Review Article

TRIM蛋白表达改变--在具有不同致癌特征的乳腺癌中的不利结果和不可替代的致癌功能

卷 23, 期 1, 2023

发表于: 10 February, 2022

页: [44 - 53] 页: 10

弟呕挨: 10.2174/1566524022666220111122450

价格: $65

conference banner
摘要

根据新的临床发现,泛素介导的致癌基因产物或肿瘤抑制因子的降解失调似乎与癌的发生有关。根据最近的研究,三结构域(TRIM)蛋白(RING型E3泛素连接酶的一个亚家族)的一些成员作为重要的致癌调节因子。细胞内信号传导、发育、细胞凋亡、蛋白质质量控制、先天免疫、自噬和致癌都受到TRIM家族蛋白的调控,其中大部分具有E3泛素连接酶活性。肿瘤中TRIMs的表达可能与疾病的形成和/或进展有关,TRIM的表达可用于预测癌症的预后。乳腺癌是女性最常见的恶性肿瘤,也是导致死亡的主要原因。越来越多的证据表明,TRIM家族蛋白具有独特的、重要的活性,它们的失调,如TRIM 21,会促进乳腺癌。许多TRIM蛋白表达水平下降或升高已被确定为重要的癌症生物标志物。TRIM29作为缺氧诱导的肿瘤抑制基因,揭示了ATM依赖性乳腺癌抑制的新分子机制。在乳腺癌细胞中,存在TRIM28-TWIST1-EMT轴,TRIM28通过稳定TWIST1,从而增加上皮-间质转化,增强了乳腺癌的转移。有趣的是,根据目前的研究,许多TRIM蛋白参与了对p53的控制,许多TRIM蛋白也同样受到p53的调节。此外,与特定肿瘤相关的TRIMs可能有助于创建创新的TRIM靶向癌症治疗方法。本综述重点介绍了参与肿瘤发展、进展并对乳腺癌有临床意义的TRIM蛋白。

关键词: TRIM蛋白,泛素系统,乳腺癌,缺氧,临床意义,肿瘤发生,化疗耐药性。

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin 2017; 67(1): 7-30.
[http://dx.doi.org/10.3322/caac.21387]
[2]
Reymond A, Meroni G, Fantozzi A, et al. The tripartite motif family identifies cell compartments. EMBO J 2001; 20(9): 2140-51.
[http://dx.doi.org/10.1093/emboj/20.9.2140]
[3]
Chen Y, Guo Y, Yang H, et al. TRIM66 overexpresssion contributes to osteosarcoma carcinogenesis and indicates poor survival outcome. Oncotarget 2015; 6(27): 23708-19.
[http://dx.doi.org/10.18632/oncotarget.4291]
[4]
Wang Y, He D, Yang L, et al. TRIM26 functions as a novel tumor suppressor of hepatocellular carcinoma and its downregulation contributes to worse prognosis. Biochem Biophys Res Commun 2015; 463(3): 458-65.
[http://dx.doi.org/10.1016/j.bbrc.2015.05.117]
[5]
Sutton SK, Koach J, Tan O, et al. TRIM16 inhibits proliferation and migration through regulation of interferon beta 1 in melanoma cells. Oncotarget 2014; 5(20): 10127-39.
[http://dx.doi.org/10.18632/oncotarget.2466]
[6]
Zhu Z, Wang Y, Zhang C, et al. TRIM25 blockade by RNA interference inhibited migration and invasion of gastric cancer cells through TGF-beta signaling. Sci Rep 2016; 6: 19070.
[http://dx.doi.org/10.1038/srep19070]
[7]
Kawabata H, Azuma K, Ikeda K, et al. TRIM44 is a poor prognostic factor for breast cancer patients as a modulator of NF-kappaB signaling. Int J Mol Sci 2017; 18(9): E1931.
[http://dx.doi.org/10.3390/ijms18091931]
[8]
Wei C, Cheng J, Zhou B, et al. Tripartite motif containing 28 (TRIM28) promotes breast cancer metastasis by stabilizing TWIST1 protein. Sci Rep 2016; 6: 29822.
[http://dx.doi.org/10.1038/srep29822]
[9]
Dukel M, Streitfeld WS, Tang TC, et al. The breast cancer tumor suppressor TRIM29 is expressed via ATM-dependent signaling in response to hypoxia. J Biol Chem 2016; 291(41): 21541-52.
[http://dx.doi.org/10.1074/jbc.M116.730960]
[10]
Tisserand J, Khetchoumian K, Thibault C, Dembele D, Chambon P, Losson R. Tripartite motif 24 (Trim24/Tif1alpha) tumor suppressor protein is a novel negative regulator of interferon (IFN)/signal transducers and activators of transcription (STAT) signaling pathway acting through retinoic acid receptor alpha (Raralpha) inhibition. J Biol Chem 2011; 286(38): 33369-79.
[http://dx.doi.org/10.1074/jbc.M111.225680]
[11]
Hu G, Pen W, Wang M. TRIM14 promotes breast cancer cell proliferation by inhibiting apoptosis. Oncol Res 2019; 27: 439-47.
[http://dx.doi.org/10.3727/096504018X15214994641786]
[12]
Khan MA, Chen HC, Zhang D, Fu J. Twist: A molecular target in cancer therapeutics. Tumour Biol 2013; 34: 2497-506.
[http://dx.doi.org/10.1007/s13277-013-1002-x]
[13]
Pinho AV, Rooman I, Real FX. p53-dependent regulation of growth, epithelial-mesenchymal transition and stemness in normal pancreatic epithelial cells. Cell Cycle 2011; 10: 1312-21.
[http://dx.doi.org/10.4161/cc.10.8.15363]
[14]
Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871-90.
[http://dx.doi.org/10.1016/j.cell.2009.11.007]
[15]
Fu J, Qin L, He T, et al. The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis. Cell Res 2011; 21(2): 275-89.
[http://dx.doi.org/10.1038/cr.2010.118]
[16]
Tania M, Khan MA, Fu J. Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer. Tumour Biol 2014; 35: 7335-42.
[http://dx.doi.org/10.1007/s13277-014-2163-y]
[17]
Chu Y, Yang X. SUMO E3 ligase activity of TRIM proteins. Oncogene 2011; 30: 1108-16.
[http://dx.doi.org/10.1038/onc.2010.462]
[18]
Okamoto K, Kitabayashi I, Taya Y. KAP1 dictates p53 response induced by chemotherapeutic agents via Mdm2 interaction. Biochem Biophys Res Commun 2006; 351(1): 216-22.
[http://dx.doi.org/10.1016/j.bbrc.2006.10.022]
[19]
Poyurovsky MV, Jacq X, Ma C, et al. Nucleotide binding by the Mdm2 RING domain facilitates Arf-independent Mdm2 nucleolar localization. Mol Cell 2003; 12(4): 875-87.
[http://dx.doi.org/10.1016/S1097-2765(03)00400-3]
[20]
Ivanov AV, Peng H, Yurchenko V, et al. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol Cell 2007; 28(5): 823-37.
[http://dx.doi.org/10.1016/j.molcel.2007.11.012]
[21]
Noguchi K, Okumura F, Takahashi N, et al. TRIM40 promotes neddylation of IKKgamma and is downregulated in gastrointestinal cancers. Carcinogenesis 2011; 32(7): 995-1004.
[http://dx.doi.org/10.1093/carcin/bgr068]
[22]
Fletcher AJ, Christensen DE, Nelson C, et al. TRIM5alpha requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription. EMBO J 2015; 34(15): 2078-95.
[http://dx.doi.org/10.15252/embj.201490361]
[23]
Short KM, Cox TC. Subclassification of the RBCC/TRIM superfamily reveals a novel motif necessary for microtubule binding. J Biol Chem 2006; 281: 8970-80.
[http://dx.doi.org/10.1074/jbc.M512755200]
[24]
Ozato K, Shin DM, Chang TH, Morse HC. TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 2008; 8: 849-60.
[http://dx.doi.org/10.1038/nri2413]
[25]
Micale L, Chaignat E, Fusco C, Reymond A, Merla G. The tripartite motif: Structure and function. Adv Exp Med Biol 2012; 770: 11-25.
[http://dx.doi.org/10.1007/978-1-4614-5398-7_2]
[26]
James LC, Keeble AH, Khan Z, Rhodes DA, Trowsdale J. Structural basis for PRYSPRY-mediated tripartitemotif (TRIM) protein function. Proc Natl Acad Sci USA 2007; 104: 6200-5.
[http://dx.doi.org/10.1073/pnas.0609174104]
[27]
Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747-52.
[http://dx.doi.org/10.1038/35021093]
[28]
Malanchi I, Santamaria-Martínez A, Susanto E, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 2011; 481: 85-9.
[http://dx.doi.org/10.1038/nature10694]
[29]
O’Reilly EA, Gubbins L, Sharma S, et al. The fate of chemoresistance in triple negative breast cancer (TNBC). BBA Clin 2015; 3: 257-75.
[http://dx.doi.org/10.1016/j.bbacli.2015.03.003]
[30]
Rajsbaum R, Stoye JP, O’Garra A. TypeI interferon-dependent and -independent expression of tripartite motif proteins in immune cells. Eur J Immunol 2008; 38: 619-30.
[http://dx.doi.org/10.1002/eji.200737916]
[31]
Sardiello M, Cairo S, Fontanella B, Ballabio A, Meroni G. Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties. BMC Evol Biol 2008; 8: 225.
[http://dx.doi.org/10.1186/1471-2148-8-225]
[32]
Chen WX, Cheng L, Xu LY, Qian Q, Zhu YL. Bioinformatics analysis of prognostic value of TRIM13 gene in breast cancer. Biosci Rep 2019; 39(3): BSR20190285.
[http://dx.doi.org/10.1042/BSR20190285]
[33]
Zhou W, Zhang Y, Zhong C, et al. Decreased expression of TRIM21 indicates unfavorable outcome and promotes cell growth in breast cancer. Cancer Manag Res 2018; 10: 3687-96.
[http://dx.doi.org/10.2147/CMAR.S175470]
[34]
Lott ST, Chen N, Chandler DS, et al. DEAR1 is a dominant regulator of acinar morphogenesis and an independent predictor of local recurrence-free survival in early-onset breast cancer. PLoS Med 2009; 6(5): e1000068.
[http://dx.doi.org/10.1371/journal.pmed.1000068]
[35]
Song W, Wang Z, Gu X, et al. TRIM11 promotes proliferation and glycolysis of breast cancer cells via targeting AKT/GLUT1 pathway. OncoTargets Ther 2019; 12: 4975-84.
[http://dx.doi.org/10.2147/OTT.S207723]
[36]
Tsai WW, Wang Z, Yiu TT, et al. TRIM24 links a non-canonical histone signature to breast cancer. Nature 2010; 468(7326): 927-32.
[http://dx.doi.org/10.1038/nature09542]
[37]
Bhatnagar S, Gazin C, Chamberlain L, et al. TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein. Nature 2014; 516(7529): 116-20.
[http://dx.doi.org/10.1038/nature13955]
[38]
Zhao TT, Jin F, Li JG, et al. TRIM32 promotes proliferation and confers chemoresistance to breast cancer cells through activation of the NF-kappaB pathway. J Cancer 2018; 9(8): 1349-56.
[http://dx.doi.org/10.7150/jca.22390]
[39]
Tan P, Ye Y, He L, et al. TRIM59 promotes breast cancer motility by suppressing p62-selective autophagic degradation of PDCD10. PLoS Biol 2018; 16(11): e3000051.
[http://dx.doi.org/10.1371/journal.pbio.3000051]
[40]
Jaworska AM, Wlodarczyk NA, Mackiewicz A, Czerwinska P. The role of TRIM family proteins in the regulation of cancer stem cell self-renewal. Stem Cells 2020; 38: 165-73.
[http://dx.doi.org/10.1002/stem.3109]
[41]
Zurek B, Schoultz I, Neerincx A, et al. TRIM27 negatively regulates NOD2 by ubiquitination and proteasomal degradation. PLoS One 2012; 7: e41255.
[http://dx.doi.org/10.1371/journal.pone.0041255]
[42]
Tian Z, Tang J, Liao X, et al. TRIM8 inhibits breast cancer proliferation by regulating estrogen signaling. Am J Cancer Res 2020; 10: 3440-57.
[http://dx.doi.org/10.21203/rs.3.rs-42521/v1]
[43]
Mandell MA, Saha B, Thompson TA. The tripartite nexus: autophagy, cancer, and tripartite motif-containing protein family members. Front Pharmacol 2020; 11: 308.
[http://dx.doi.org/10.3389/fphar.2020.00308]
[44]
Chambon M, Orsetti B, Berthe ML, et al. Prognostic significance of TRIM24/TIF-1α gene expression in breast cancer. Am J Pathol 2011; 178: 1461-9.
[http://dx.doi.org/10.1016/j.ajpath.2010.12.026]
[45]
Kikuchi M, Okumura F, Tsukiyama T, et al. TRIM24 mediates ligand-dependent activation of androgen receptor and is repressed by a bromodomain-containing protein, BRD7, in prostate cancer cells. Biochim Biophys Acta 2009; 1793: 1828-36.
[http://dx.doi.org/10.1016/j.bbamcr.2009.11.001]
[46]
Cambiaghi V, Giuliani V, Lombardi S, Marinelli C, Toffalorio F, Pelicci PG. TRIM proteins in cancer. Adv Exp Med Biol 2012; 770: 77-91.
[http://dx.doi.org/10.1007/978-1-4614-5398-7_6]
[47]
Ho J, Kong JWF, Choong LY, et al. Novel breast cancer metastasis-associated proteins. J Proteome Res 2009; 8: 583-94.
[http://dx.doi.org/10.1021/pr8007368]
[48]
Marzano F, Caratozzolo MF, Pesole G, Sbisà E, Tullo A. TRIM proteins in colorectal cancer: TRIM8 as a promising therapeutic target in chemo resistance. Biomedicines 2021; 9: 241.
[http://dx.doi.org/10.3390/biomedicines9030241]
[49]
Li K, Pan W, Ma Y, et al. A novel oncogene TRIM63 promotes cell proliferation and migration via activating Wnt/b- catenin signaling pathway in breast cancer. Pathol Res Pract 2019; 215(10): 152573.
[50]
Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ 2018; 25: 104-13.
[http://dx.doi.org/10.1038/cdd.2017.169]
[51]
Feroz W, Sheikh AMA. Exploring the multiple roles of guardian of the genome: P53. Egypt J Med Hum Genet 2020; 21: 49.
[http://dx.doi.org/10.1186/s43042-020-00089-x]
[52]
Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003; 425: 577-84.
[http://dx.doi.org/10.1038/nature02006]
[53]
Moustakas A, Heldin CH. Non-Smad TGF-beta signals. J Cell Sci 2005; 118: 3573-84.
[http://dx.doi.org/10.1242/jcs.02554]
[54]
Massagué J. TGF signalling in context. Nat Rev Mol Cell Biol 2012; 13: 616-30.
[http://dx.doi.org/10.1038/nrm3434]
[55]
De Boeck M, ten Dijke P. Key role for ubiquitin protein modification in TGF signal transduction. Ups J Med Sci 2012; 117: 153-65.
[http://dx.doi.org/10.3109/03009734.2012.654858]
[56]
Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene 2017; 36: 1461-73.
[http://dx.doi.org/10.1038/onc.2016.304]
[57]
Sedgwick AE, D’Souza-Schorey C. Wnt signaling in cell motility and invasion: drawing parallels between development and cancer. Cancers (Basel) 2016; 8(9): 80.
[http://dx.doi.org/10.3390/cancers8090080]
[58]
Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002; 296: 1655-7.
[http://dx.doi.org/10.1126/science.296.5573.1655]
[59]
Papadatos-Pastos D, Rabbie R, Ross P, Sarker D. The role of the PI3K pathway in colorectal cancer. Crit Rev Oncol Hematol 2015; 94: 18-30.
[http://dx.doi.org/10.1016/j.critrevonc.2014.12.006]
[60]
Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell 2017; 170: 605-35.
[http://dx.doi.org/10.1016/j.cell.2017.07.029]
[61]
Tiwari A, Saraf S, Verma A, Panda PK, Jain SK. Novel targeting approaches and signaling pathways of colorectal cancer: An insight. World J Gastroenterol 2018; 24: 4428-35.
[http://dx.doi.org/10.3748/wjg.v24.i39.4428]
[62]
Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5: 8.
[http://dx.doi.org/10.1038/s41392-020-0110-5]
[63]
Czerwińska P, Shah PK, Tomczak K, et al. TRIM28 multi-domain protein regulates cancer stem cell population in breast tumor development. Oncotarget 2017; 8(1): 863-82.
[http://dx.doi.org/10.18632/oncotarget.13273]
[64]
Yao J, Xu T, Tian T, et al. Tripartite motif 16 suppresses breast cancer stem cell properties through regulation of Gli-1degradation via the ubiquitin-proteasome pathway. Oncol Rep 2016; 35(2): 1204-12.
[http://dx.doi.org/10.3892/or.2015.4437]
[65]
Vera-Ramirez L, Vodnala SK, Nini R, Hunter KW, Green JE. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat Commun 2018; 9(1): 1944.
[http://dx.doi.org/10.1038/s41467-018-04070-6]
[66]
Mizushima N, Komatsu M. Autophagy: Renovation of cells and tissues. Cell 2011; 147: 728-41.
[http://dx.doi.org/10.1016/j.cell.2011.10.026]
[67]
Vunjak M, Versteeg GA. TRIM proteins. Curr Biol 2019; 29(2): R42-4.
[http://dx.doi.org/10.1016/j.cub.2018.11.026]
[68]
Hatakeyama S. TRIM family proteins: rolesin autophagy, immunity, and carcinogenesis. Trends Biochem Sci 2017; 42(4): 297-311.
[http://dx.doi.org/10.1016/j.tibs.2017.01.002]
[69]
Liu J, Zhang C, Wang X, Hu W, Feng Z. Tumor suppressor p53 cross-talks with TRIM family proteins. Genes Dis 2021; 8: 463e474.
[http://dx.doi.org/10.1016/j.gendis.2020.07.003]
[70]
Wang C, Ivanov A, Chen L, et al. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J 2005; 24: 3279-90.
[http://dx.doi.org/10.1038/sj.emboj.7600791]
[71]
Yuan Z, Villagra A, Peng L, et al. The ATDC (TRIM29) protein binds p53 and antagonizes p53-mediated functions. Mol Cell Biol 2010; 30: 3004-15.
[http://dx.doi.org/10.1128/MCB.01023-09]
[72]
Liu CY, Tseng LM, Su JC, et al. Novel sorafenib analogues induce apoptosis through SHP-1 dependent STAT3 inactivation in human breast cancer cells. Breast Cancer Res 2013; 15(4): R63.
[http://dx.doi.org/10.1186/bcr3457]
[73]
Huang TT, Su JC, Liu CY, Shiau CW, Chen KF. Alteration of SHP-1/p-STAT3 signaling: A potential target for anticancer therapy. Int J Mol Sci 2017; 18(6): E1234.
[http://dx.doi.org/10.3390/ijms18061234]
[74]
Qian G, Hu X, Li G, et al. Smurf1 restricts the antiviral function mediated by USP25 through promoting its ubiquitination and degradation. Biochem Biophys Res Commun 2018; 498(3): 537-43.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.015]
[75]
Fukuda-Kamitani T, Kamitani T. Ubiquitination of Ro52 autoantigen. Biochem Biophys Res Commun 2002; 295(4): 774-8.
[http://dx.doi.org/10.1016/S0006-291X(02)00750-7]
[76]
Du L, Li YJ, Fakih M, et al. Role of SUMO activating enzyme in cancer stem cell maintenance and self-renewal. Nat Commun 2016; 7: 12326.
[http://dx.doi.org/10.1038/ncomms12326]
[77]
Itou J, Li W, Ito S, et al. Sal-like 4 protein levels in breast cancer cells are post-translationally down-regulated by tripartite motif-containing. J Biol Chem 2018; 293(17): 6556-64.
[http://dx.doi.org/10.1074/jbc.RA117.000245]
[78]
Müller J, Maurer V, Reimers K, Vogt PM, Bucan V. TRIM21, a negative modulator of LFG in breast carcinoma MDA-MB-231 cells in vitro. Int J Oncol 2015; 47(5): 1634-46.
[http://dx.doi.org/10.3892/ijo.2015.3169]
[79]
Liu Y, Tao S, Liao L, et al. TRIM25 promotes the cell survival and growth of hepatocellular carcinoma through targeting Keap1-Nrf2 pathway. Nat Commun 2020; 11: 348.
[http://dx.doi.org/10.1038/s41467-019-14190-2]
[80]
Ma Y, Wei Z, Bast RC Jr, et al. Downregulation of TRIM27 expression inhibits the proliferation of ovarian cancer cells in vitro and in vivo. Lab Invest 2016; 96: 37-48.
[http://dx.doi.org/10.1038/labinvest.2015.132]
[81]
Zhang Y, Feng Y, Ji D, et al. TRIM27 functions as an oncogene by activating epithelialmesenchymal transition and p-AKT in colorectal cancer. Int J Oncol 2018; 53: 620-32.
[82]
Xing L, Tang X, Wu K, Huang X, Yi Y, Huan J. TRIM27 functions as a novel oncogene in non-triple-negative breast cancer by blocking cellular senescence through p21 ubiquitination. Mol Ther Nucleic Acids 2020; 22: 910-23.
[http://dx.doi.org/10.1016/j.omtn.2020.10.012]
[83]
Kim RQ, Sixma TK. Regulation of USP7: A high incidence of E3 complexes. J Mol Biol 2017; 429: 3395-408.
[http://dx.doi.org/10.1016/j.jmb.2017.05.028]
[84]
Venuto S, Merla G. E3 ubiquitin ligase TRIM proteins, cell cycle and mitosis. Cells 2019; 8: 2019.
[http://dx.doi.org/10.3390/cells8050510]
[85]
Zaman MM, Nomura T, Takagi T, et al. Ubiquitination-deubiquitination by the TRIM27-USP7 complex regulates tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 2013; 33: 4971-84.
[http://dx.doi.org/10.1128/MCB.00465-13]
[86]
Jiang J, Xie C, Liu Y, Shi Q, Chen Y. Up-regulation of miR-383-5p suppresses proliferation and enhances chemosensitivity in ovarian cancer cells by targeting TRIM27. Biomed Pharmacother 2019; 109: 595-601.
[http://dx.doi.org/10.1016/j.biopha.2018.10.148]
[87]
Valletti A, Marzano F, Pesole G, Sbisà E, Tullo A. Targeting chemoresistant tumors: Could TRIM proteins-p53 axis be a possible answer? Int J Mol Sci 2019; 20: 2019.
[http://dx.doi.org/10.3390/ijms20071776]
[88]
Yosef R, Pilpel N, Papismadov N, et al. p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling. EMBO J 2017; 36: 2280-95.
[http://dx.doi.org/10.15252/embj.201695553]
[89]
Romanov VS, Abramova MV, Svetlikova SB, et al. p21(Waf1) is required for cellular senescence but not for cell cycle arrest induced by the HDAC inhibitor sodium butyrate. Cell Cycle 2010; 9: 3945-55.
[http://dx.doi.org/10.4161/cc.9.19.13160]
[90]
Bacon CW, Challa A, Hyder U, et al. KAP1 Is a Chromatin Reader that Couples Steps of RNA Polymerase II Transcription to Sustain Oncogenic Programs. Mol Cell 2020; 78(6): 1133-51.
[http://dx.doi.org/10.1016/j.molcel.2020.04.024]
[91]
Iyengar S, Farnham PJ. KAP1 protein: An enigmatic master regulator of the genome. J Biol Chem 2011; 286(30): 26267-76.
[http://dx.doi.org/10.1074/jbc.R111.252569]
[92]
Bunch H, Calderwood SK. TRIM28 as a novel transcriptional elongation factor. BMC Mol Biol 2015; 16(1): 14.
[http://dx.doi.org/10.1186/s12867-015-0040-x]
[93]
Neo SH, Itahana Y, Alagu J, et al. TRIM28 is an E3 ligase for ARF-mediated NPM1/B23 SUMOylation that represses centrosome amplification. Mol Cell Biol 2015; 35: 2851-63.
[http://dx.doi.org/10.1128/MCB.01064-14]
[94]
Pineda CT, Potts PR. Oncogenic MAGEA-TRIM28 ubiquitin ligase downregulates autophagy by ubiquitinating and degrading AMPK in cancer. Autophagy 2015; 11: 844-6.
[http://dx.doi.org/10.1080/15548627.2015.1034420]
[95]
Liu J, Welm B, Boucher KM, Ebbert MT, Bernard PS. TRIM29 functions as a tumor suppressor in nontumorigenic breast cells and invasive ER breast cancer. Am J Pathol 2012; 180: 839-47.
[http://dx.doi.org/10.1016/j.ajpath.2011.10.020]
[96]
Ai L, Kim WJ, Alpay M, et al. TRIM29 suppresses TWIST1 and invasive breast cancer behavior. Cancer Res 2014; 74(17): 4875-87.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3579]
[97]
Shiloh Y. ATM and related protein kinases: Safeguarding genome integrity. Nat Rev Cancer 2003; 3: 155-68.
[http://dx.doi.org/10.1038/nrc1011]
[98]
Gibson SL, Bindra RS, Glazer PM. Hypoxia-induced phosphorylation of Chk2 in an ataxia telangiectasia mutated-dependent manner. Cancer Res 2005; 65: 10734-41.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1160]
[99]
Freiberg RA, Hammond EM, Dorie MJ, Welford SM, Giaccia AJ. DNA damage during reoxygenation elicits a Chk2-dependent checkpoint response. Mol Cell Biol 2006; 26: 1598-609.
[http://dx.doi.org/10.1128/MCB.26.5.1598-1609.2006]
[100]
Cam H, Easton JB, High A, Houghton PJ. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1. Mol Cell 2010; 40: 509-20.
[http://dx.doi.org/10.1016/j.molcel.2010.10.030]
[101]
Soni S, Padwad YS. HIF-1 in cancer therapy: Two decade long story of a transcription factor. Acta Oncol 2017; 56(4): 503-15.
[http://dx.doi.org/10.1080/0284186X.2017.1301680]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy