Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Lewis Acid-Catalyzed Synthesis of Alkoxymethylhalides for Multipurpose Mixed Acetals; Scope and Limitations

Author(s): Muhammad Nisar, Humaira Yasmeen Gondal*, Zain Maqsood Cheema and Ahmed Abbasskhan

Volume 19, Issue 9, 2022

Published on: 18 February, 2022

Page: [750 - 756] Pages: 7

DOI: 10.2174/1570178619666220112105145

Price: $65

Abstract

The work describes a detailed account of the Lewis acid-catalyzed preparation of structurally variant alkoxymethyl halides. A series of Lewis acids with different halogenating agents are evaluated for the cleavage of bis-alkoxymethanes, where several readily available Lewis acids were found to exhibit high catalytic potential. SOCl2 with MgCl2 was found to be one of the best combinations for the facile and efficient preparation of structurally diverse alkoxymethyl halides under solvent-free conditions. The efficacy of the methodology was established to obtain a wide range of mixed acetals through alkoxymethylation of phosphorus, sulfur, nitrogen, and oxygen containing nucleophiles. The present procedure has significant advantages including simplicity, generality, rapidity, and availability of reagents.

Keywords: Lewis acid catalyst, alkoxymethylation, alkoxymethyl halide, α-haloethers, halogenated cleavage, mixed acetals.

Graphical Abstract
[1]
Greene, T.W. Protective Groups in Organic Synthesis; John Wiley & Sons, 1999.
[2]
Nishida, H.; Arai, T.; Uozumi, T.; Soga, K. Macromol. Rapid Commun., 1995, 16, 821.
[http://dx.doi.org/10.1002/marc.1995.030161107]
[3]
Jones, R.G.; Benfield, R.E.; Swain, A.C.; Webb, S.J.; Went, M. Polymer (Guildf.), 1995, 36, 393.
[http://dx.doi.org/10.1016/0032-3861(95)91331-Z]
[4]
DeHaan, F.P.; Djaputra, M.; Grinstaff, M.W.; Kaufman, C.R.; Keithly, J.C.; Kumar, A.; Kuwayama, M.K.; Macknet, K.D.; Na, J.; Patel, B.R.; Pinkerton, M.J.; Tidwell, J.H.; Villahermosa, R.M. J. Org. Chem., 1997, 62(9), 2694-2703.
[http://dx.doi.org/10.1021/jo961064o] [PMID: 11671627]
[5]
Masaki, Y.; Serizawa, Y.; Kaji, K. Chem. Lett., 1985, 14(12), 1933-1936.
[http://dx.doi.org/10.1246/cl.1985.1933]
[6]
Sato, T.; Kobayashi, T.; Gojo, T.; Yoshida, E. Chem. Lett., 1987, 16(8), 1661-1664.
[http://dx.doi.org/10.1246/cl.1987.1661]
[7]
Cregge, R.J.; Herrmann, J.L.; Lee, C.S.; Richman, J.E.; Schlessinger, R.H. Tetrahedron Lett., 1973, 26, 2425-2428.
[http://dx.doi.org/10.1016/S0040-4039(01)96237-9]
[8]
Townsend, C.A.; Bloom, L.M. Tetrahedron Lett., 1981, 22, 3923.
[http://dx.doi.org/10.1016/S0040-4039(01)82027-X]
[9]
Dieter, R.K.; Lugaae, A.G. Synthesis, 1988, 1988(4), 303-306.
[http://dx.doi.org/10.1055/s-1988-27549]
[10]
Zaidi, J.H. Synth. Commun., 1996, 26, 2407.
[http://dx.doi.org/10.1080/00397919608004551]
[11]
Alzeer, J.; Nock, N.; Wassner, G.; Masciadri, R. Tetrahedron Lett., 1996, 37, 6857.
[http://dx.doi.org/10.1016/0040-4039(96)01547-X]
[12]
Joseph, G. J. Pharm. Sci., 1979, 68(12), 1562.
[http://dx.doi.org/10.1002/jps.2600681230] [PMID: 529057]
[13]
Poirier, M.; Simard, M.; Wuest, J.D. Organometallics, 1996, 15, 1296.
[http://dx.doi.org/10.1021/om9507078]
[14]
Yamamoto, K.; Yoshitake, J.; Thi Qui, N. Tuji. J. Chem. Lett., 1978, 7(8), 859-862.
[http://dx.doi.org/10.1246/cl.1978.859]
[15]
Takeda, T.; Shono, T.; Ito, K.; Sasaki, H.; Tsubouchi, A. Tetrahedron Lett., 2003, 44, 7897-7900.
[http://dx.doi.org/10.1016/j.tetlet.2003.09.013]
[16]
Karak, M.; Joh, Y.; Suenaga, M.; Oishi, T.; Torikai, K. Org. Lett., 2019, 21(4), 1221-1225.
[http://dx.doi.org/10.1021/acs.orglett.9b00220] [PMID: 30693782]
[17]
Gondal, H.Y.; Cheema, Z.M.; Zaidi, J.H.; Yousuf, S.; Choudhary, M.I. Chem. Cent. J., 2018, 12(1), 62.
[http://dx.doi.org/10.1186/s13065-018-0421-6] [PMID: 29774487]
[18]
Cheema, Z.M.; Gondal, H.Y.; Siddiqui, H.; Choudhary, M.I. Phosphorus Sulfur Silicon Relat. Elem., 2020, 195(1), 37-42.
[http://dx.doi.org/10.1080/10426507.2019.1633533]
[19]
Mumtaz, S.; Khan, S.W.; Zaidi, J.H.; Iqbal, A.; Cheema, Z.M.; Khan, K.M.; Perveen, S. Lett. Org. Chem., 2013, 10(8), 578-583.
[http://dx.doi.org/10.2174/15701786113109990020]
[20]
Mumtaz, S.; Cano, I.; Mumtaz, N.; Khan, A.A.; Dupont, J.; Gondal, H.Y. Phys. Chem. Chem. Phys., 2018, 20(32), 20821-20826.
[http://dx.doi.org/10.1039/C8CP03881C] [PMID: 30059112]
[21]
Gondal, H.Y.; Mumtaz, S.; Khan, A.A.; Mumtaz, N.; Cano, I. Chem. Pap., 2020, 1-13.
[22]
Kappe, C.O. Eur. J. Med. Chem., 2000, 35(12), 1043-1052.
[http://dx.doi.org/10.1016/S0223-5234(00)01189-2] [PMID: 11248403]
[23]
Rawal, V.H.; Akiba, M.; Cava, M.P. Synth. Commun., 1984, 14, 1129.
[http://dx.doi.org/10.1080/00397918408059645]
[24]
Vatele, J.M. Tetrahedron Lett., 1984, 3, 5997.
[http://dx.doi.org/10.1016/S0040-4039(01)81742-1]
[25]
Mandai, T.; Yanagi, T.; Araki, K.; Morisaki, Y.; Kawada, M.; Otera, J. J. Am. Chem. Soc., 1984, 106(12), 3670-3672.
[http://dx.doi.org/10.1021/ja00324a044]
[26]
Benneche, T. Synthesis, 1995, 1.
[http://dx.doi.org/10.1055/s-1995-3858]
[27]
Gondal, H.Y.; Cheema, Z.M.; Raza, A.R.; Khan, A.A.; Chaudhary, M.I. Curr. Org. Chem., 2019, 23(16), 1738-1755.
[http://dx.doi.org/10.2174/1385272823666190926092242]
[28]
Cheema, Z.M.; Gondal, H.Y.; Raza, A.R.; Abbaskhan, A. Mol. Divers., 2020, 24(2), 455-462.
[http://dx.doi.org/10.1007/s11030-019-09966-z] [PMID: 31154589]
[29]
Marvel, C.S.; Porter, P.K. Organic Syntheses; John Wiley & Sons, 1941, p. 377.
[30]
Fuji, K.; Nakano, S.; Fujita, E. Synthesis, 1975, 1975(4), 276-277.
[http://dx.doi.org/10.1055/s-1975-23734]
[31]
Lewis, R.J. Sax’s Dangerous Properties of Industrial Materials; John Wiley & Sons, 2000, Vol. 2, p. 854.
[32]
Ens, L.A. Chem. Abstr., 1976.
[33]
Weinstock, L.M.; Karady, S.; Sletzinger, M. Chem. Abstr; U.S. Patent. 3, 972,947, 1976.
[34]
Nattrass, M.J. Natl. Inst. Metall. Repub. S. Afr .Rep., 1977, 1853.
[35]
Chong, J.M.; Shen, L. Synth. Commun., 1998, 28, 2801.
[http://dx.doi.org/10.1080/00397919808004855]
[36]
Linderman, R.J.; Jaber, M.; Griedel, B.D. J. Org. Chem., 1994, 59, 6499.
[http://dx.doi.org/10.1021/jo00100a070]
[37]
Reggelin, M.; Doerr, S. Synlett, 2004, 2004(6), 1117.
[http://dx.doi.org/10.1055/s-2004-820049]
[38]
Amato, J.S.; Karady, S.; Sletzinger, M.; Weinstock, L.M. Synthesis, 1979, 1979(12), 970-971.
[http://dx.doi.org/10.1055/s-1979-28894]
[39]
Fuji, K.; Nakano, S.; Fujita, E. Synthesis, 1975, 1975(4), 276-277.
[http://dx.doi.org/10.1055/s-1975-23734]
[40]
Dardoize, F.; Gaudemar, M.; Goasdoue, N. Synthesis, 1977, 1977(8), 567-568.
[http://dx.doi.org/10.1055/s-1977-24478]
[41]
Chang, C.; Chu, K.C.; Yue, S. Synth. Commun., 1992, 22, 1217.
[http://dx.doi.org/10.1080/00397919208021108]
[42]
Bailey, W.F.; Zarcone, L.M.; Rivera, A.D. J. Org. Chem., 1995, 60, 2532.
[http://dx.doi.org/10.1021/jo00113a037]
[43]
Bailey, W.F.; Carson, M.W.; Zarcone, L.M.J. Org. Synth., 1998, 75, 177.
[http://dx.doi.org/10.15227/orgsyn.075.0177]
[44]
Martin, A.; Berliner, M.A.; Belecki, K. J. Org. Chem., 2005, 70(23), 9618-9621.
[http://dx.doi.org/10.1021/jo051344g] [PMID: 16268645]
[45]
Maegawa, T.; Koutani, Y.; Otake, K.; Fujioka, H. J. Org. Chem., 2013, 78(7), 3384-3390.
[http://dx.doi.org/10.1021/jo4000256] [PMID: 23409831]
[46]
Davie, C.P.; Danheiser, R.L. Angew. Chem. Int. Ed., 2005, 44(36), 5867-5870.
[http://dx.doi.org/10.1002/anie.200501579]
[47]
Yanagihara, M.; Ohta, R.; Murai, K.; Arisawa, M.; Fujioka, H. ACS Omega, 2019, 4(5), 8465-8471.
[http://dx.doi.org/10.1021/acsomega.9b00643] [PMID: 31459935]
[48]
Jeong, H.J.; Yoon, E.Y.; Kim, M.K.; Lee, J.H.; Yoon, Y.J.; Lee, S.G. Bull. Korean Chem. Soc., 2003, 24(11), 1689-1691.
[http://dx.doi.org/10.5012/bkcs.2003.24.11.1689]
[49]
Lima, H.M.; Lovely, C.J. Org. Lett., 2011, 13(21), 5736-5739.
[http://dx.doi.org/10.1021/ol2022438] [PMID: 21992702]
[50]
Finch, H.; Mjalli, A.M.; Montana, J.G.; Roberts, S.M.; Taylor, R.J. Tetrahedron, 1990, 46(13-14), 4925-4950.
[http://dx.doi.org/10.1016/S0040-4020(01)85603-9]
[51]
Ono, F.; Negoro, R.; Sato, T. Synlett, 2001, 10, 1581-1583.
[http://dx.doi.org/10.1055/s-2001-17477]
[52]
Prasad, V.A.; Yinghuai, Z. J. Appl. Polym. Sci., 2013, 128(5), 3411-3416.
[http://dx.doi.org/10.1002/app.38569]
[53]
Sato, T.; Otera, J.; Nozaki, H. Tetrahedron, 1989, 45(4), 1209-1218.
[http://dx.doi.org/10.1016/0040-4020(89)80029-8]
[54]
Trofast, J.; Wickberg, B. Tetrahedron, 1977, 33(8), 875-879.
[http://dx.doi.org/10.1016/0040-4020(77)80038-0]
[55]
Whitesell, J.K.; Matthews, R.S.; Helbling, A.M. J. Org. Chem., 1978, 43(4), 784-786.
[http://dx.doi.org/10.1021/jo00398a077]
[56]
Jaffé, K.; Blum, M.S.; Fales, H.M.; Mason, R.T.; Cabrera, A. J. Chem. Ecol., 1995, 21(3), 379-384.
[http://dx.doi.org/10.1007/BF02036725] [PMID: 24234068]
[57]
Cang, S.; Ohta, S.; Chiba, H.; Johdo, O.; Nomura, H.; Nagamatsu, Y.; Yoshimoto, A. J. Antibiot. (Tokyo), 2001, 54(3), 304-307.
[http://dx.doi.org/10.7164/antibiotics.54.304] [PMID: 11372787]
[58]
Nichols, D.E.; Lloyd, D.H.; Hoffman, A.J.; Nichols, M.B.; Yim, G.K.W. J. Med. Chem., 1982, 25(5), 530-535.
[http://dx.doi.org/10.1021/jm00347a010] [PMID: 7086839]
[59]
Effenberger, F. Jager. J. Chem., 1997, 3(8), 1370-1374.
[http://dx.doi.org/10.1002/chem.19970030825]
[60]
Igarashi, Y.; Iida, T.; Yoshida, R.; Furumai, T. J. Antibiot. (Tokyo), 2002, 55(8), 764-767.
[http://dx.doi.org/10.7164/antibiotics.55.764] [PMID: 12374388]
[61]
Paterson, I.; Anderson, E.A.; Findlay, A.D.; Knappy, C.S. Tetrahedron, 2008, 64(21), 4768-4777.
[http://dx.doi.org/10.1016/j.tet.2008.01.132]
[62]
Belleau, B.; Brasili, L.; Chan, L.; DiMarco, M.P.; Zacharie, B.; Nguyenba, N.; Jenkinson, H.J.; Coates, J.A.V.; Cameron, J.M. Bioorg. Med. Chem. Lett., 1993, 3(8), 1723-1728.
[http://dx.doi.org/10.1016/S0960-894X(00)80050-5]
[63]
Saigal, K.; Rehman, H. Shafiullah; Khan, M.M. RSC Advances, 2019, 9(25), 14477.
[http://dx.doi.org/10.1039/C9RA00630C]
[64]
Tani, Y.; Endo, M.; Urano, F.; Yasuda, T. Negative working resist material and pattern forming process; EP0579420A2, Priority: 15.07.92 JP 210961/92, 1994.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy