Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Preparation of Modified Chitosan-based Nanoparticles for Efficient Delivery of Doxorubicin and/or Cisplatin to Breast Cancer Cells

Author(s): Sina M. Matalqah*, Khalid Aiedeh, Nizar M. Mhaidat, Karem H. Alzoubi and Belal A. AL-Husein

Volume 22, Issue 2, 2022

Published on: 25 February, 2022

Page: [133 - 141] Pages: 9

DOI: 10.2174/1568009622666220126100532

Price: $65

Open Access Journals Promotions 2
Abstract

Purpose: The aim is to develop a novel pH-responsive modified chitosan-based nanoparticles system for active loading of doxorubicin (DOX) and triggered intracellular release.

Methods: Nanoparticles were formed in an aqueous medium via ionic interaction between negatively charged chitosan derivative and positively charged DOX at neutral pH and then transformed in situ into cisplatin (CIS) cross-linked nanoparticles through cross-linking the formed micelles via chelation interaction between the negatively charged polymeric carrier and cisplatin. Nanoparticles were characterized in terms of particle size and zeta potential using DLS and TEM. Drug loading efficiency and encapsulation efficiency were determined based on the physio-chemical proprieties of the polymer and the amount of the cross-linking agent. In vitro release studies were performed using the dialysis method at different pHs. Finally, the cytotoxic effects of these nanoparticles were performed against the MCF-7 BrCA cell line under different pHs.

Results: The average particle size of polymer alone and DOX nanoparticles was 277.401 ± 13.50 nm and 290.20 ± 17.43 nm, respectively. The zeta potential was -14.6 ± 1.02 mV and -13.2 ± 0.55 mV, respectively, with a low polydispersity index. Drug loading and encapsulation deficiencies were determined, dependent on the amount of the cross-linking agent. In vitro release studies showed that the release of DOX from these nanoparticles was pH-dependent. Moreover, results showed that the cytotoxicity magnitude of DOX-loaded nanoparticles against MCF-7 BrCA cells was higher compared with free DOX.

Conclusion: These novel pH-sensitive nanoparticles proved to be a promising Nano-drug delivery for tumor-targeted delivery of DOX.

Keywords: pH-responsive nanoparticles, modified chitosan, cross-linked nanoparticles, controlled drug release, cisplatin, breast cancer cells.

Graphical Abstract
[1]
Patnaik, J.L.; Byers, T.; DiGuiseppi, C.; Dabelea, D.; Denberg, T.D.; Patnaik, J.L.; Byers, T.; DiGuiseppi, C.; Dabelea, D. Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer: A retrospective cohort study. Breast Cancer Res., 2011, 13(3), R64.
[http://dx.doi.org/10.1186/bcr2901] [PMID: 21689398]
[2]
Khader, Y.S.; Sharkas, G.F.; Arkoub, K.H.; Alfaqih, M.A.; Nimri, O.F.; Khader, A.M. The epidemiology and trend of cancer in Jordan, 2000-2013. J. Cancer Epidemiol., 2018, 20182937067
[http://dx.doi.org/10.1155/2018/2937067] [PMID: 30416523]
[3]
Gradishar, W.; Moran, M.S. NCCN guidelines: Breast cancer,Version 1.2021. 2021. Available from:. https://www.nccn.org/profe ssionals/physician_gls/pdf/breast.pdf(accessed March 5th, 2021)
[4]
Deli, T.; Orosz, M.; Jakab, A. Hormone replacement therapy in cancer survivors - review of the literature. Pathol. Oncol. Res., 2020, 26(1), 63-78.
[http://dx.doi.org/10.1007/s12253-018-00569-x] [PMID: 30617760]
[5]
Masoud, V.; Pagès, G. Targeted therapies in breast cancer: New challenges to fight against resistance. World J. Clin. Oncol., 2017, 8(2), 120-134.
[http://dx.doi.org/10.5306/wjco.v8.i2.120] [PMID: 28439493]
[6]
Chidambaram, M.; Manavalan, R.; Kathiresan, K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J. Pharm. Pharm. Sci., 2011, 14(1), 67-77.
[http://dx.doi.org/10.18433/J30C7D] [PMID: 21501554]
[7]
Simşek, S.; Eroglu, H.; Kurum, B.; Ulubayram, K. Brain targeting of atorvastatin loaded amphiphilic PLGA-b-PEG nanoparticles. J. Microencapsul., 2012, 30(1), 10-20.
[PMID: 22734433]
[8]
Dass, C.R.; Choong, P.F. The use of chitosan formulations in cancer therapy. J. Microencapsul., 2008, 25(4), 275-279.
[http://dx.doi.org/10.1080/02652040801970461] [PMID: 18465306]
[9]
Prabaharan, M. Review paper: Chitosan derivatives as promising materials for controlled drug delivery. J. Biomater. Appl., 2008, 23(1), 5-36.
[http://dx.doi.org/10.1177/0885328208091562] [PMID: 18593819]
[10]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[11]
Lomovskaya, N.; Otten, S.L.; Doi-Katayama, Y.; Fonstein, L.; Liu, X.C.; Takatsu, T.; Inventi-Solari, A.; Filippini, S.; Torti, F.; Colombo, A.L.; Hutchinson, C.R. Doxorubicin overproduction in Streptomyces peucetius: Cloning and characterization of the dnrU ketoreductase and dnrV genes and the doxA cytochrome P-450 hydroxylase gene. J. Bacteriol., 1999, 181(1), 305-318.
[http://dx.doi.org/10.1128/JB.181.1.305-318.1999] [PMID: 9864344]
[12]
Keizer, H.G.; Pinedo, H.M.; Schuurhuis, G.J.; Joenje, H. Doxorubicin (adriamycin): A critical review of free radical-dependent mechanisms of cytotoxicity. Pharmacol. Ther., 1990, 47(2), 219-231.
[http://dx.doi.org/10.1016/0163-7258(90)90088-J] [PMID: 2203071]
[13]
Hajra, S.; Patra, A.R.; Basu, A.; Bhattacharya, S. Prevention of doxorubicin (DOX)-induced genotoxicity and cardiotoxicity: Effect of plant derived small molecule indole-3-carbinol (I3C) on oxidative stress and inflammation. Biomed. Pharmacother., 2018, 101, 228-243.
[http://dx.doi.org/10.1016/j.biopha.2018.02.088] [PMID: 29494960]
[14]
Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem., 2019, 88102925
[http://dx.doi.org/10.1016/j.bioorg.2019.102925] [PMID: 31003078]
[15]
Xiao, H.; Song, H.; Yang, Q.; Cai, H.; Qi, R.; Yan, L.; Liu, S.; Zheng, Y.; Huang, Y.; Liu, T.; Jing, X. A prodrug strategy to deliver cisplatin(IV) and paclitaxel in nanomicelles to improve efficacy and tolerance. Biomaterials, 2012, 33(27), 6507-6519.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.049] [PMID: 22727463]
[16]
Lee, S.M.; O’Halloran, T.V.; Nguyen, S.T. Polymer-caged nanobins for synergistic cisplatin-doxorubicin combination chemotherapy. J. Am. Chem. Soc., 2010, 132(48), 17130-17138.
[http://dx.doi.org/10.1021/ja107333g] [PMID: 21077673]
[17]
Yang, C.; Tan, J.; Cheng, W.; Attia, A.; Ting, C.; Nelson, A.; Hedrick, J.; Yang, Y-Y. Supramolecular nanostructures designed for high cargo loading capacity and kinetic stability. Nano Today, 2010, 5, 515-523.
[http://dx.doi.org/10.1016/j.nantod.2010.10.006]
[18]
Attia, A.B.; Yang, C.; Tan, J.P.; Gao, S.; Williams, D.F.; Hedrick, J.L.; Yang, Y-Y. The effect of kinetic stability on biodistribution and anti-tumor efficacy of drug-loaded biodegradable polymeric micelles. Biomaterials, 2013, 34(12), 3132-3140.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.042] [PMID: 23380357]
[19]
Inamdar, N.; Mourya, V.K.; Tiwari, A. Carboxymethyl chitosan and its applications. Adv. Mater. Lett., 2010, 1, 11-33.
[http://dx.doi.org/10.5185/amlett.2010.3108]
[20]
Aiedeh, K.; Taha, M.O. Synthesis of chitosan succinate and chitosan phthalate and their evaluation as suggested matrices in orally administered, colon-specific drug delivery systems. Arch. Pharm. (Weinheim), 1999, 332(3), 103-107.
[http://dx.doi.org/10.1002/(SICI)1521-4184(19993)332:3<103:AID-ARDP103>3.0.CO;2-U] [PMID: 10228455]
[21]
Calvo, P.; Remuñan-López, C.; Vila-Jato, J.L.; Alonso, M.J. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm. Res., 1997, 14(10), 1431-1436.
[http://dx.doi.org/10.1023/A:1012128907225] [PMID: 9358557]
[22]
Park, J.; Fong, P.M.; Lu, J.; Russell, K.S.; Booth, C.J.; Saltzman, W.M.; Fahmy, T.M. PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine, 2009, 5(4), 410-418.
[http://dx.doi.org/10.1016/j.nano.2009.02.002] [PMID: 19341815]
[23]
Na, K.; Lee, E.S.; Bae, Y.H. Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH: pH-dependent cell interaction, internalization and cytotoxicity in vitro. J. Control. Release, 2003, 87(1-3), 3-13.
[http://dx.doi.org/10.1016/S0168-3659(02)00345-0] [PMID: 12618018]
[24]
Al Joudi, F.; Alias, I.; Samsudin, A. The effects of chemotherapeutic drugs on viabilty, apoptosis, and survivin expression in MCF7 cells. Acta Histochem. Cytochem., 2005, 38, 323-330.
[25]
Kumirska, J.; Czerwicka, M.; Kaczyński, Z.; Bychowska, A.; Brzozowski, K.; Thöming, J.; Stepnowski, P. Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar. Drugs, 2010, 8(5), 1567-1636.
[http://dx.doi.org/10.3390/md8051567] [PMID: 20559489]
[26]
Nunthanid, J.; Laungtana-Anan, M.; Sriamornsak, P.; Limmatvapirat, S.; Puttipipatkhachorn, S.; Lim, L.Y.; Khor, E. Characterization of chitosan acetate as a binder for sustained release tablets. J. Control. Release, 2004, 99(1), 15-26.
[http://dx.doi.org/10.1016/j.jconrel.2004.06.008] [PMID: 15342177]
[27]
Nallamuthu, I.; Devi, A.; Khanum, F. Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J. Pharm. Sci., 2015, 10(3), 203-211.
[http://dx.doi.org/10.1016/j.ajps.2014.09.005]
[28]
Jain, D.; Banerjee, R. Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery. J. Biomed. Mater. Res. B Appl. Biomater., 2008, 86(1), 105-112.
[http://dx.doi.org/10.1002/jbm.b.30994] [PMID: 18098198]
[29]
Xiao, K.; Li, Y.; Luo, J.; Lee, J.S.; Xiao, W.; Gonik, A.M.; Agarwal, R.G.; Lam, K.S. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials, 2011, 32(13), 3435-3446.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.021] [PMID: 21295849]
[30]
Huang, W-C.; Chiang, W-H.; Huang, Y-F.; Lin, S-C.; Shih, Z-F.; Chern, C-S.; Chiang, C-S.; Chiu, H-C. Nano-scaled pH-responsive polymeric vesicles for intracellular release of doxorubicin. J. Drug Target., 2011, 19(10), 944-953.
[http://dx.doi.org/10.3109/1061186X.2011.632012] [PMID: 22050402]
[31]
Sanson, C.; Schatz, C.; Le Meins, J.F.; Soum, A.; Thévenot, J.; Garanger, E.; Lecommandoux, S. A simple method to achieve high doxorubicin loading in biodegradable polymersomes. J. Control. Release, 2010, 147(3), 428-435.
[http://dx.doi.org/10.1016/j.jconrel.2010.07.123] [PMID: 20692308]
[32]
Dai, J.; Lin, S.; Cheng, D.; Zou, S.; Shuai, X. Interlayer-crosslinked micelle with partially hydrated core showing reduction and pH dual sensitivity for pinpointed intracellular drug release. Angew. Chem. Int. Ed. Engl., 2011, 50(40), 9404-9408..
[http://dx.doi.org/10.1002/anie.201103806] [PMID: 21898731]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy