinal study. Am J Ophthalmol 2020; 213: 46-56.
[http://dx.doi.org/10.1016/j.ajo.2020.01.003] [PMID: 31945330]
[36]
Wong AC, Chan CW, Hui SP. Relationship of gender, body mass index, and axial length with central retinal thickness using optical coherence tomography. Eye (Lond) 2005; 19(3): 292-7.
[http://dx.doi.org/10.1038/sj.eye.6701466] [PMID: 15258609]
[37]
Sun C, Ponsonby AL, Brown SA, et al. Associations of birth weight with ocular biometry, refraction, and glaucomatous endophenotypes: The Australian Twins Eye Study. Am J Ophthalmol 2010; 150(6): 909-16.
[http://dx.doi.org/10.1016/j.ajo.2010.06.028] [PMID: 20970773]
[38]
Németh J, Horóczi Z. Changes in the ocular dimensions after trabeculectomy. Int Ophthalmol 1992; 16(4-5): 355-7.
[http://dx.doi.org/10.1007/BF00917990] [PMID: 1428570]
[39]
Read SA, Collins MJ, Vincent SJ, Alonso-Caneiro D. Choroidal thickness in myopic and nonmyopic children assessed with enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci 2013; 54(12): 7578-86.
[http://dx.doi.org/10.1167/iovs.13-12772] [PMID: 24176903]
[40]
Nishi T, Ueda T, Hasegawa T, Miyata K, Ogata N. Choroidal thickness in children with hyperopic anisometropic amblyopia. Br J Ophthalmol 2014; 98(2): 228-32.
[http://dx.doi.org/10.1136/bjophthalmol-2013-303938] [PMID: 24187049]
[41]
Chakraborty R, Read SA, Collins MJ. Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics. Invest Ophthalmol Vis Sci 2011; 52(8): 5121-9.
[http://dx.doi.org/10.1167/iovs.11-7364] [PMID: 21571673]
[42]
Akhtar Z, Rishi P, Srikanth R, Rishi E, Bhende M, Raman R. Choroidal thickness in normal Indian subjects using Swept source optical coherence tomography. PLoS One 2018; 13(5): e0197457.
[http://dx.doi.org/10.1371/journal.pone.0197457] [PMID: 29768485]
[43]
Lee GY, Yu S, Kang HG, Kim JS, Lee KW, Lee JH. Choroidal thickness variation according to refractive error measured by spectral domain-optical coherence tomography in korean children. Korean J Ophthalmol 2017; 31(2): 151-8.
[http://dx.doi.org/10.3341/kjo.2017.31.2.151] [PMID: 28367044]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy