Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Treatment of Tuberculosis in Nano Era: Recent Avenues

Author(s): Ritu Rathi, Manju Nagpal*, Malkiet Kaur, Priyansh Ballouria, Redhima Dutta, Geeta Aggarwal and Sandeep Arora

Volume 18, Issue 7, 2022

Published on: 19 April, 2022

Article ID: e270122200564 Pages: 14

DOI: 10.2174/1573407218666220127085637

Price: $65

Abstract

Tuberculosis (TB) is a life-threatening infectious disease caused by the bacteria Mycobacterium tuberculosis (MTB), which mostly affects the lungs. According to the World Health Organization (WHO) report 2020, there were over 10 million cases of tuberculosis worldwide, with around 1.4 million people dying, wherein India accounts for over 26% of the global burden. Prolonged treatment, high pill burden, low compliance, development of multiple drug resistance and subsequent intolerable toxicity lead to the emergence of new nanotechnology-based drug delivery approaches involving micro-metric and nano-metric carriers. Nanotechnology is superior to conventional therapies as it offers site specific drug delivery of antimicrobial drugs that increases therapeutic efficacy and reduces systemic toxicity associated with higher doses and also prevents the drug from early degradation, increased solubility and blood retention time. This review focuses on the different nanotechnological carriers via pulmonary route, including liposomes, niosomes, solid lipid nanocarriers, dendrimers, nanoparticles, microspheres and microparticles for tackling the problems related to the treatment of TB. The current review gives a summary of the possible utilization of nanotechnologybased carrier systems to overcome the disadvantages of TB therapy. It also provides a summary of the importance and advancements of directing nanocarriers at bacterial reservoir. Eventually, the article presents an overview of the success in clinical application of such systems.

Keywords: Pulmonary, nanotechnology, nanoparticles, mycobacteria, multi-drug resistance, tuberculosis.

Graphical Abstract
[1]
Kerry, R.G.; Gouda, S.; Sil, B.; Das, G.; Shin, H.S.; Ghodake, G.; Patra, J.K. Cure of tuberculosis using nanotechnology: An overview. J. Microbiol., 2018, 56(5), 287-299.
[http://dx.doi.org/10.1007/s12275-018-7414-y] [PMID: 29721825]
[2]
Prasad, H.K.; Singhal, A.; Mishra, A.; Shah, N.P.; Katoch, V.M.; Thakral, S.S.; Singh, D.V.; Chumber, S.; Bal, S.; Aggarwal, S.; Padma, M.V.; Kumar, S.; Singh, M.K.; Acharya, S.K. Bovine tuberculosis in India: potential basis for zoonosis. Tuberculosis (Edinb.), 2005, 85(5-6), 421-428.
[http://dx.doi.org/10.1016/j.tube.2005.08.005] [PMID: 16253560]
[3]
Srivastava, K.; Chauhan, D.S.; Gupta, P.; Singh, H.B.; Sharma, V.D.; Yadav, V.S. Sreekumaran; Thakral, S.S.; Dharamdheeran, J.S.; Nigam, P.; Prasad, H.K.; Katoch, V.M. Isolation of Mycobacterium bovis & M. tuberculosis from cattle of some farms in north India-possible relevance in human health. Indian J. Med. Res., 2008, 128(1), 26-31.
[PMID: 18820355]
[4]
Hardie, R.M.; Watson, J.M. Mycobacterium bovis in England and Wales: past, present and future. Epidemiol. Infect., 1992, 109(1), 23-33.
[PMID: 1499671]
[5]
O’Reilly, L.M.; Daborn, C.J. The epidemiology of Mycobacterium bovis infections in animals and man: a review. Tuber. Lung Dis., 1995, 76(Suppl. 1), 1-46.
[http://dx.doi.org/10.1016/0962-8479(95)90591-X] [PMID: 7579326]
[6]
Mbuh, T.P.; Ane-Anyangwe, I.; Adeline, W.; Thumamo Pokam, B.D.; Meriki, H.D.; Mbacham, W.F. Bacteriologically confirmed extra pulmonary tuberculosis and treatment outcome of patients consulted and treated under program conditions in the littoral region of Cameroon. BMC Pulm. Med., 2019, 19(1), 17.
[http://dx.doi.org/10.1186/s12890-018-0770-x] [PMID: 30654769]
[7]
Mathiasen, V.D.; Andersen, P.H.; Johansen, I.S.; Lillebaek, T.; Wejse, C. Clinical features of tuberculous lymphadenitis in a low-incidence country. Int. J. Infect. Dis., 2020, 98, 366-371.
[http://dx.doi.org/10.1016/j.ijid.2020.07.011] [PMID: 32663602]
[8]
GLOBAL TUBERCULOSIS REPORT. 2020.
[9]
Wani, R.L. Tuberculosis 2: Pathophysiology and microbiology of pulmonary tuberculosis. South Sudan Med. J., 2013, 6(1), 10-12.
[10]
Comstock, GW Epidemiology of tuberculosis. Am. Rev. Respir. Dis., 1982, 125((3P2)), 8-15.
[11]
Ahmad, S. Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection. Clin. Dev. Immunol., 2011, 2011, 814943.
[12]
Marais, B.J.; Pai, M. Recent advances in the diagnosis of childhood tuberculosis. Arch. Dis. Child., 2007, 92(5), 446-452.
[http://dx.doi.org/10.1136/adc.2006.104976] [PMID: 17449528]
[13]
Nasiruddin, M.; Neyaz, M.K.; Das, S. Nanotechnology-based approach in tuberculosis treatment. Tuberc. Res. Treat., 2017, 2017, 4920209.
[http://dx.doi.org/10.1155/2017/4920209] [PMID: 28210505]
[14]
Costa-Gouveia, J.; Aínsa, J.A.; Brodin, P.; Lucía, A. How can nanoparticles contribute to antituberculosis therapy? Drug Discov. Today, 2017, 22(3), 600-607.
[http://dx.doi.org/10.1016/j.drudis.2017.01.011] [PMID: 28137645]
[15]
Costa, A.; Pinheiro, M.; Magalhães, J.; Ribeiro, R.; Seabra, V.; Reis, S.; Sarmento, B. The formulation of nanomedicines for treating tuberculosis. Adv. Drug Deliv. Rev., 2016, 102, 102-115.
[http://dx.doi.org/10.1016/j.addr.2016.04.012] [PMID: 27108703]
[17]
Murray, P.R.; Baron, E.J.; Pfaller, M.A.; Tenover, F.C.; Yolken, R.H.; Greenwood, D. Manual of clinical microbiology. In: Trends in Microbiology 6; , 1996; 4, p. (2)83.
[18]
Milburn, H.J. Primary tuberculosis. Curr. Opin. Pulm. Med., 2001, 7(3), 133-141.
[http://dx.doi.org/10.1097/00063198-200105000-00004] [PMID: 11371768]
[19]
Heimbeck, J. The infection of tuberculosis. Acta Med. Scand., 1930, 74(S34), 143-155.
[http://dx.doi.org/10.1111/j.0954-6820.1930.tb14948.x]
[20]
Farer, L.S.; Lowell, A.M.; Meador, M.P. Extrapulmonary tuberculosis in the United States. Am. J. Epidemiol., 1979, 109(2), 205-217.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a112675] [PMID: 425959]
[21]
Baydur, A. The spectrum of extrapulmonary tuberculosis. West. J. Med., 1977, 126(4), 253-262.
[PMID: 855317]
[22]
Alvarez, S.; McCabe, W.R. Extrapulmonary tuberculosis revisited: a review of experience at Boston City and other hospitals. Medicine (Baltimore), 1984, 63(1), 25-55.
[http://dx.doi.org/10.1097/00005792-198401000-00003] [PMID: 6419006]
[23]
Chen, J.; Wood, M.H. Tuberculous lymphadenopathy: A collective review with a case report. J. Natl. Med. Assoc., 1988, 80(10), 1083-1088.
[PMID: 3074173]
[24]
Paul, A. Jensen. Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care facilities. MMWr Centers for Disease Control., 2005, 54(RR-17), 1-14.
[25]
Epstein, D.M.; Kline, L.R.; Albelda, S.M.; Miller, W.T. Tuberculous pleural effusions. Chest, 1987, 91(1), 106-109.
[http://dx.doi.org/10.1378/chest.91.1.106] [PMID: 3792061]
[26]
Narayana, A. Overview of renal tuberculosis. Urology, 1982, 19(3), 231-237.
[http://dx.doi.org/10.1016/0090-4295(82)90490-3] [PMID: 7064248]
[27]
Christensen, W.I. Genitourinary tuberculosis: review of 102 cases. Medicine (Baltimore), 1974, 53(5), 377-390.
[http://dx.doi.org/10.1097/00005792-197409000-00004] [PMID: 4212033]
[28]
Grosskopf, I.; Ben David, A.; Charach, G.; Hochman, I.; Pitlik, S. Bone and joint tuberculosis-a 10-year review. Isr. J. Med. Sci., 1994, 30(4), 278-283.
[PMID: 8175329]
[29]
Ramírez-Lapausa, M.; Menéndez-Saldaña, A.; Noguerado-Asensio, A. Extrapulmonary tuberculosis. Rev. Esp. Sanid. Penit., 2015, 17(1), 3-11.
[http://dx.doi.org/10.4321/S1575-06202015000100002] [PMID: 25803112]
[30]
Golden, M.P.; Vikram, H.R. Extrapulmonary tuberculosis: an overview. Am. Fam. Physician, 2005, 72(9), 1761-1768.
[PMID: 16300038]
[31]
Marshall, J.B. Tuberculosis of the gastrointestinal tract and peritoneum. Am. J. Gastroenterol., 1993, 88(7), 989-999.
[PMID: 8317433]
[32]
Patton, J.S.; Byron, P.R. Inhaling medicines: delivering drugs to the body through the lungs. Nat. Rev. Drug Discov., 2007, 6(1), 67-74.
[http://dx.doi.org/10.1038/nrd2153] [PMID: 17195033]
[33]
Brain, J.D. Inhalation, deposition, and fate of insulin and other therapeutic proteins. Diabetes Technol. Ther., 2007, 9(S1)(Suppl. 1), S4-S15.
[http://dx.doi.org/10.1089/dia.2007.0228] [PMID: 17563302]
[34]
Sung, J.C.; Pulliam, B.L.; Edwards, D.A. Nanoparticles for drug delivery to the lungs. Trends Biotechnol., 2007, 25(12), 563-570.
[http://dx.doi.org/10.1016/j.tibtech.2007.09.005] [PMID: 17997181]
[35]
Edwards, D.A.; Dunbar, C. Bioengineering of therapeutic aerosols. Annu. Rev. Biomed. Eng., 2002, 4(1), 93-107.
[http://dx.doi.org/10.1146/annurev.bioeng.4.100101.132311] [PMID: 12117752]
[36]
Hess, S.; Ovadia, O.; Shalev, D.E.; Senderovich, H.; Qadri, B.; Yehezkel, T.; Salitra, Y.; Sheynis, T.; Jelinek, R.; Gilon, C.; Hoffman, A. Effect of structural and conformation modifications, including backbone cyclization, of hydrophilic hexapeptides on their intestinal permeability and enzymatic stability. J. Med. Chem., 2007, 50(24), 6201-6211.
[http://dx.doi.org/10.1021/jm070836d] [PMID: 17983214]
[37]
Joshi, M.; Nagarsenkar, M.; Prabhakar, B. Albumin nanocarriers for pulmonary drug delivery: an attractive approach. J. Drug Deliv. Sci. Technol., 2020, 56, 101529.
[http://dx.doi.org/10.1016/j.jddst.2020.101529]
[38]
Zhang, T.; Bao, J.; Zhang, M.; Ge, Y.; Wei, J.; Li, Y.; Wang, W.; Li, M.; Jin, Y. Chemo-photodynamic therapy by pulmonary delivery of gefitinib nanoparticles and 5-aminolevulinic acid for treatment of primary lung cancer of rats. Photodiagn. Photodyn. Ther., 2020, 31, 101807.
[http://dx.doi.org/10.1016/j.pdpdt.2020.101807] [PMID: 32404298]
[39]
Oh, Y.J.; Lee, J.; Seo, J.Y.; Rhim, T.; Kim, S.H.; Yoon, H.J.; Lee, K.Y. Preparation of budesonide-loaded porous PLGA microparticles and their therapeutic efficacy in a murine asthma model. J. Control. Release, 2011, 150(1), 56-62.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.001] [PMID: 21070826]
[40]
Varshosaz, J.; Ghaffari, S.; Mirshojaei, S.F.; Jafarian, A.; Atyabi, F.; Kobarfard, F.; Azarmi, S. Biodistribution of amikacin solid lipid nanoparticles after pulmonary delivery. BioMed Res. Int., 2013, 2013, 136859.
[http://dx.doi.org/10.1155/2013/136859] [PMID: 23984315]
[41]
Sharma, G.; Sharma, A.R.; Nam, J.S.; Doss, G.P.; Lee, S.S.; Chakraborty, C. Nanoparticle based insulin delivery system: the next generation efficient therapy for Type 1 diabetes. J. Nanobiotechnology, 2015, 13(1), 74.
[http://dx.doi.org/10.1186/s12951-015-0136-y] [PMID: 26498972]
[42]
Mancuso, P.; Lewis, C.; Serezani, C.H.; Goel, D.; Peters-Golden, M. Intrapulmonary administration of leukotriene B4 enhances pulmonary host defense against pneumococcal pneumonia. Infect. Immun., 2010, 78(5), 2264-2271.
[http://dx.doi.org/10.1128/IAI.01323-09] [PMID: 20231413]
[43]
McMahon, G.T.; Arky, R.A. Inhaled insulin for diabetes mellitus. N. Engl. J. Med., 2007, 356(5), 497-502.
[http://dx.doi.org/10.1056/NEJMct063533] [PMID: 17267909]
[44]
Jain, R.; Savla, H.; Naik, I.; Maniar, J.; Punjabi, K.; Vaidya, S.; Menon, M. Novel nanotechnology based delivery systems for chemotherapy and prophylaxis of tuberculosis. In: In Handbook of Nanomaterials for Industrial Applications; Elsevier, 2018; pp. 587-620.
[http://dx.doi.org/10.1016/B978-0-12-813351-4.00034-1]
[45]
Gupta, N.; Rai, D.B.; Jangid, A.K.; Kulhari, H. A review of theranostics applications and toxicities of carbon nanomaterials. Curr. Drug Metab., 2019, 20(6), 506-532.
[http://dx.doi.org/10.2174/1389200219666180925094515] [PMID: 30251600]
[46]
Rai, M.; Ingle, A.P.; Bansod, S.; Kon, K. Tackling the problem of tuberculosis by nanotechnology: Disease diagnosis and drug delivery. In Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases, 2015, 133-149.
[47]
Choudhary, S.; Kusum Devi, V. Potential of nanotechnology as a delivery platform against tuberculosis: current research review. J. Control. Release, 2015, 202, 65-75.
[http://dx.doi.org/10.1016/j.jconrel.2015.01.035] [PMID: 25637706]
[48]
Bailey, M.M.; Berkland, C.J. Nanoparticle formulations in pulmonary drug delivery. Med. Res. Rev., 2009, 29(1), 196-212.
[http://dx.doi.org/10.1002/med.20140] [PMID: 18958847]
[49]
Andrade, F.; Rafael, D.; Videira, M.; Ferreira, D.; Sosnik, A.; Sarmento, B. Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1816-1827.
[http://dx.doi.org/10.1016/j.addr.2013.07.020] [PMID: 23932923]
[50]
Wang, S.; Inci, F.; De Libero, G.; Singhal, A.; Demirci, U. Point-of-care assays for tuberculosis: role of nanotechnology/microfluidics. Biotechnol. Adv., 2013, 31(4), 438-449.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.006] [PMID: 23357365]
[51]
Savjani, K.T.; Gajjar, A.K. Savjani, JK Drug solubility: importance and enhancement techniques. International Scholarly Research Notices, 2012, 2012, 195727.
[http://dx.doi.org/10.5402/2012/195727]
[52]
Zhang, L.; Pornpattananangku, D.; Hu, C.M.; Huang, C.M. Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem., 2010, 17(6), 585-594.
[http://dx.doi.org/10.2174/092986710790416290] [PMID: 20015030]
[53]
Narvekar, M.; Xue, H.Y.; Eoh, J.Y.; Wong, H.L. Nanocarrier for poorly water-soluble anticancer drugs--barriers of translation and solutions. AAPS PharmSciTech, 2014, 15(4), 822-833.
[http://dx.doi.org/10.1208/s12249-014-0107-x] [PMID: 24687241]
[54]
Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[55]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[56]
Qayyum, S.; Khan, A.U. Nanoparticles vs. biofilms: A battle against another paradigm of antibiotic resistance. MedChemComm, 2016, 7(8), 1479-1498.
[http://dx.doi.org/10.1039/C6MD00124F]
[57]
Jain, R.; Savla, H.; Naik, I.; Maniar, J.; Punjabi, K.; Vaidya, S.; Menon, M. Novel nanotechnology based delivery systems for chemotherapy and prophylaxis of tuberculosis. In: InHandbook of Nanomaterials for Industrial Applications; Elsevier, 2018; pp. 587-620.
[http://dx.doi.org/10.1016/B978-0-12-813351-4.00034-1]
[58]
Sosnik, A.; Carcaboso, Á.M.; Glisoni, R.J.; Moretton, M.A.; Chiappetta, D.A. New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv. Drug Deliv. Rev., 2010, 62(4-5), 547-559.
[http://dx.doi.org/10.1016/j.addr.2009.11.023] [PMID: 19914315]
[59]
Mata-Espinosa, D.; Molina-Salinas, G.M.; Barrios-Payán, J.; Navarrete-Vázquez, G.; Marquina, B.; Ramos-Espinosa, O.; Bini, E.I.; Baeza, I.; Hernández-Pando, R. Therapeutic efficacy of liposomes containing 4-(5-pentadecyl-1,3,4-oxadiazol-2-yl)pyridine in a murine model of progressive pulmonary tuberculosis. Pulm. Pharmacol. Ther., 2015, 32, 7-14.
[60]
Davis, M.E.; Chen, Z. Shin, DM Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[http://dx.doi.org/10.1016/j.pupt.2015.03.004] [PMID: 25843004]
[61]
Patil, J.S.; Devi, V.K.; Devi, K.; Sarasija, S. A novel approach for lung delivery of rifampicin-loaded liposomes in dry powder form for the treatment of tuberculosis. Lung India, 2015, 32(4), 331-338.
[http://dx.doi.org/10.4103/0970-2113.159559] [PMID: 26180381]
[62]
Hamed, A.; Osman, R.; Al-Jamal, K.T.; Holayel, S.M.; Geneidi, A.S. Enhanced antitubercular activity, alveolar deposition and macrophages uptake of mannosylated stable nanoliposomes. J. Drug Deliv. Sci. Technol., 2019, 51, 513-523.
[http://dx.doi.org/10.1016/j.jddst.2019.03.032]
[63]
Nkanga, C.I.; Krause, R.W.; Noundou, X.S.; Walker, R.B. Preparation and characterization of isoniazid-loaded crude soybean lecithin liposomes. Int. J. Pharm., 2017, 526(1-2), 466-473.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.074] [PMID: 28461265]
[64]
Troy, A.; Esparza-Gonzalez, S.C.; Bartek, A.; Creissen, E.; Izzo, L.; Izzo, A.A. Pulmonary mucosal immunity mediated through CpG provides adequate protection against pulmonary Mycobacterium tuberculosis infection in the mouse model. A role for type I interferon. Tuberculosis (Edinb.), 2020, 123, 101949.
[http://dx.doi.org/10.1016/j.tube.2020.101949] [PMID: 32741537]
[65]
Tanwar, M.; Meena, J.; Meena, L.S. Nanoparticles: scope in drug delivery. Adv. Bioma. Biodev, 2014, 487
[http://dx.doi.org/10.1002/9781118774052.ch14]
[66]
Kaur, I.P.; Singh, H. Nanostructured drug delivery for better management of tuberculosis. J. Control. Release, 2014, 184, 36.
[67]
Costa, A.; Sarmento, B.; Seabra, V. Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. Eur. J. Pharm. Sci., 2018, 114, 103-113.
[http://dx.doi.org/10.1016/j.ejps.2017.12.006] [PMID: 29229273]
[68]
Vieira, A.C.C.; Chaves, L.L.; Pinheiro, S.; Pinto, S.; Pinheiro, M.; Lima, S.C.; Ferreira, D.; Sarmento, B.; Reis, S. Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. Int. J. Pharm., 2018, 536(1), 478-485.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.071] [PMID: 29203137]
[69]
Gaspar, D.P.; Faria, V.; Gonçalves, L.M.; Taboada, P.; Remuñán-López, C.; Almeida, A.J. Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and in vitro studies. Int. J. Pharm., 2016, 497(1-2), 199-209.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.050] [PMID: 26656946]
[70]
Maretti, E.; Costantino, L.; Rustichelli, C.; Leo, E.; Croce, M.A.; Buttini, F.; Truzzi, E.; Iannuccelli, V. Surface engineering of Solid Lipid Nanoparticle assemblies by methyl α-d-mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy. Int. J. Pharm., 2017, 528(1-2), 440-451.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.045] [PMID: 28624659]
[71]
Vieira, A.C.C.; Chaves, L.L.; Pinheiro, M.; Lima, S.C.; Neto, P.J.R.; Ferreira, D.; Sarmento, B.; Reis, S. Lipid nanoparticles coated with chitosan using a one-step association method to target rifampicin to alveolar macrophages. Carbohydr. Polym., 2021, 252, 116978.
[http://dx.doi.org/10.1016/j.carbpol.2020.116978] [PMID: 33183580]
[72]
Serrano-Ruiz, D.; Laurenti, M.; Ruiz-Cabello, J.; López-Cabarcos, E.; Rubio-Retama, J. Hybrid microparticles for drug delivery and magnetic resonance imaging. J. Biomed. Mater. Res. B Appl. Biomater., 2013, 101(4), 498-505.
[http://dx.doi.org/10.1002/jbm.b.32792] [PMID: 22915497]
[73]
Prow, T.W.; Grice, J.E.; Lin, L.L.; Faye, R.; Butler, M.; Becker, W.; Wurm, E.M.; Yoong, C.; Robertson, T.A.; Soyer, H.P.; Roberts, M.S. Nanoparticles and microparticles for skin drug delivery. Adv. Drug Deliv. Rev., 2011, 63(6), 470-491.
[http://dx.doi.org/10.1016/j.addr.2011.01.012] [PMID: 21315122]
[74]
Pai, R.V.; Jain, R.R.; Bannalikar, A.S.; Menon, M.D. Development and evaluation of chitosan microparticles based dry powder inhalation formulations of rifampicin and rifabutin. J. Aerosol Med. Pulm. Drug Deliv., 2016, 29(2), 179-195.
[http://dx.doi.org/10.1089/jamp.2014.1187] [PMID: 26406162]
[75]
Garcia-Contreras, L.; Padilla-Carlin, D.J.; Sung, J.; VerBerkmoes, J.; Muttil, P.; Elbert, K.; Peloquin, C.; Edwards, D.; Hickey, A. Pharmacokinetics of ethionamide delivered in spray-dried microparticles to the lungs of guinea pigs. J. Pharm. Sci., 2017, 106(1), 331-337.
[http://dx.doi.org/10.1016/j.xphs.2016.09.033] [PMID: 27842973]
[76]
Oliveira, P.M.; Matos, B.N.; Pereira, P.A.T.; Gratieri, T.; Faccioli, L.H.; Cunha-Filho, M.S.S.; Gelfuso, G.M. Microparticles prepared with 50-190kDa chitosan as promising non-toxic carriers for pulmonary delivery of isoniazid. Carbohydr. Polym., 2017, 174, 421-431.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.090] [PMID: 28821088]
[77]
Goyal, A.K.; Garg, T.; Rath, G.; Gupta, U.D.; Gupta, P. Development and characterization of nanoembedded microparticles for pulmonary delivery of antitubercular drugs against experimental tuberculosis. Mol. Pharm., 2015, 12(11), 3839-3850.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00016] [PMID: 26436948]
[78]
Takeuchi, I.; Taniguchi, Y.; Tamura, Y.; Ochiai, K.; Makino, K. Effects of L-leucine on PLGA microparticles for pulmonary administration prepared using spray drying: Fine particle fraction and phagocytotic ratio of alveolar macrophages. Colloids Surf. A Physicochem. Eng. Asp., 2018, 537, 411-417.
[http://dx.doi.org/10.1016/j.colsurfa.2017.10.047]
[79]
Garcia Contreras, L.; Sung, J.; Ibrahim, M.; Elbert, K.; Edwards, D.; Hickey, A. Pharmacokinetics of inhaled rifampicin porous particles for tuberculosis treatment: insight into rifampicin absorption from the lungs of guinea pigs. Mol. Pharm., 2015, 12(8), 2642-2650.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00046] [PMID: 25942002]
[80]
Sharma, A.; Vaghasiya, K.; Gupta, P.; Singh, A.K.; Gupta, U.D.; Verma, R.K. Dynamic mucus penetrating microspheres for efficient pulmonary delivery and enhanced efficacy of host defence peptide (HDP) in experimental tuberculosis. J. Control. Release, 2020, 324, 17-33.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.013] [PMID: 32418903]
[81]
Liu, C.; Kong, C.; Wu, G.; Zhu, J.; Javid, B.; Qian, F. Uniform and amorphous rifampicin microspheres obtained by freezing induced LLPS during lyophilization. Int. J. Pharm., 2015, 495(1), 500-507.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.023] [PMID: 26383842]
[82]
Sharma, A.; Vaghasiya, K.; Verma, R.K. Inhalable microspheres with hierarchical pore size for tuning the release of biotherapeutics in lungs. Microporous Mesoporous Mater., 2016, 235, 195-203.
[http://dx.doi.org/10.1016/j.micromeso.2016.08.009]
[83]
Pham, D.D.; Grégoire, N.; Couet, W.; Gueutin, C.; Fattal, E.; Tsapis, N. Pulmonary delivery of pyrazinamide-loaded large porous particles. Eur. J. Pharm. Biopharm., 2015, 94, 241-250.
[http://dx.doi.org/10.1016/j.ejpb.2015.05.021] [PMID: 26036447]
[84]
Eedara, B.B.; Tucker, I.G.; Das, S.C. Phospholipid-based pyrazinamide spray-dried inhalable powders for treating tuberculosis. Int. J. Pharm., 2016, 506(1-2), 174-183.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.038] [PMID: 27091294]
[85]
Rodrigues, S.; Alves, A.D.; Cavaco, J.S.; Pontes, J.F.; Guerreiro, F.; Rosa da Costa, A.M.; Buttini, F.; Grenha, A. Dual antibiotherapy of tuberculosis mediated by inhalable locust bean gum microparticles. Int. J. Pharm., 2017, 529(1-2), 433-441.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.088] [PMID: 28669623]
[86]
Kreuter, J. Nanoparticles as drug delivery systems. In: InEncyclopedia of nanoscience and nanotechnology; American Scientific Publishers; , 2004; 7, pp. (180)161-180.
[87]
Müller, R.H.; Mehnert, W.; Lucks, J.S.; Schwarz, C.; ZurMühlen, A. Solid lipid nanoparticles (SLN): an alternative colloidal carrier system for controlled drug delivery. Eur. J. Pharm. Biopharm., 1995, 41(1), 62-69.
[88]
Wissing, S.A.; Kayser, O.; Müller, R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev., 2004, 56(9), 1257-1272.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[89]
Brannon-Peppas, L. Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. Int. J. Pharm., 1995, 116(1), 1-9.
[http://dx.doi.org/10.1016/0378-5173(94)00324-X]
[90]
Wu, T.; Liao, W.; Wang, W.; Zhou, J.; Tan, W.; Xiang, W.; Zhang, J.; Guo, L.; Chen, T.; Ma, D.; Yu, W.; Cai, X. Genipin-crosslinked carboxymethyl chitosan nanogel for lung-targeted delivery of isoniazid and rifampin. Carbohydr. Polym., 2018, 197, 403-413.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.034] [PMID: 30007629]
[91]
Rawal, T.; Parmar, R.; Tyagi, R.K.; Butani, S. Rifampicin loaded chitosan nanoparticle dry powder presents an improved therapeutic approach for alveolar tuberculosis. Colloids Surf. B Biointerfaces, 2017, 154, 321-330.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.044] [PMID: 28363192]
[92]
Shiehzadeh, F.; Hadizadeh, F.; Mohammadpour, A.; Aryan, E.; Gholami, L.; Tafaghodi, M. Streptomycin sulfate dry powder inhalers for the new tuberculosis treatment schedule. J. Drug Deliv. Sci. Technol., 2019, 52, 957-967.
[http://dx.doi.org/10.1016/j.jddst.2019.05.052]
[93]
Miranda, M.S.; Rodrigues, M.T.; Domingues, R.M.A.; Costa, R.R.; Paz, E.; Rodríguez-Abreu, C.; Freitas, P.; Almeida, B.G.; Carvalho, M.A.; Gonçalves, C.; Ferreira, C.M.; Torrado, E.; Reis, R.L.; Pedrosa, J.; Gomes, M.E. Development of inhalable superparamagnetic iron oxide nanoparticles (SPIONs) in microparticulate system for antituberculosis drug delivery. Adv. Healthc. Mater., 2018, 7(15), e1800124.
[http://dx.doi.org/10.1002/adhm.201800124] [PMID: 29797461]
[94]
Costa-Gouveia, J.; Pancani, E.; Jouny, S.; Machelart, A.; Delorme, V.; Salzano, G.; Iantomasi, R.; Piveteau, C.; Queval, C.J.; Song, O.R.; Flipo, M.; Deprez, B.; Saint-André, J.P.; Hureaux, J.; Majlessi, L.; Willand, N.; Baulard, A.; Brodin, P.; Gref, R. Combination therapy for tuberculosis treatment: pulmonary administration of ethionamide and booster co-loaded nanoparticles. Sci. Rep., 2017, 7(1), 5390.
[http://dx.doi.org/10.1038/s41598-017-05453-3] [PMID: 28710351]
[95]
Garg, T.; Goyal, A.K.; Rath, G.; Murthy, R.S. Spray-dried particles as pulmonary delivery system of anti-tubercular drugs: design, optimization, in vitro and in vivo evaluation. Pharm. Dev. Technol., 2016, 21(8), 951-960.
[http://dx.doi.org/10.3109/10837450.2015.1081613] [PMID: 26334961]
[96]
Bhardwaj, A.; Mehta, S.; Yadav, S.; Singh, S.K.; Grobler, A.; Goyal, A.K.; Mehta, A. Pulmonary delivery of antitubercular drugs using spray-dried lipid-polymer hybrid nanoparticles. Artif. Cells Nanomed. Biotechnol., 2016, 44(6), 1544-1555.
[http://dx.doi.org/10.3109/21691401.2015.1062389] [PMID: 26178768]
[97]
Debnath, S.K.; Saisivam, S.; Omri, A. PLGA ethionamide nanoparticles for pulmonary delivery: Development and in vivo evaluation of dry powder inhaler. J. Pharm. Biomed. Anal., 2017, 145, 854-859.
[http://dx.doi.org/10.1016/j.jpba.2017.07.051] [PMID: 28826144]
[98]
Debnath, S.K.; Saisivam, S.; Debanth, M.; Omri, A. Development and evaluation of Chitosan nanoparticles based dry powder inhalation formulations of prothionamide. PLoS One, 2018, 13(1), e0190976.
[http://dx.doi.org/10.1371/journal.pone.0190976] [PMID: 29370192]
[99]
Joshi, M.; Prabhakar, B. Development of respirable rifampicin loaded bovine serum albumin formulation for the treatment of pulmonary tuberculosis. J. Drug Deliv. Sci. Technol., 2021, 61, 102197.
[http://dx.doi.org/10.1016/j.jddst.2020.102197]
[100]
Patel, A.; Redinger, N.; Richter, A.; Woods, A.; Neumann, P.R.; Keegan, G.; Childerhouse, N.; Imming, P.; Schaible, U.E.; Forbes, B.; Dailey, L.A. In vitro and in vivo antitubercular activity of benzothiazinone-loaded human serum albumin nanocarriers designed for inhalation. J. Control. Release, 2020, 328, 339-349.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.022] [PMID: 32827612]
[101]
Duncan, R.; Izzo, L. Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev., 2005, 57(15), 2215-2237.
[http://dx.doi.org/10.1016/j.addr.2005.09.019] [PMID: 16297497]
[102]
Rodrigues, B.; Shende, P. Monodispersed metal-based dendrimeric nanoclusters for potentiation of anti-tuberculosis action. J. Mol. Liq., 2020, 304, 112731.
[http://dx.doi.org/10.1016/j.molliq.2020.112731]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy