Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Letter Article

The 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase HSD-X1 of Pseudomonas Citronellolis SJTE-3 Catalyzes the Conversion of 17β-estradiol to Estrone

Author(s): Yali Fu, Wanli Peng, Shuangjun Lin, Zixin Deng and Rubing Liang*

Volume 29, Issue 3, 2022

Published on: 24 February, 2022

Page: [199 - 207] Pages: 9

DOI: 10.2174/0929866529666220113140721

Price: $65

Abstract

Background: Pseudomonas citronellolis SJTE-3 can efficiently degrade 17β-estradiol (E2) and other estrogenic chemicals. However, the enzyme responsible for E2 metabolism within strain SJTE-3 has remained unidentified.

Objective: Here, a novel 3-oxoacyl-(acyl-carrier protein) (ACP) reductase, HSD-X1 (WP_ 009617962.1), was identified in SJTE-3 and its enzymatic characteristics for the transformation of E2 were investigated.

Methods: Multiple sequence alignment and homology modelling were used to predict the protein structure of HSD-X1. The concentrations of different steroids in the culture of recombinant strains expressing HSD-X1 were determined by high performance liquid chromatography. Additionally, the transcription of hsd-x1 gene was investigated using reverse transcription and quantitative PCR analysis. Heterologous expression and affinity purification were used to obtain recombinant HSD- X1.

Results: The transcription of hsd-x1 gene in P. citronellolis SJTE-3 was induced by E2. Multiple sequence alignment (MSA) indicated that HSD-X1 contained the two consensus regions and conserved residues of short-chain dehydrogenase/reductases (SDRs) and 17β-hydroxysteroid dehydrogenases (17β-HSDs). Over-expression of hsd-x1 gene allowed the recombinant strain to degrade E2. Recombinant HSD-X1 was purified with a yield of 22.15 mg/L and used NAD+ as its cofactor to catalyze the oxidization of E2 into estrone (E1) while exhibiting a Km value of 0.025 ± 0.044 mM and a Vmax value of 4.92 ± 0.31 mM/min/mg. HSD-X1 could tolerate a wide range of temperature and pH, while the presence of divalent ions exerted little influence on its activity. Further, the transformation efficiency of E2 into E1 was over 98.03% across 15 min.

Conclusion: Protein HSD-X1 efficiently catalyzed the oxidization of E2 and participated in estrogen degradation by P. citronellolis SJTE-3.

Keywords: Pseudomonas citronellolis SJTE-3, 3-oxoacyl-ACP reductase, 17β-hydroxysteroid dehydrogenase, 17β-estradiol, estrone, MSA, E2 metabolism.

Next »
Graphical Abstract
[1]
Adeel, M.; Song, X.; Wang, Y.; Francis, D.; Yang, Y. Environmental impact of estrogens on human, animal and plant life: A critical review. Environ. Int., 2017, 99, 107-119.
[http://dx.doi.org/10.1016/j.envint.2016.12.010] [PMID: 28040262]
[2]
Zhao, X.; Grimes, K.L.; Colosi, L.M.; Lung, W.S. Attenuation, transport, and management of estrogens: A review. Chemosphere, 2019, 230, 462-478.
[http://dx.doi.org/10.1016/j.chemosphere.2019.05.086] [PMID: 31121510]
[3]
Yu, C.P.; Deeb, R.A.; Chu, K.H. Microbial degradation of steroidal estrogens. Chemosphere, 2013, 91(9), 1225-1235.
[http://dx.doi.org/10.1016/j.chemosphere.2013.01.112] [PMID: 23517889]
[4]
Pratush, A.; Ye, X.; Yang, Q.; Kan, J.; Peng, T.; Wang, H.; Huang, T.; Xiong, G.; Hu, Z. Biotransformation strategies for steroid estrogen and androgen pollution. Appl. Microbiol. Biotechnol., 2020, 104(6), 2385-2409.
[http://dx.doi.org/10.1007/s00253-020-10374-9] [PMID: 31993703]
[5]
Shi, J.; Fujisawa, S.; Nakai, S.; Hosomi, M. Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea. Water Res., 2004, 38(9), 2322-2329.
[http://dx.doi.org/10.1016/j.watres.2004.02.022] [PMID: 15142793]
[6]
Yu, C.P.; Roh, H.; Chu, K.H. 17β-estradiol-degrading bacteria isolated from activated sludge. Environ. Sci. Technol., 2007, 41(2), 486-492.
[http://dx.doi.org/10.1021/es060923f] [PMID: 17310711]
[7]
Haiyan, R.; Shulan, J.; ud din Ahmad, N.; Dao, W.; Chengwu, C. Degradation characteristics and metabolic pathway of 17alpha-ethynylestradiol by Sphingobacterium sp. JCR5. Chemosphere, 2007, 66(2), 340-346.
[http://dx.doi.org/10.1016/j.chemosphere.2006.04.064] [PMID: 16766017]
[8]
Liang, R.; Liu, H.; Tao, F.; Liu, Y.; Ma, C.; Liu, X.; Liu, J. Genome sequence of Pseudomonas putida strain SJTE-1, a bacterium capable of degrading estrogens and persistent organic pollutants. J. Bacteriol., 2012, 194(17), 4781-4782.
[http://dx.doi.org/10.18/JB.01060-12] [PMID: 22887678]
[9]
Zheng, D.; Wang, X.; Wang, P.; Peng, W.; Ji, N.; Liang, R. Genome sequence of pseudomonas citronellolis SJTE-3, an estrogen- and polycyclic aromatic hydrocarbon-degrading bacterium. Genome Announc., 2016, 4(6), e01373-e16.
[http://dx.doi.org/10.1128/genomeA.01373-16] [PMID: 27932659]
[10]
Xiong, W.; Yin, C.; Peng, W.; Deng, Z.; Lin, S.; Liang, R. Characterization of an 17β-estradiol-degrading bacterium Stenotrophomonas maltophilia SJTL3 tolerant to adverse environmental factors. Appl. Microbiol. Biotechnol., 2020, 104(3), 1291-1305.
[http://dx.doi.org/10.1007/s00253-019-10281-8] [PMID: 31834439]
[11]
Wang, P.H.; Yu, C.P.; Lee, T.H.; Lin, C.W.; Ismail, W.; Wey, S.P.; Kuo, A.T.; Chiang, Y.R. Anoxic androgen degradation by the denitrifying bacterium Sterolibacterium denitrificansvia the 2,3-seco pathway. Appl. Environ. Microbiol., 2014, 80(11), 3442-3452.
[http://dx.doi.org/10.1128/AEM.03880-13] [PMID: 24657867]
[12]
Chen, Y.L.; Yu, C.P.; Lee, T.H.; Goh, K.S.; Chu, K.H.; Wang, P.H.; Ismail, W.; Shih, C.J.; Chiang, Y.R. Biochemical mechanisms and catabolic enzymes involved in bacterial estrogen degradation pathways. Cell Chem. Biol., 2017, 24(6), 712-724.e7.
[http://dx.doi.org/10.1016/j.chembiol.2017.05.012] [PMID: 28552583]
[13]
Chen, Y.L.; Fu, H.Y.; Lee, T.H.; Shih, C.J.; Huang, L.; Wang, Y.S.; Ismail, W.; Chiang, Y.R. Estrogen degraders and estrogen degradation pathway identified in an activated sludge. Appl. Environ. Microbiol., 2018, 84(10), e00001-e00018.
[http://dx.doi.org/10.1128/AEM.00001-18] [PMID: 29523553]
[14]
Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 2016, 33(7), 1870-1874.
[http://dx.doi.org/10.1093/molbev/msw054] [PMID: 27004904]
[15]
Wang, P.; Zheng, D.; Peng, W.; Wang, Y.; Wang, X.; Xiong, W.; Liang, R. Characterization of 17β-hydroxysteroid dehydrogenase and regulators involved in estrogen degradation in Pseudomonas putida SJTE-1. Appl. Microbiol. Biotechnol., 2019, 103(5), 2413-2425.
[http://dx.doi.org/10.1007/s00253-018-9543-y] [PMID: 30623203]
[16]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[17]
Yu, Y.; Liu, C.; Wang, B.; Li, Y.; Zhang, H. Characterization of 3,17β-hydroxysteroid dehydrogenase in Comamonas testosteroni. Chem. Biol. Interact., 2015, 234, 221-228.
[http://dx.doi.org/10.1016/j.cbi.2015.01.005] [PMID: 25595227]
[18]
Ye, X.; Wang, H.; Kan, J.; Li, J.; Huang, T.; Xiong, G.; Hu, Z. A novel 17β-hydroxysteroid dehydrogenase in Rhodococcus sp. P14 for transforming 17β-estradiol to estrone. Chem. Biol. Interact., 2017, 276, 105-112.
[http://dx.doi.org/10.1016/j.cbi.2017.06.010] [PMID: 28619386]
[19]
Wang, P.; Zheng, D.; Wang, Y.; Liang, R. One 3-oxoacyl-(acyl-Carrier-protein) reductase functions as 17β-hydroxysteroid dehydrogenase in the estrogen-degrading Pseudomonas putida SJTE-1. Biochem. Biophys. Res. Commun., 2018, 505(3), 910-916.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.005] [PMID: 30309659]
[20]
Ye, X.; Peng, T.; Feng, J.; Yang, Q.; Pratush, A.; Xiong, G.; Huang, T.; Hu, Z. A novel dehydrogenase 17β-HSDx from Rhodococcus sp. P14 with potential application in bioremediation of steroids contaminated environment. J. Hazard. Mater., 2019, 362, 170-177.
[http://dx.doi.org/10.1016/j.jhazmat.2018.09.023] [PMID: 30236938]
[21]
Xiong, W.; Yin, C.; Wang, Y.; Lin, S.; Deng, Z.; Liang, R. Characterization of an efficient estrogen-degrading bacterium Stenotrophomonas maltophilia SJTH1 in saline-, alkaline-, heavy metal-contained environments or solid soil and identification of four 17β-estradiol-oxidizing dehydrogenases. J. Hazard. Mater., 2020, 385, 121616.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121616] [PMID: 31780289]
[22]
Beck, K.R.; Kaserer, T.; Schuster, D.; Odermatt, A. Virtual screening applications in short-chain dehydrogenase/reductase research. J. Steroid Biochem. Mol. Biol., 2017, 171, 157-177.
[http://dx.doi.org/10.1016/j.jsbmb.2017.03.008] [PMID: 28286207]
[23]
Cross, E.M.; Adams, F.G.; Waters, J.K.; Aragão, D.; Eijkelkamp, B.A.; Forwood, J.K. Insights into Acinetobacter baumannii fatty acid synthesis 3-oxoacyl-ACP reductases. Sci. Rep., 2021, 11(1), 7050.
[http://dx.doi.org/10.1038/s41598-021-86400-1] [PMID: 33782435]
[24]
Zhang, H.; Ji, Y.; Wang, Y.; Zhang, X.; Yu, Y. Cloning and characterization of a novel β-ketoacyl-ACP reductase from Comamonas testosteroni. Chem. Biol. Interact., 2015, 234, 213-220.
[http://dx.doi.org/10.1016/j.cbi.2015.01.003] [PMID: 25595225]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy