Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Natural Products as Sources of Multitarget Compounds: Advances in the Development of Ferulic Acid as Multitarget Therapeutic

Author(s): Rajwinder Kaur, Ankita Sood, Damanpreet Kaur Lang, Rashmi Arora, Neeraj Kumar, Vishal Diwan* and Balraj Saini*

Volume 22, Issue 5, 2022

Published on: 15 February, 2022

Page: [347 - 365] Pages: 19

DOI: 10.2174/1568026622666220117105740

Open Access Journals Promotions 2
Abstract

Nature has provided therapeutic substances for millennia, with many valuable medications derived from plant sources. Multitarget drugs become essential in the management of various disorders, including hepatic disorders, neurological disorders, diabetes, and carcinomas. Ferulic acid is a significant potential therapeutic agent, which is easily available at low cost, possesses a low toxicity profile, and has minimum side effects. Ferulic acid exhibits various therapeutic actions by modulation of various signal transduction pathways such as Nrf2, p38, and mTOR. The actions exhibited by ferulic acid include anti-apoptosis, antioxidant, anti-inflammatory, antidiabetic, anticarcinogenic, hepatoprotection, cardioprotection, activation of transcriptional factors, expression of genes, regulation of enzyme activity, and neuroprotection, which further help in treating various pathophysiological conditions such as cancer, skin diseases, brain disorders, diabetes, Parkinson’s disease, Alzheimer’s disease, hypoxia, hepatic disorders, H1N1 flu, and viral infections. The current review focuses on the significance of natural products as sources of multitarget compounds, and a primary focus has been made on ferulic acid and its mechanism, role, and protective action in various ailments.

Keywords: Natural products, Ferulic acid, Multi-target therapeutics, Alzheimer's disorders, Cancer, Viral infections, H1N1 virus.

Graphical Abstract
[1]
Harvey, A.L. Natural products in drug discovery. Drug Discov. Today, 2008, 13(19-20), 894-901.
[http://dx.doi.org/10.1016/j.drudis.2008.07.004] [PMID: 18691670]
[2]
Talevi, A. Multi-target pharmacology: Possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front. Pharmacol., 2015, 6, 205.
[http://dx.doi.org/10.3389/fphar.2015.00205] [PMID: 26441661]
[3]
Weiser, T. Drugs that target ionotropic excitatory amino acid receptors. In: Cognitive Enhancing Drugs; Birkhäuser: Basel, 2004, pp. 89-96.
[4]
US Preventive Services Task Force. Final recommendation statement. Aspirin use to prevent cardiovascular disease and colorectal cancer: Preventive medication. Available from: https:// www.uspreventiveservicestaskforce.org/Page/Document/RecommendationStatementFinal/aspirin-to-preventcardiovascular-disease-and-cancer
[5]
Assouline, S.; Culjkovic, B.; Cocolakis, E.; Rousseau, C.; Beslu, N.; Amri, A.; Caplan, S.; Leber, B.; Roy, D.C.; Miller, W.H. Jr.; Borden, K.L. Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): A proof-of-principle clinical trial with ribavirin. Blood, 2009, 114(2), 257-260.
[http://dx.doi.org/10.1182/blood-2009-02-205153] [PMID: 19433856]
[6]
Li, J.; Yu, H.; Wang, S.; Wang, W.; Chen, Q.; Ma, Y.; Zhang, Y.; Wang, T. Natural products, an important resource for discovery of multitarget drugs and functional food for regulation of hepatic glucose metabolism. Drug Des. Devel. Ther., 2018, 12, 121-135.
[http://dx.doi.org/10.2147/DDDT.S151860] [PMID: 29391777]
[7]
Chen, H.S.; Qi, S.H.; Shen, J.G. One-compound-multi-target: Combination prospect of natural compounds with thrombolytic therapy in acute ischemic stroke. Curr. Neuropharmacol., 2017, 15(1), 134-156.
[http://dx.doi.org/10.2174/1570159X14666160620102055] [PMID: 27334020]
[8]
Chen, X.; Decker, M. Multi-target compounds acting in the central nervous system designed from natural products. Curr. Med. Chem., 2013, 20(13), 1673-1685.
[http://dx.doi.org/10.2174/0929867311320130007] [PMID: 23410166]
[9]
Herranz-López, M.; Losada-Echeberría, M.; Barrajón-Catalán, E. The multitarget activity of natural extracts on cancer: Synergy and xenohormesis. Medicines (Basel), 2018, 6(1), 6.
[http://dx.doi.org/10.3390/medicines6010006] [PMID: 30597909]
[10]
Martins, M.; Silva, R.; Pinto, M.; Sousa, E. Marine natural products, multitarget therapy and repurposed agents in Alzheimer’s disease. Pharmaceuticals (Basel), 2020, 13(9), 242.
[http://dx.doi.org/10.3390/ph13090242] [PMID: 32933034]
[11]
Kumar, M.S.; Adki, K.M. Marine natural products for multi-targeted cancer treatment: A future insight. Biomed. Pharmacother., 2018, 105, 233-245.
[http://dx.doi.org/10.1016/j.biopha.2018.05.142] [PMID: 29859466]
[12]
Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.F.; Moustafa, M.S.; Abd El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G.; Chang, F.R.; Iwasaki, A.; Suenaga, K.; Alajlani, M.; Göransson, U.; El-Seedi, H.R. Marine natural products: A source of novel anticancer drugs. Mar. Drugs, 2019, 17(9), 491.
[http://dx.doi.org/10.3390/md17090491] [PMID: 31443597]
[13]
Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta,, 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008]
[14]
Abdel-Razek, A.S.; El-Naggar, M.E.; Allam, A.; Morsy, O.M.; Othman, S.I. Microbial natural products in drug discovery. Processes (Basel), 2020, 8(4), 470.
[http://dx.doi.org/10.3390/pr8040470]
[15]
Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep., 2014, 4, 86-93.
[16]
Li, D.; Rui, Y.X.; Guo, S.D.; Luan, F.; Liu, R.; Zeng, N. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. Life Sci., 2021, 284, 119921.
[http://dx.doi.org/10.1016/j.lfs.2021.119921] [PMID: 34481866]
[17]
Ou, S.; Kwok, K.C. Ferulic acid: Pharmaceutical functions, preparation, and applications in foods. J. Sci. Food Agric., 2004, 84(11), 1261-1269.
[http://dx.doi.org/10.1002/jsfa.1873]
[18]
Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol., 2018, 31(6), 332-336.
[http://dx.doi.org/10.1159/000491755] [PMID: 30235459]
[19]
Barone, E.; Calabrese, V.; Mancuso, C. Ferulic acid and its therapeutic potential as a hormetin for age-related diseases. Biogerontology, 2009, 10(2), 97-108.
[http://dx.doi.org/10.1007/s10522-008-9160-8] [PMID: 18651237]
[20]
Zhao, Z.; Egashira, Y.; Sanada, H. Ferulic acid is quickly absorbed from rat stomach as the free form and then conjugated mainly in liver. J. Nutr., 2004, 134(11), 3083-3088.
[http://dx.doi.org/10.1093/jn/134.11.3083] [PMID: 15514279]
[21]
Poquet, L.; Clifford, M.N.; Williamson, G. Transport and metabolism of ferulic acid through the colonic epithelium. Drug Metab. Dispos., 2008, 36(1), 190-197.
[http://dx.doi.org/10.1124/dmd.107.017558] [PMID: 17954526]
[22]
Ma, Y.; Chen, K.; Lv, L.; Wu, S.; Guo, Z. Ferulic acid ameliorates nonalcoholic fatty liver disease and modulates the gut microbiota composition in high-fat diet fed ApoE-/- mice. Biomed. Pharmacother., 2019, 113, 108753.
[http://dx.doi.org/10.1016/j.biopha.2019.108753] [PMID: 30856537]
[23]
Liang, C.P.; Chang, C.H.; Liang, C.C.; Hung, K.Y.; Hsieh, C.W. In vitro antioxidant activities, free radical scavenging capacity, and tyrosinase inhibitory of flavonoid compounds and ferulic acid from Spiranthes sinensis (Pers.) Ames. Molecules, 2014, 19(4), 4681-4694.
[http://dx.doi.org/10.3390/molecules19044681] [PMID: 24739930]
[24]
He, S.; Guo, Y.; Zhao, J.; Xu, X.; Wang, N.; Liu, Q. Ferulic acid ameliorates lipopolysaccharide-induced barrier dysfunction via microRNA-200c-3p-mediated activation of PI3K/AKT pathway in Caco-2 cells. Front. Pharmacol., 2020, 11, 376.
[http://dx.doi.org/10.3389/fphar.2020.00376] [PMID: 32308620]
[25]
Al Jitan, S.; Alkhoori, S.A.; Yousef, L.F. Phenolic acids from plants: Extraction and application to human health. Stud. Nat. Prod. Chem., 2018, 58, 389-417.
[http://dx.doi.org/10.1016/B978-0-444-64056-7.00013-1]
[26]
Çelik, E.E.; Gökmen, V. Effects of fermentation and heat treatment on bound ferulic acid content and total antioxidant capacity of bread crust-like systems made of different whole grain flours. J. Cereal Sci., 2020, 93, 102978.
[http://dx.doi.org/10.1016/j.jcs.2020.102978]
[27]
ClinicalTrilas.gov. Available from: https://clinicaltrials.gov/ [Accessed on 25 June, 2021].
[28]
Ghosh, S.; Basak, P.; Dutta, S.; Chowdhury, S.; Sil, P.C. New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem. Toxicol., 2017, 103, 41-55.
[http://dx.doi.org/10.1016/j.fct.2017.02.028] [PMID: 28237775]
[29]
Luo, C.; Zhang, Y.; Guo, H.; Han, X.; Ren, J.; Liu, J. Ferulic acid attenuates hypoxia/reoxygenation injury by suppressing mitophagy through the PINK1/Parkin Signaling Pathway in H9c2 Cells. Front. Pharmacol., 2020, 11, 103.
[http://dx.doi.org/10.3389/fphar.2020.00103] [PMID: 32161543]
[30]
Ren, C.; Bao, Y.R.; Meng, X.S.; Diao, Y.P.; Kang, T.G. Comparison of the protective effects of ferulic acid and its drug-containing plasma on primary cultured neonatal rat cardiomyocytes with hypoxia/reoxygenation injury. Pharmacogn. Mag., 2013, 9(35), 202-209.
[http://dx.doi.org/10.4103/0973-1296.113264] [PMID: 23930002]
[31]
Yao, K.; Yang, Q.; Li, Y.; Lan, T.; Yu, H.; Yu, Y. MicroRNA-9 mediated the protective effect of ferulic acid on hypoxic-ischemic brain damage in neonatal rats. PLoS One, 2020, 15(5), e0228825.
[http://dx.doi.org/10.1371/journal.pone.0228825] [PMID: 32470970]
[32]
Hirabayashi, T.; Ochiai, H.; Sakai, S.; Nakajima, K.; Terasawa, K. Inhibitory effect of ferulic acid and isoferulic acid on murine interleukin-8 production in response to influenza virus infections in vitro and in vivo. Planta Med., 1995, 61(3), 221-226.
[http://dx.doi.org/10.1055/s-2006-958060] [PMID: 7617763]
[33]
Sakai, S.; Kawamata, H.; Kogure, T.; Mantani, N.; Terasawa, K.; Umatake, M.; Ochiai, H. Inhibitory effect of ferulic acid and isoferulic acid on the production of macrophage inflammatory protein-2 in response to respiratory syncytial virus infection in RAW264.7 cells. Mediators Inflamm., 1999, 8(3), 173-175.
[http://dx.doi.org/10.1080/09629359990513] [PMID: 10704056]
[34]
McCarty, M.F.; DiNicolantonio, J.J. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus. Prog. Cardiovasc. Dis., 2020, 63(3), 383-385.
[http://dx.doi.org/10.1016/j.pcad.2020.02.007] [PMID: 32061635]
[35]
Zhu, Y.; Shao, Y.; Qu, X.; Guo, J.; Yang, J.; Zhou, Z.; Wang, S. Sodium ferulate protects against influenza virus infection by activation of the TLR7/9-MyD88-IRF7 signaling pathway and inhibition of the NF-κB signaling pathway. Biochem. Biophys. Res. Commun., 2019, 512(4), 793-798.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.113] [PMID: 30926164]
[36]
Bhowmik, D.; Nandi, R.; Jagadeesan, R.; Kumar, N.; Prakash, A.; Kumar, D. Identification of potential inhibitors against SARS- CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. Infect. Genet. Evol., 2020, 84, 104451.
[http://dx.doi.org/10.1016/j.meegid.2020.104451] [PMID: 32640381]
[37]
Khalil, A.; Tazeddinova, D. The upshot of polyphenolic compounds on immunity amid COVID-19 pandemic and other emerging communicable diseases: An appraisal. Nat. Prod. Bioprospect., 2020, 10(6), 411-429.
[http://dx.doi.org/10.1007/s13659-020-00271-z] [PMID: 33057955]
[38]
Cui, M.Y.; Xiao, M.W.; Xu, L.J.; Chen, Y.; Liu, A.L.; Ye, J.; Hu, A.X. Bioassay of ferulic acid derivatives as influenza neuraminidase inhibitors. Arch. Pharm. (Weinheim), 2020, 353(1), e1900174.
[http://dx.doi.org/10.1002/ardp.201900174] [PMID: 31657061]
[39]
Enkhtaivan, G.; Maria John, K.M.; Ayyanar, M.; Sekar, T.; Jin, K.J.; Kim, D.H. Anti-influenza (H1N1) potential of leaf and stem bark extracts of selected medicinal plants of South India. Saudi J. Biol. Sci., 2015, 22(5), 532-538.
[http://dx.doi.org/10.1016/j.sjbs.2015.01.011] [PMID: 26288555]
[40]
Hariono, M.; Abdullah, N.; Damodaran, K.V.; Kamarulzaman, E.E.; Mohamed, N.; Hassan, S.S.; Shamsuddin, S.; Wahab, H.A. Potential new H1N1 neuraminidase inhibitors from ferulic acid and vanillin: Molecular modelling, synthesis, and in vitro assay. Sci. Rep., 2016, 6(1), 38692.
[http://dx.doi.org/10.1038/srep38692] [PMID: 27995961]
[41]
Adeyemi, O.S.; Awakan, O.J.; Atolani, O.; Iyeye, C.O.; Oweibo, O.O.; Adejumo, O.J.; Ibrahim, A.; Batiha, G.E. New ferulic acid derivatives protect against carbon tetrachloride-induced liver injury in rats. Open Biochem. J., 2019, 13(1), 13-22.
[http://dx.doi.org/10.2174/1874091X01913010013]
[42]
Xu, T.; Song, Q.; Zhou, L.; Yang, W.; Wu, X.; Qian, Q.; Chai, H.; Han, Q.; Pan, H.; Dou, X.; Li, S. Ferulic acid alleviates lipotoxicity-induced hepatocellular death through the SIRT1-regulated autophagy pathway and independently of AMPK and Akt in AML-12 hepatocytes. Nutr. Metab. (Lond.), 2021, 18(1), 13.
[http://dx.doi.org/10.1186/s12986-021-00540-9] [PMID: 33468182]
[43]
Saha, P.; Talukdar, A.D.; Nath, R.; Sarker, S.D.; Nahar, L.; Sahu, J.; Choudhury, M.D. Role of natural phenolics in hepatoprotection: A mechanistic review and analysis of the regulatory network of associated genes. Front. Pharmacol., 2019, 10, 509.
[http://dx.doi.org/10.3389/fphar.2019.00509] [PMID: 31178720]
[44]
Yang, C.; Li, L.; Ma, Z.; Zhong, Y.; Pang, W.; Xiong, M.; Fang, S.; Li, Y. Hepatoprotective effect of methyl ferulic acid against carbon tetrachloride-induced acute liver injury in rats. Exp. Ther. Med., 2018, 15(3), 2228-2238.
[PMID: 29467841]
[45]
Cheng, Q.; Li, C.; Yang, C.F.; Zhong, Y.J.; Wu, D.; Shi, L.; Chen, L.; Li, Y.W.; Li, L. Methyl ferulic acid attenuates liver fibrosis and hepatic stellate cell activation through the TGF-β1/Smad and NOX4/ROS pathways. Chem. Biol. Interact., 2019, 299, 131-139.
[http://dx.doi.org/10.1016/j.cbi.2018.12.006] [PMID: 30543783]
[46]
Mu, M.; Zuo, S.; Wu, R.M.; Deng, K.S.; Lu, S.; Zhu, J.J.; Zou, G.L.; Yang, J.; Cheng, M.L.; Zhao, X.K. Ferulic acid attenuates liver fibrosis and hepatic stellate cell activation via inhibition of TGF-β/Smad signaling pathway. Drug Des. Devel. Ther., 2018, 12, 4107-4115.
[http://dx.doi.org/10.2147/DDDT.S186726] [PMID: 30584275]
[47]
Cheng, Q.; Li, Y.W.; Yang, C.F.; Zhong, Y.J.; He, H.; Zhu, F.C.; Li, L. Methyl ferulic acid attenuates ethanol-induced hepatic steatosis by regulating AMPK and FoxO1 Pathways in Rats and L-02 cells. Chem. Biol. Interact., 2018, 291, 180-189.
[http://dx.doi.org/10.1016/j.cbi.2018.06.028] [PMID: 29940154]
[48]
Li, C.; Li, L.; Yang, C.F.; Zhong, Y.J.; Wu, D.; Shi, L.; Chen, L.; Li, Y.W. Hepatoprotective effects of Methyl ferulic acid on alcohol-induced liver oxidative injury in mice by inhibiting the NOX4/ROS-MAPK pathway. Biochem. Biophys. Res. Commun., 2017, 493(1), 277-285.
[http://dx.doi.org/10.1016/j.bbrc.2017.09.030] [PMID: 28890346]
[49]
Ma, Y.; Feng, Y.; Zeng, W.; Luo, H. Anthocyanin encapsulated by ferulic acid-grafted maltodextrin (FA-g-MD) microcapsules potentially improved its free radical scavenging capabilities against H2O2-induced oxidative stress. Molecules, 2019, 24(8), 1596.
[http://dx.doi.org/10.3390/molecules24081596] [PMID: 31018491]
[50]
Wang, Z.; Yang, Y.; Zhang, J.; Hu, J.; Yan, X.; Zeng, S.; Huang, X.; Lin, S. Ferulic acid ameliorates intrahepatic triglyceride accumulation in vitro but not in high fat diet-fed C57BL/6 mice. Food Chem. Toxicol., 2021, 149, 111978.
[http://dx.doi.org/10.1016/j.fct.2021.111978] [PMID: 33428987]
[51]
Damasceno, S.S.; Dantas, B.B.; Ribeiro-Filho, J.; Antônio, M.; Araújo, D.; Galberto M da Costa, J. Chemical properties of caffeic and ferulic acids in the biological systems: Implications in cancer therapy. A review. Curr. Pharm. Des., 2017, 23(20), 3015-3023.
[http://dx.doi.org/10.2174/1381612822666161208145508] [PMID: 27928956]
[52]
Wang, T.; Gong, X.; Jiang, R.; Li, H.; Du, W.; Kuang, G. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell. Am. J. Transl. Res., 2016, 8(2), 968-980.
[PMID: 27158383]
[53]
Sudhagar, S.; Sathya, S.; Anuradha, R.; Gokulapriya, G.; Geetharani, Y.; Lakshmi, B.S. Inhibition of epidermal growth factor receptor by ferulic acid and 4-vinylguaiacol in human breast cancer cells. Biotechnol. Lett., 2018, 40(2), 257-262.
[http://dx.doi.org/10.1007/s10529-017-2475-2] [PMID: 29164418]
[54]
Gao, J.; Yu, H.; Guo, W.; Kong, Y.; Li, Q.; Yang, S.; Zhang, Y.; Wang, Y. The anticancer effect of ferulic acid are associated with the induction of cell cycle arrest and autophagy in cervical cancer cells. Cancer Cell Int., 2018, 18(1), 1-9.
[http://dx.doi.org/10.1186/s12935-018-0595-y]
[55]
Maurya, D.K.; Devasagayam, T.P. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food Chem. Toxicol., 2010, 48(12), 3369-3373.
[http://dx.doi.org/10.1016/j.fct.2010.09.006] [PMID: 20837085]
[56]
Azam, S.; Hadi, N.; Khan, N.U.; Hadi, S.M. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: Implications for anticancer properties. Toxicol. In vitro, 2004, 18(5), 555-561.
[http://dx.doi.org/10.1016/j.tiv.2003.12.012] [PMID: 15251172]
[57]
Pellerito, C.; Emanuele, S.; Ferrante, F.; Celesia, A.; Giuliano, M.; Fiore, T. Tributyltin(IV) ferulate, a novel synthetic ferulic acid derivative, induces autophagic cell death in colon cancer cells: From chemical synthesis to biochemical effects. J. Inorg. Biochem., 2020, 205, 110999.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.110999] [PMID: 31986423]
[58]
Celesia, A.; Morana, O.; Fiore, T.; Pellerito, C.; D’Anneo, A.; Lauricella, M.; Carlisi, D.; De Blasio, A.; Calvaruso, G.; Giuliano, M.; Emanuele, S. ROS-dependent ER stress and autophagy mediate the anti-tumor effects of tributyltin (IV) Ferulate in colon cancer cells. Int. J. Mol. Sci., 2020, 21(21), 8135.
[http://dx.doi.org/10.3390/ijms21218135] [PMID: 33143349]
[59]
Roy, N.; Narayanankutty, A.; Nazeem, P.A.; Valsalan, R.; Babu, T.D.; Mathew, D. Plant phenolics, ferulic acid, and p-coumaric acid inhibit colorectal cancer cell proliferation through EGFR downregulation. Asian Pac. J. Cancer Prev., 2016, 17(8), 4019-4023.
[PMID: 27644655]
[60]
Aneja, B.; Queen, A.; Khan, P.; Shamsi, F.; Hussain, A.; Hasan, P.; Rizvi, M.M.A.; Daniliuc, C.G.; Alajmi, M.F.; Mohsin, M.; Hassan, M.I.; Abid, M. Design, synthesis & biological evaluation of ferulic acid-based small molecule inhibitors against tumor-associated carbonic anhydrase IX. Bioorg. Med. Chem., 2020, 28(9), 115424.
[http://dx.doi.org/10.1016/j.bmc.2020.115424] [PMID: 32209296]
[61]
Lu, W.; Wang, F.; Zhang, T.; Dong, J.; Gao, H.; Su, P.; Shi, Y.; Zhang, J. Search for novel histone deacetylase inhibitors. Part II: Design and synthesis of novel isoferulic acid derivatives. Bioorg. Med. Chem., 2014, 22(9), 2707-2713.
[http://dx.doi.org/10.1016/j.bmc.2014.03.019] [PMID: 24702857]
[62]
Hirsch, E.C.; Standaert, D.G. Ten unsolved questions about neuroinflammation in Parkinson’s disease. Mov. Disord., 2021, 36(1), 16-24.
[http://dx.doi.org/10.1002/mds.28075] [PMID: 32357266]
[63]
Bondi, M.W.; Edmonds, E.C.; Salmon, D.P. Alzheimer’s disease: Past, present, and future. J. Int. Neuropsychol. Soc., 2017, 23(9-10), 818-831.
[http://dx.doi.org/10.1017/S135561771700100X] [PMID: 29198280]
[64]
Sgarbossa, A.; Giacomazza, D.; di Carlo, M. Ferulic acid: A hope for Alzheimer’s disease therapy from plants. Nutrients, 2015, 7(7), 5764-5782.
[http://dx.doi.org/10.3390/nu7075246] [PMID: 26184304]
[65]
Kaur, S.; Dhiman, M.; Mantha, A.K. Ferulic Acid: A Natural Antioxidant with Application Towards Neuroprotection Against Alzheimer’s Disease. InFunctional Food and Human Health; Springer: Singapore, 2018, pp. 575-586.
[66]
Sultana, R. Ferulic acid ethyl ester as a potential therapy in neurodegenerative disorders. Biochim. Biophys. Acta, 2012, 1822(5), 748-752.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.015] [PMID: 22064438]
[67]
Kanaya, K. Effects of ferulic acid and Angelica archangelica extract (Feruguard) in patients with Alzheimer’s disease. Alzheimers Dement., 2010, 4(6), S548.
[http://dx.doi.org/10.1016/j.jalz.2010.05.1828]
[68]
Mori, T.; Koyama, N.; Guillot-Sestier, M.V.; Tan, J.; Town, T. Ferulic acid is a nutraceutical β-secretase modulator that improves behavioral impairment and alzheimer-like pathology in transgenic mice. PLoS One, 2013, 8(2), e55774.
[http://dx.doi.org/10.1371/journal.pone.0055774] [PMID: 23409038]
[69]
Kudoh, C.; Hori, T.; Yasaki, S.; Ubagai, R.; Tabira, T. Effects of ferulic acid and angelica archangelica extract (Feru-guard®) on mild cognitive impairment: A multicenter, randomized, double-blind, placebo-controlled prospective trial. J. Alzheimer's Dis., 2020, 1-6.
[70]
Mori, T.; Koyama, N.; Tan, J.; Segawa, T.; Maeda, M.; Town, T. Combination therapy with octyl gallate and ferulic acid improves cognition and neurodegeneration in a transgenic mouse model of Alzheimer’s disease. J. Biol. Chem., 2017, 292(27), 11310-11325.
[http://dx.doi.org/10.1074/jbc.M116.762658] [PMID: 28512130]
[71]
Montaser, A.; Huttunen, J.; Ibrahim, S.A.; Huttunen, K.M. Astrocyte-targeted transporter-utilizing derivatives of ferulic acid can have multifunctional effects ameliorating inflammation and oxidative stress in the brain. Oxid. Med. Cell. Longev., 2019, 2019, 3528148.
[http://dx.doi.org/10.1155/2019/3528148] [PMID: 31814871]
[72]
Manoharan, S.; Guillemin, G.J.; Abiramasundari, R.S.; Essa, M.M.; Akbar, M.; Akbar, M.D. The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: A mini review. Oxid. Med. Cell. Longev., 2016, 2016, 8590578.
[73]
Anis, E.; Zafeer, M.F.; Firdaus, F.; Islam, S.N.; Anees Khan, A.; Ali, A.; Hossain, M.M. Ferulic acid reinstates mitochondrial dynamics through PGC1α expression modulation in 6-hydroxydopamine lesioned rats. Phytother. Res., 2020, 34(1), 214-226.
[http://dx.doi.org/10.1002/ptr.6523] [PMID: 31657074]
[74]
Kikugawa, M.; Ida, T.; Ihara, H.; Sakamoto, T. Ferulic acid and its water-soluble derivatives inhibit nitric oxide production and inducible nitric oxide synthase expression in rat primary astrocytes. Biosci. Biotechnol. Biochem., 2017, 81(8), 1607-1611.
[http://dx.doi.org/10.1080/09168451.2017.1336925] [PMID: 28608752]
[75]
Salau, V.F.; Erukainure, O.L.; Ibeji, C.U.; Olasehinde, T.A.; Koorbanally, N.A.; Islam, M.S. Ferulic acid modulates dysfunctional metabolic pathways and purinergic activity, while stalling redox imbalance and cholinergic activity in oxidative brain injury. Neurotox. Res., 2020, 37(4), 944-955.
[PMID: 31422569]
[76]
Benchekroun, M.; Ismaili, L.; Pudlo, M.; Luzet, V.; Gharbi, T.; Refouvelet, B.; Marco-Contelles, J. Donepezil-ferulic acid hybrids as anti-Alzheimer drugs. Future Med. Chem., 2015, 7(1), 15-21.
[http://dx.doi.org/10.4155/fmc.14.148] [PMID: 25582330]
[77]
Fang, L.; Chen, M.; Liu, Z.; Fang, X.; Gou, S.; Chen, L. Ferulic acid-carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents. Bioorg. Med. Chem., 2016, 24(4), 886-893.
[http://dx.doi.org/10.1016/j.bmc.2016.01.010] [PMID: 26795115]
[78]
Pan, W.; Hu, K.; Bai, P.; Yu, L.; Ma, Q.; Li, T.; Zhang, X.; Chen, C.; Peng, K.; Liu, W.; Sang, Z. Design, synthesis and evaluation of novel ferulic acid-memoquin hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2016, 26(10), 2539-2543.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.086] [PMID: 27072909]
[79]
Sang, Z.; Pan, W.; Wang, K.; Ma, Q.; Yu, L.; Yang, Y.; Bai, P.; Leng, C.; Xu, Q.; Li, X.; Tan, Z.; Liu, W. Design, synthesis and evaluation of novel ferulic acid-O-alkylamine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 130, 379-392.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.039] [PMID: 28279845]
[80]
Sang, Z.; Wang, K.; Han, X.; Cao, M.; Tan, Z.; Liu, W. Design, synthesis, and evaluation of novel ferulic acid derivatives as multitarget-directed ligands for the treatment of Alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(2), 1008-1024.
[http://dx.doi.org/10.1021/acschemneuro.8b00530] [PMID: 30537804]
[81]
Lan, J.S.; Zeng, R.F.; Jiang, X.Y.; Hou, J.W.; Liu, Y.; Hu, Z.H.; Li, H.X.; Li, Y.; Xie, S.S.; Ding, Y.; Zhang, T. Design, synthesis and evaluation of novel ferulic acid derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. Bioorg. Chem., 2020, 94, 103413.
[http://dx.doi.org/10.1016/j.bioorg.2019.103413] [PMID: 31791679]
[82]
Mo, J.; Yang, H.; Chen, T.; Li, Q.; Lin, H.; Feng, F.; Liu, W.; Qu, W.; Guo, Q.; Chi, H.; Chen, Y.; Sun, H. Design, synthesis, biological evaluation, and molecular modeling studies of quinoline-ferulic acid hybrids as cholinesterase inhibitors. Bioorg. Chem., 2019, 93, 103310.
[http://dx.doi.org/10.1016/j.bioorg.2019.103310] [PMID: 31586704]
[83]
Rosini, M.; Simoni, E.; Caporaso, R.; Basagni, F.; Catanzaro, M.; Abu, I.F.; Fagiani, F.; Fusco, F.; Masuzzo, S.; Albani, D.; Lanni, C.; Mellor, I.R.; Minarini, A. Merging memantine and ferulic acid to probe connections between NMDA receptors, oxidative stress and amyloid-β peptide in Alzheimer’s disease. Eur. J. Med. Chem., 2019, 180, 111-120.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.011] [PMID: 31301562]
[84]
Tripathi, A.; Choubey, P.K.; Sharma, P.; Seth, A.; Saraf, P.; Shrivastava, S.K. Design, synthesis, and biological evaluation of ferulic acid based 1,3,4-oxadiazole hybrids as multifunctional therapeutics for the treatment of Alzheimer’s disease. Bioorg. Chem., 2020, 95, 103506.
[http://dx.doi.org/10.1016/j.bioorg.2019.103506] [PMID: 31887472]
[85]
Singh, Y.P.; Rai, H.; Singh, G.; Singh, G.K.; Mishra, S.; Kumar, S.; Srikrishna, S.; Modi, G. A review on ferulic acid and analogs based scaffolds for the management of Alzheimer’s disease. Eur. J. Med. Chem., 2021, 215, 113278.
[http://dx.doi.org/10.1016/j.ejmech.2021.113278] [PMID: 33662757]
[86]
Yapar, E.A. Herbal cosmetics and novel drug delivery systems. Indian J. Pharm. Educ. Res., 2017, 51(3), 152-158.
[http://dx.doi.org/10.5530/ijper.51.3s.3]
[87]
Girsang, E.; Lister, I.N.; Ginting, C.N.; Bethasari, M.; Amalia, A.; Widowati, W. Comparison of antiaging and antioxidant activities of protocatechuic and ferulic acids. Mol. Cell. Biomed. Sci., 2020, 4(2), 68-75.
[http://dx.doi.org/10.21705/mcbs.v4i2.90]
[88]
Drăgan, M.; Tătărîngă, G.; Mircea, C.; Cioancă, O.; Dragostin, O.; Iacob, A.T.; Profire, L.; Stan, C.D. Ferulic acid-a versatile molecule. ActaBiologicaMarisiensis, 2018, 1(2), 53-60.
[89]
Kruk, J.; Duchnik, E. Oxidative stress and skin diseases: Possible role of physical activity. Asian Pac. J. Cancer Prev., 2014, 15(2), 561-568.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.561] [PMID: 24568458]
[90]
Narendhirakannan, R.T.; Hannah, M.A. Oxidative stress and skin cancer: An overview. Indian J. Clin. Biochem., 2013, 28(2), 110-115.
[http://dx.doi.org/10.1007/s12291-012-0278-8] [PMID: 24426195]
[91]
Staniforth, V.; Huang, W.C.; Aravindaram, K.; Yang, N.S. Ferulic acid, a phenolic phytochemical, inhibits UVB-induced matrix metalloproteinases in mouse skin via posttranslational mechanisms. J. Nutr. Biochem., 2012, 23(5), 443-451.
[http://dx.doi.org/10.1016/j.jnutbio.2011.01.009] [PMID: 21543204]
[92]
Murakami, A.; Kadota, M.; Takahashi, D.; Taniguchi, H.; Nomura, E.; Hosoda, A.; Tsuno, T.; Maruta, Y.; Ohigashi, H.; Koshimizu, K. Suppressive effects of novel ferulic acid derivatives on cellular responses induced by phorbol ester, and by combined lipopolysaccharide and interferon-γ. Cancer Lett., 2000, 157(1), 77-85.
[http://dx.doi.org/10.1016/S0304-3835(00)00478-X] [PMID: 10893445]
[93]
Murakami, A.; Nakamura, Y.; Koshimizu, K.; Takahashi, D.; Matsumoto, K.; Hagihara, K.; Taniguchi, H.; Nomura, E.; Hosoda, A.; Tsuno, T.; Maruta, Y.; Kim, H.W.; Kawabata, K.; Ohigashi, H. FA15, a hydrophobic derivative of ferulic acid, suppresses inflammatory responses and skin tumor promotion: Comparison with ferulic acid. Cancer Lett., 2002, 180(2), 121-129.
[http://dx.doi.org/10.1016/S0304-3835(01)00858-8] [PMID: 12175542]
[94]
Calabrese, V.; Calafato, S.; Puleo, E.; Cornelius, C.; Sapienza, M.; Morganti, P.; Mancuso, C. Redox regulation of cellular stress response by ferulic acid ethyl ester in human dermal fibroblasts: Role of vitagenes. Clin. Dermatol., 2008, 26(4), 358-363.
[http://dx.doi.org/10.1016/j.clindermatol.2008.01.005] [PMID: 18691515]
[95]
Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Ferulic Acid: Therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr., 2007, 40(2), 92-100.
[http://dx.doi.org/10.3164/jcbn.40.92] [PMID: 18188410]
[96]
Dra, L.A.; Sellami, S.; Rais, H.; Aziz, F.; Aghraz, A.; Bekkouche, K.; Markouk, M.; Larhsini, M. Antidiabetic potential of Caralluma europaea against alloxan-induced diabetes in mice. Saudi J. Biol. Sci., 2019, 26(6), 1171-1178.
[http://dx.doi.org/10.1016/j.sjbs.2018.05.028] [PMID: 31516346]
[97]
Roy, S.; Metya, S.K.; Sannigrahi, S.; Rahaman, N.; Ahmed, F. Treatment with ferulic acid to rats with streptozotocin-induced diabetes: Effects on oxidative stress, pro-inflammatory cytokines, and apoptosis in the pancreatic β cell. Endocrine, 2013, 44(2), 369-379.
[http://dx.doi.org/10.1007/s12020-012-9868-8] [PMID: 23299178]
[98]
Vellai, R.D.; Chandiran, S.; Pillai, S.S. GTF-231, a mixture of gymnemic acid, trigonelline, and ferulic acid, significantly ameliorates oxidative stress in experimental type 2 diabetes in rats. Can. J. Diabetes, 2018, 42(3), 237-244.
[http://dx.doi.org/10.1016/j.jcjd.2017.05.007] [PMID: 28728928]
[99]
Prabhakar, P.K.; Prasad, R.; Ali, S.; Doble, M. Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats. Phytomedicine, 2013, 20(6), 488-494.
[http://dx.doi.org/10.1016/j.phymed.2012.12.004] [PMID: 23490007]
[100]
Son, M.J.; Rico, C.W.; Nam, S.H.; Kang, M.Y. Effect of oryzanol and ferulic acid on the glucose metabolism of mice fed with a high-fat diet. J. Food Sci., 2011, 76(1), H7-H10.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01907.x] [PMID: 21535685]
[101]
Latifi, E.; Mohammadpour, A.A.; H, B.F.; Nourani, H. Antidiabetic and antihyperlipidemic effects of ethanolic Ferula assa-foetida oleo-gum-resin extract in streptozotocin-induced diabetic wistar rats. Biomed. Pharmacother., 2019, 110, 197-202.
[http://dx.doi.org/10.1016/j.biopha.2018.10.152] [PMID: 30471513]
[102]
Nankar, R.; Prabhakar, P.K.; Doble, M. Hybrid drug combination: Combination of ferulic acid and metformin as anti-diabetic therapy. Phytomedicine, 2017, 37, 10-13.
[http://dx.doi.org/10.1016/j.phymed.2017.10.015] [PMID: 29126698]
[103]
Yasmin, S.; Cerchia, C.; Badavath, V.N.; Laghezza, A.; Dal Piaz, F.; Mondal, S.K.; Atlı, Ö.; Baysal, M.; Vadivelan, S.; Shankar, S.; Siddique, M.U. A series of ferulic acid amides revealed unexpected peroxiredoxin 1 inhibitory activity with in vivo antidiabetic and hypolipidemic effects. ChemMedChem, 2020, 15, 1-6.
[PMID: 33030290]
[104]
Senthil, R.; Sakthivel, M.; Usha, S. Structure-based drug design of peroxisome proliferator-activated receptor gamma inhibitors: Ferulic acid and derivatives. J. Biomol. Struct. Dyn., 2021, 39(4), 1295-1311.
[http://dx.doi.org/10.1080/07391102.2020.1740790] [PMID: 32151198]
[105]
Prajapati, S.K.; Jain, A.; Jain, A.; Jain, S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur. Polym. J., 2019, 120, 109191.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.08.018]
[106]
Goyal, A.; Kumar, S.; Nagpal, M.; Singh, I.; Arora, S. Potential of novel drug delivery systems for herbal drugs. Ind. J. Pharm. Education Res., 2011, 45(3), 225-235.
[107]
Singh, I.; Rehni, A.K.; Kalra, R.; Joshi, G.; Kumar, M.; Aboul-Enein, H.Y. Ion exchange resins: Drug delivery and therapeutic applications. Fabad J. Pharm. Sci., 2007, 32(2), 91.
[108]
Romeo, A.; Musumeci, T.; Carbone, C.; Bonaccorso, A.; Corvo, S.; Lupo, G.; Anfuso, C.D.; Puglisi, G.; Pignatello, R. Ferulic acid-loaded polymeric nanoparticles for potential ocular delivery. Pharmaceutics, 2021, 13(5), 687.
[http://dx.doi.org/10.3390/pharmaceutics13050687] [PMID: 34064572]
[109]
Telange, D.R.; Jain, S.P.; Pethe, A.M.; Kharkar, P.S.; Rarokar, N.R. Use of combined nanocarrier system based on chitosan nanoparticles and phospholipids complex for improved delivery of ferulic acid. Int. J. Biol. Macromol., 2021, 171, 288-307.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.211] [PMID: 33418046]
[110]
Chen, M.; Liu, X.; Fahr, A. Skin delivery of ferulic acid from different vesicular systems. J. Biomed. Nanotechnol., 2010, 6(5), 577-585.
[http://dx.doi.org/10.1166/jbn.2010.1154] [PMID: 21329050]
[111]
Rezaei, A.; Varshosaz, J.; Fesharaki, M.; Farhang, A.; Jafari, S.M. Improving the solubility and in vitro cytotoxicity (anticancer activity) of ferulic acid by loading it into cyclodextrin nanosponges. Int. J. Nanomedicine, 2019, 14, 4589-4599.
[http://dx.doi.org/10.2147/IJN.S206350] [PMID: 31296988]
[112]
Chaves Júnior, J.V.; Dos Santos, J.A.B.; Lins, T.B.; de Araújo Batista, R.S.; de Lima Neto, S.A.; de Santana Oliveira, A.; Nogueira, F.H.A.; Gomes, A.P.B.; de Sousa, D.P.; de Souza, F.S.; Aragão, C.F.S. A new ferulic acid-nicotinamide cocrystal with improved solubility and dissolution performance. J. Pharm. Sci., 2020, 109(3), 1330-1337.
[http://dx.doi.org/10.1016/j.xphs.2019.12.002] [PMID: 31821823]
[113]
Grimaudo, M.A.; Amato, G.; Carbone, C.; Diaz-Rodriguez, P.; Musumeci, T.; Concheiro, A.; Alvarez-Lorenzo, C.; Puglisi, G. Micelle-nanogel platform for ferulic acid ocular delivery. Int. J. Pharm., 2020, 576, 118986.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118986] [PMID: 31870956]
[114]
Mancuso, A.; Cristiano, M.C.; Pandolfo, R.; Greco, M.; Fresta, M.; Paolino, D. Improvement of ferulic acid antioxidant activity by multiple emulsions: In vitro and in vivo evaluation. Nanomaterials (Basel), 2021, 11(2), 425.
[http://dx.doi.org/10.3390/nano11020425] [PMID: 33567523]
[115]
Rezaeiroshan, A.; Saeedi, M.; Morteza-Semnani, K.; Akbari, J.; Gahsemi, M.; Nokhodchi, A. Development of trans-ferulic acid niosome: An optimization and in vivo study. J. Drug Deliv. Sci. Technol., 2020, 59, 101854.
[http://dx.doi.org/10.1016/j.jddst.2020.101854]

© 2024 Bentham Science Publishers | Privacy Policy