Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

An Update on Arginase Inhibitors and Inhibitory Assays

Author(s): Jason Muller, Rym Attia, Andy Zedet, Corine Girard and Marc Pudlo*

Volume 22, Issue 15, 2022

Published on: 27 April, 2022

Page: [1963 - 1976] Pages: 14

DOI: 10.2174/1389557522666211229105703

Price: $65

conference banner
Abstract

Arginase, which converts arginine into ornithine and urea, is a promising therapeutic target. Arginase is involved in cardiovascular diseases, parasitic infections and through a critical role in immunity, in some cancers. There is a need to develop effective arginase inhibitors and therefore efforts to identify and optimize new inhibitors are increasing. Several methods of evaluating arginase activity are available, but few directly measure the product. Radiometric assays need to separate urea and dying reactions require acidic conditions and sometimes heating. Hence, there are a variety of different approaches available, and each approach has its own limits and benefits. In this review, we provide an update on arginase inhibitors, followed by a discussion on available arginase assays and alternative methods, focusing on the intrinsic biases and parameters that are likely to impact results.

Keywords: Arginase, inhibitors, evaluation, assays, colorimetric, radiometric, cell culture.

Graphical Abstract
[1]
Jenkinson, C.P.; Grody, W.W.; Cederbaum, S.D. Comparative properties of arginases. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 1996, 114(1), 107-132.
[http://dx.doi.org/10.1016/0305-0491(95)02138-8] [PMID: 8759304]
[2]
Morris, S.M., Jr; Bhamidipati, D.; Kepka-Lenhart, D. Human type II arginase: Sequence analysis and tissue-specific expression. Gene, 1997, 193(2), 157-161.
[http://dx.doi.org/10.1016/S0378-1119(97)00099-1] [PMID: 9256072]
[3]
Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[4]
Vockley, J.G.; Jenkinson, C.P.; Shukla, H.; Kern, R.M.; Grody, W.W.; Cederbaum, S.D. Cloning and characterization of the human type II arginase gene. Genomics, 1996, 38(2), 118-123.
[http://dx.doi.org/10.1006/geno.1996.0606] [PMID: 8954792]
[5]
Di Costanzo, L.; Sabio, G.; Mora, A.; Rodriguez, P.C.; Ochoa, A.C.; Centeno, F.; Christianson, D.W. Crystal structure of human arginase I at 1.29-A resolution and exploration of inhibition in the immune response. Proc. Natl. Acad. Sci. USA, 2005, 102(37), 13058-13063.
[http://dx.doi.org/10.1073/pnas.0504027102] [PMID: 16141327]
[6]
Cama, E.; Colleluori, D.M.; Emig, F.A.; Shin, H.; Kim, S.W.; Kim, N.N.; Traish, A.M.; Ash, D.E.; Christianson, D.W. Human arginase II: Crystal structure and physiological role in male and female sexual arousal. Biochemistry, 2003, 42(28), 8445-8451.
[http://dx.doi.org/10.1021/bi034340j] [PMID: 12859189]
[7]
Caldwell, R.W.; Rodriguez, P.C.; Toque, H.A.; Narayanan, S.P.; Caldwell, R.B. Arginase: A multifaceted enzyme important in health and disease. Physiol. Rev., 2018, 98(2), 641-665.
[http://dx.doi.org/10.1152/physrev.00037.2016] [PMID: 29412048]
[8]
Clemente, S.G.; van Waarde, A.F.; Antunes, I.; Dömling, A.H.; Elsinga, P. Arginase as a potential biomarker of disease progression: A molecular imaging perspective. Int. J. Mol. Sci., 2020, 21, 5291.
[http://dx.doi.org/10.3390/ijms21155291]
[9]
Moretto, J.; Pudlo, M.; Demougeot, C. Human-Based evidence for the therapeutic potential of arginase inhibitors in cardiovascular diseases. Drug Discov. Today, 2020.
[PMID: 33197620]
[10]
Michell, D.L.; Andrews, K.L.; Chin-Dusting, J.P. Endothelial dysfunction in hypertension: The role of arginase. Front. Biosci. (Schol. Ed.), 2011, 3, 946-960.
[http://dx.doi.org/10.2741/199] [PMID: 21622244]
[11]
Shilo, N.R.; Morris, C.R. Pathways to pulmonary hypertension in sickle cell disease: The search for prevention and early intervention. Expert Rev. Hematol., 2017, 10(10), 875-890.
[http://dx.doi.org/10.1080/17474086.2017.1364989] [PMID: 28817980]
[12]
Bryant, A.J.; Mehrad, B.; Brusko, T.M.; West, J.D.; Moldawer, L.L. Myeloid-Derived suppressor cells and pulmonary hypertension. Int. J. Mol. Sci., 2018, 19(8), 19.
[http://dx.doi.org/10.3390/ijms19082277] [PMID: 30081463]
[13]
Mathew, R.; Huang, J.; Wu, J.M.; Fallon, J.T.; Gewitz, M.H. Hematological disorders and pulmonary hypertension. World J. Cardiol., 2016, 8(12), 703-718.
[http://dx.doi.org/10.4330/wjc.v8.i12.703] [PMID: 28070238]
[14]
Kim, N.N.; Christianson, D.W.; Traish, A.M. Role of arginase in the male and female sexual arousal response. J. Nutr., 2004, 134(10)(Suppl.), 2873S-2879S.
[http://dx.doi.org/10.1093/jn/134.10.2873S] [PMID: 15465804]
[15]
Toque, H.A.; Caldwell, R.W. New approaches to the design and discovery of therapies to prevent erectile dysfunction. Expert Opin. Drug Discov., 2014, 9(12), 1447-1469.
[http://dx.doi.org/10.1517/17460441.2014.949234] [PMID: 25195695]
[16]
Benites, B.D.; Olalla-Saad, S.T. An update on arginine in sickle cell disease. Expert Rev. Hematol., 2019, 12(4), 235-244.
[http://dx.doi.org/10.1080/17474086.2019.1591948] [PMID: 30855194]
[17]
Kövamees, O.; Shemyakin, A.; Checa, A.; Wheelock, C.E.; Lundberg, J.O.; Östenson, C-G.; Pernow, J. Arginase inhibition improves microvascular endothelial function in Patients with type 2 Diabetes Mellitus. J. Clin. Endocrinol. Metab., 2016, 101(11), 3952-3958.
[http://dx.doi.org/10.1210/jc.2016-2007] [PMID: 27399350]
[18]
Kovamees, O.; Shemyakin, A.; Eriksson, M.; Angelin, B.; Pernow, J. Arginase inhibition improves endothelial function in patients with familial hypercholesterolaemia irrespective of their cholesterol levels. J. Intern. Med., 2016, 279(5), 477-484.
[http://dx.doi.org/10.1111/joim.12461] [PMID: 26707366]
[19]
Holowatz, L.A.; Kenney, W.L. Up-regulation of arginase activity contributes to attenuated reflex cutaneous vasodilatation in hypertensive humans. J. Physiol., 2007, 581(Pt 2), 863-872.
[http://dx.doi.org/10.1113/jphysiol.2007.128959] [PMID: 17347269]
[20]
Kövamees, O.; Shemyakin, A.; Pernow, J. Effect of arginase inhibition on ischemia-reperfusion injury in patients with coronary artery disease with and without diabetes mellitus. PLoS One, 2014, 9(7), e103260.
[http://dx.doi.org/10.1371/journal.pone.0103260] [PMID: 25072937]
[21]
Rodríguez, P.C.; Ochoa, A.C. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: Mechanisms and therapeutic perspectives. Immunol. Rev., 2008, 222, 180-191.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00608.x] [PMID: 18364002]
[22]
Arlauckas, S.P.; Garren, S.B.; Garris, C.S.; Kohler, R.H.; Oh, J.; Pittet, M.J.; Weissleder, R. Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages. Theranostics, 2018, 8(21), 5842-5854.
[http://dx.doi.org/10.7150/thno.26888] [PMID: 30613266]
[23]
Rodriguez, P.C.; Ochoa, A.C.; Al-Khami, A.A. Arginine metabolism in myeloid cells shapes innate and adaptive immunity. Front. Immunol., 2017, 8, 93.
[http://dx.doi.org/10.3389/fimmu.2017.00093] [PMID: 28223985]
[24]
Rodriguez, P.C.; Zea, A.H.; Culotta, K.S.; Zabaleta, J.; Ochoa, J.B.; Ochoa, A.C. Regulation of T cell receptor CD3zeta chain expression by L-arginine. J. Biol. Chem., 2002, 277(24), 21123-21129.
[http://dx.doi.org/10.1074/jbc.M110675200] [PMID: 11950832]
[25]
Dunand-Sauthier, I.; Irla, M.; Carnesecchi, S.; Seguín-Estévez, Q.; Vejnar, C.E.; Zdobnov, E.M.; Santiago-Raber, M-L.; Reith, W. Repression of arginase-2 expression in dendritic cells by microRNA-155 is critical for promoting T cell proliferation. J. Immunol., 2014, 193(4), 1690-1700.
[http://dx.doi.org/10.4049/jimmunol.1301913] [PMID: 25009204]
[26]
Pham, T-N.; Liagre, B.; Girard-Thernier, C.; Demougeot, C. Research of novel anticancer agents targeting arginase inhibition. Drug Discov. Today, 2018, 23(4), 871-878.
[http://dx.doi.org/10.1016/j.drudis.2018.01.046] [PMID: 29391126]
[27]
Geiger, R.; Rieckmann, J.C.; Wolf, T.; Basso, C.; Feng, Y.; Fuhrer, T.; Kogadeeva, M.; Picotti, P.; Meissner, F.; Mann, M.; Zamboni, N.; Sallusto, F.; Lanzavecchia, A. L-Arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell, 2016, 167(3), 829-842.e13.
[http://dx.doi.org/10.1016/j.cell.2016.09.031] [PMID: 27745970]
[28]
Rodriguez, P.C.; Zea, A.H.; DeSalvo, J.; Culotta, K.S.; Zabaleta, J.; Quiceno, D.G.; Ochoa, J.B.; Ochoa, A.C. L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J. Immunol., 2003, 171(3), 1232-1239.
[http://dx.doi.org/10.4049/jimmunol.171.3.1232] [PMID: 12874210]
[29]
Feldmeyer, N.; Wabnitz, G.; Leicht, S.; Luckner-Minden, C.; Schiller, M.; Franz, T.; Conradi, R.; Kropf, P.; Müller, I.; Ho, A.D.; Samstag, Y.; Munder, M. Arginine deficiency leads to impaired cofilin dephosphorylation in activated human T lymphocytes. Int. Immunol., 2012, 24(5), 303-313.
[http://dx.doi.org/10.1093/intimm/dxs004] [PMID: 22345165]
[30]
Zea, A.H.; Rodriguez, P.C.; Atkins, M.B.; Hernandez, C.; Signoretti, S.; Zabaleta, J.; McDermott, D.; Quiceno, D.; Youmans, A.; O’Neill, A.; Mier, J.; Ochoa, A.C. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: A mechanism of tumor evasion. Cancer Res., 2005, 65(8), 3044-3048.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4505] [PMID: 15833831]
[31]
Rodriguez, P.C.; Quiceno, D.G.; Zabaleta, J.; Ortiz, B.; Zea, A.H.; Piazuelo, M.B.; Delgado, A.; Correa, P.; Brayer, J.; Sotomayor, E.M.; Antonia, S.; Ochoa, J.B.; Ochoa, A.C.; Arginase, I. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res., 2004, 64(16), 5839-5849.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0465] [PMID: 15313928]
[32]
Steggerda, S.M.; Bennett, M.K.; Chen, J.; Emberley, E.; Huang, T.; Janes, J.R.; Li, W.; MacKinnon, A.L.; Makkouk, A.; Marguier, G.; Murray, P.J.; Neou, S.; Pan, A.; Parlati, F.; Rodriguez, M.L.M.; Van de Velde, L-A.; Wang, T.; Works, M.; Zhang, J.; Zhang, W.; Gross, M.I. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J. Immunother. Cancer, 2017, 5(1), 101.
[http://dx.doi.org/10.1186/s40425-017-0308-4] [PMID: 29254508]
[33]
Works, M.; Bennett, M.; Chen, J.; Emberley, E.; Huang, T.; Janes, J.; Li, W.; Mackinnon, A.; Marguier, G.; Neou, S.; Pan, A.; Parlati, F.; Rodriguez, M.; Steggerda, S.; Wang, T.; Zhang, J.; Zhang, W.; Gross, M. Abstract 552: Immuno-oncology agent CB-1158 is a potent and selective arginase inhibitor and causes an immunemediated anti-tumor response. Cancer Res., 2016, 76, 552-552.
[34]
Papadopoulos, K.P.; Tsai, F.Y-C.; Bauer, T.M.; Muigai, L.; Liang, Y.; Bennett, M.K.; Orford, K.W.; Fu, S. CX-1158-101: A first-in-human phase 1 study of CB-1158, a small molecule inhibitor of arginase, as monotherapy and in combination with an anti-PD-1 checkpoint inhibitor in patients (Pts) with solid tumors. JCO, 2017, 35, 3005-3005.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.3005]
[35]
Mahdi, A.; Kövamees, O.; Checa, A.; Wheelock, C.E.; von Heijne, M.; Alvarsson, M.; Pernow, J. Arginase inhibition improves endothelial function in patients with type 2 diabetes mellitus despite intensive glucose-lowering therapy. J. Intern. Med., 2018, 284(4), 388-398.
[http://dx.doi.org/10.1111/joim.12785] [PMID: 30151846]
[36]
Quitter, F.; Figulla, H.R.; Ferrari, M.; Pernow, J.; Jung, C. Increased arginase levels in heart failure represent a therapeutic target to rescue microvascular perfusion. Clin. Hemorheol. Microcirc., 2013, 54(1), 75-85.
[http://dx.doi.org/10.3233/CH-2012-1617] [PMID: 23075998]
[37]
Das, P.; Lahiri, A.; Lahiri, A.; Chakravortty, D. Modulation of the arginase pathway in the context of microbial pathogenesis: A metabolic enzyme moonlighting as an immune modulator. PLoS Pathog., 2010, 6(6), e1000899.
[http://dx.doi.org/10.1371/journal.ppat.1000899] [PMID: 20585552]
[38]
Ilari, A.; Fiorillo, A.; Genovese, I.; Colotti, G. Polyamine-trypanothione pathway: An update. Future Med. Chem., 2017, 9(1), 61-77.
[http://dx.doi.org/10.4155/fmc-2016-0180] [PMID: 27957878]
[39]
Pessenda, G.; da Silva, J.S. Arginase and its mechanisms in Leishmania persistence. Parasite Immunol., 2020, 42(7), e12722.
[http://dx.doi.org/10.1111/pim.12722] [PMID: 32294247]
[40]
Carter, N.S.; Stamper, B.D.; Elbarbry, F.; Nguyen, V.; Lopez, S.; Kawasaki, Y.; Poormohamadian, R.; Roberts, S.C. Natural products that target the arginase in Leishmania parasites hold therapeutic promise. Microorganisms, 2021, 9(2), 267.
[http://dx.doi.org/10.3390/microorganisms9020267] [PMID: 33525448]
[41]
Iniesta, V.; Gómez-Nieto, L.C.; Corraliza, I. The inhibition of arginase by N(ω)-hydroxy-l-arginine controls the growth of Leishmania inside macrophages. J. Exp. Med., 2001, 193(6), 777-784.
[http://dx.doi.org/10.1084/jem.193.6.777] [PMID: 11257143]
[42]
McGee, D.J.; Zabaleta, J.; Viator, R.J.; Testerman, T.L.; Ochoa, A.C.; Mendz, G.L. Purification and characterization of Helicobacter pylori arginase, RocF: Unique features among the arginase superfamily. Eur. J. Biochem., 2004, 271(10), 1952-1962.
[http://dx.doi.org/10.1111/j.1432-1033.2004.04105.x] [PMID: 15128304]
[43]
Bewley, M.C.; Jeffrey, P.D.; Patchett, M.L.; Kanyo, Z.F.; Baker, E.N. Crystal structures of Bacillus caldovelox arginase in complex with substrate and inhibitors reveal new insights into activation, inhibition and catalysis in the arginase superfamily. Structure, 1999, 7(4), 435-448.
[http://dx.doi.org/10.1016/S0969-2126(99)80056-2] [PMID: 10196128]
[44]
da Silva, E.R.; Castilho, T.M.; Pioker, F.C.; Tomich de Paula Silva, C.H.; Floeter-Winter, L.M. Genomic organisation and transcription characterisation of the gene encoding Leishmania (Leishmania) amazonensis arginase and its protein structure prediction. Int. J. Parasitol., 2002, 32(6), 727-737.
[http://dx.doi.org/10.1016/S0020-7519(02)00002-4] [PMID: 12062491]
[45]
D’Antonio, E.L.; Ullman, B.; Roberts, S.C.; Dixit, U.G.; Wilson, M.E.; Hai, Y.; Christianson, D.W. Crystal structure of arginase from Leishmania mexicana and implications for the inhibition of polyamine biosynthesis in parasitic infections. Arch. Biochem. Biophys., 2013, 535(2), 163-176.
[http://dx.doi.org/10.1016/j.abb.2013.03.015] [PMID: 23583962]
[46]
Dowling, D.P.; Ilies, M.; Olszewski, K.L.; Portugal, S.; Mota, M.M.; Llinás, M.; Christianson, D.W. Crystal structure of arginase from Plasmodium falciparum and implications for L-arginine depletion in malarial infection. Biochemistry, 2010, 49(26), 5600-5608.
[http://dx.doi.org/10.1021/bi100390z] [PMID: 20527960]
[47]
Hai, Y.; Edwards, J.E.; Van Zandt, M.C.; Hoffmann, K.F.; Christianson, D.W. Crystal structure of Schistosoma mansoni arginase, a potential drug target for the treatment of schistosomiasis. Biochemistry, 2014, 53(28), 4671-4684.
[http://dx.doi.org/10.1021/bi5004519] [PMID: 25007099]
[48]
Girard-Thernier, C.; Pham, T-N.; Demougeot, C. The promise of plant-derived substances as inhibitors of arginase. Mini Rev. Med. Chem., 2015, 15(10), 798-808.
[http://dx.doi.org/10.2174/1389557515666150511153852] [PMID: 25963565]
[49]
Ivanenkov, Y.A.; Chufarova, N.V. Small-molecule arginase inhibitors. Pharm. Pat. Anal., 2014, 3(1), 65-85.
[http://dx.doi.org/10.4155/ppa.13.75] [PMID: 24354980]
[50]
Pudlo, M.; Demougeot, C.; Girard-Thernier, C. Arginase inhibitors: A rational approach over one century. Med. Res. Rev., 2017, 37(3), 475-513.
[http://dx.doi.org/10.1002/med.21419] [PMID: 27862081]
[51]
Borek, B.; Gajda, T.; Golebiowski, A.; Blaszczyk, R. Boronic acid-based arginase inhibitors in cancer immunotherapy. Bioorg. Med. Chem., 2020, 28(18), 115658.
[http://dx.doi.org/10.1016/j.bmc.2020.115658] [PMID: 32828425]
[52]
Boucher, J.L.; Custot, J.; Vadon, S.; Delaforge, M.; Lepoivre, M.; Tenu, J.P.; Yapo, A.; Mansuy, D. N omega-hydroxyl-L-arginine, an intermediate in the L-arginine to nitric oxide pathway, is a strong inhibitor of liver and macrophage arginase. Biochem. Biophys. Res. Commun., 1994, 203(3), 1614-1621.
[http://dx.doi.org/10.1006/bbrc.1994.2371] [PMID: 7945311]
[53]
Custot, J.; Moali, C.; Brollo, M.; Boucher, J.L.; Delaforge, M.; Mansuy, D.; Tenu, J.P.; Zimmermann, J.L. The New α-amino acid Nω-hydroxy-nor-l-arginine: A High-affinity inhibitor of arginase well adapted to bind to its manganese cluster. J. Am. Chem. Soc., 1997, 119, 4086-4087.
[http://dx.doi.org/10.1021/ja970285o]
[54]
Van Zandt, M.C.; Jagdmann, G.E.; Whitehouse, D.L.; Ji, M.; Savoy, J.; Potapova, O.; Cousido-Siah, A.; Mitschler, A.; Howard, E.I.; Pyle, A.M.; Podjarny, A.D. Discovery of N -substituted 3-amino-4-(3-boronopropyl)pyrrolidine-3-carboxylic acids as highly potent third-generation inhibitors of human arginase I and II. J. Med. Chem., 2019, 62(17), 8164-8177.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00931] [PMID: 31408339]
[55]
Havlínová, Z.; Hroch, M.; Nagy, A.; Sišpera, L.; Holeček, M.; Chládek, J. Single- and multiple-dose pharmacokinetics of arginase inhibitor Nω-hydroxy-nor-L-arginine, and its effect on plasma amino acids concentrations in Wistar rats. Gen. Physiol. Biophys., 2014, 33(2), 189-198.
[http://dx.doi.org/10.4149/gpb_2013078] [PMID: 24177023]
[56]
Custot, J.; Boucher, J-L.; Vadon, S.; Guedes, C.; Dijols, S.; Delaforge, M.; Mansuy, D. Nω-hydroxyamino-α-amino acids as a new class of very strong inhibitors of arginases. JBIC, 1996, 1, 73-82.
[http://dx.doi.org/10.1007/s007750050025]
[57]
Moali, C.; Brollo, M.; Custot, J.; Sari, M.A.; Boucher, J.L.; Stuehr, D.J.; Mansuy, D. Recognition of alpha-amino acids bearing various C=NOH functions by nitric oxide synthase and arginase involves very different structural determinants. Biochemistry, 2000, 39(28), 8208-8218.
[http://dx.doi.org/10.1021/bi992992v] [PMID: 10889028]
[58]
Schade, D.; Kotthaus, J.; Klein, N.; Kotthaus, J.; Clement, B. Prodrug design for the potent cardiovascular agent Nω-hydroxy-L-arginine (NOHA): Synthetic approaches and physicochemical characterization. Org. Biomol. Chem., 2011, 9(14), 5249-5259.
[http://dx.doi.org/10.1039/c0ob01117g] [PMID: 21625725]
[59]
Litty, F-A.; Gudd, J.; Girreser, U.; Clement, B.; Schade, D. Design, synthesis, and bioactivation of o-glycosylated prodrugs of the natural nitric oxide precursor N(ω)-hydroxy-l-arginine. J. Med. Chem., 2016, 59(17), 8030-8041.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00810] [PMID: 27548300]
[60]
Baggio, R.; Elbaum, D.; Kanyo, Z.F.; Carroll, P.J.; Cavalli, R.C.; Ash, D.E.; Christianson, D.W. Inhibition of Mn2+2-arginase by borate leads to the design of a transition state analogue inhibitor, 2(s)-amino-6-boronohexanoic acid. J. Am. Chem. Soc., 1997, 119, 8107-8108.
[http://dx.doi.org/10.1021/ja971312d]
[61]
Kim, N.N.; Cox, J.D.; Baggio, R.F.; Emig, F.A.; Mistry, S.K.; Harper, S.L.; Speicher, D.W.; Morris, S.M., Jr; Ash, D.E.; Traish, A.; Christianson, D.W. Probing erectile function: S-(2-boronoethyl)-L-cysteine binds to arginase as a transition state analogue and enhances smooth muscle relaxation in human penile corpus cavernosum. Biochemistry, 2001, 40(9), 2678-2688.
[http://dx.doi.org/10.1021/bi002317h] [PMID: 11258879]
[62]
Van Zandt, M.C.; Whitehouse, D.L.; Golebiowski, A.; Ji, M.K.; Zhang, M.; Beckett, R.P.; Jagdmann, G.E.; Ryder, T.R.; Sheeler, R.; Andreoli, M.; Conway, B.; Mahboubi, K.; D’Angelo, G.; Mitschler, A.; Cousido-Siah, A.; Ruiz, F.X.; Howard, E.I.; Podjarny, A.D.; Schroeter, H. Discovery of (R)-2-amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic acid and congeners as highly potent inhibitors of human arginases I and II for treatment of myocardial reperfusion injury. J. Med. Chem., 2013, 56(6), 2568-2580.
[http://dx.doi.org/10.1021/jm400014c] [PMID: 23472952]
[63]
Golebiowski, A.; Whitehouse, D.; Beckett, R.P.; Van Zandt, M.; Ji, M.K.; Ryder, T.R.; Jagdmann, E.; Andreoli, M.; Lee, Y.; Sheeler, R.; Conway, B.; Olczak, J.; Mazur, M.; Czestkowski, W.; Piotrowska, W.; Cousido-Siah, A.; Ruiz, F.X.; Mitschler, A.; Podjarny, A.; Schroeter, H. Synthesis of quaternary α-amino acid-based arginase inhibitors via the Ugi reaction. Bioorg. Med. Chem. Lett., 2013, 23(17), 4837-4841.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.092] [PMID: 23886684]
[64]
Mitcheltree, M.J.; Li, D.; Achab, A.; Beard, A.; Chakravarthy, K.; Cheng, M.; Cho, H.; Eangoor, P.; Fan, P.; Gathiaka, S.; Kim, H-Y.; Lesburg, C.A.; Lyons, T.W.; Martinot, T.A.; Miller, J.R.; McMinn, S.; O’Neil, J.; Palani, A.; Palte, R.L.; Saurí, J.; Sloman, D.L.; Zhang, H.; Cumming, J.N.; Fischer, C. Discovery and optimization of rationally designed bicyclic inhibitors of human arginase to enhance cancer immunotherapy. ACS Med. Chem. Lett., 2020, 11(4), 582-588.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00058] [PMID: 32292567]
[65]
Blaszczyk, R.; Brzezinska, J.; Dymek, B.; Stanczak, P.S.; Mazurkiewicz, M.; Olczak, J.; Nowicka, J.; Dzwonek, K.; Zagozdzon, A.; Golab, J.; Golebiowski, A. Discovery and pharmacokinetics of sulfamides and guanidines as potent human arginase 1 inhibitors. ACS Med. Chem. Lett., 2020, 11(4), 433-438.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00508] [PMID: 32292546]
[66]
Mlynarski, S.N.; Grebe, T.; Kawatkar, S.; Finlay, M.R.V.; Simpson, I.; Wang, J.; Cook, S. Arginase inhibitors and methods of use thereof. WO2019159120 (A1), 2019.
[67]
Tian, Q.; Song, S.; Zhao, M.; Wang, T.; Sun, Q.; Cai, J.; Wang, L.; Wang, J. SNon-natural amino acid derivative, pharmaceutical composition comprising same, method for preparing same, and use of same. WO2019205979 (A1) 2019.
[68]
Grobben, Y.; Uitdehaag, J.C.M.; Willemsen-Seegers, N.; Tabak, W.W.A.; de Man, J.; Buijsman, R.C.; Zaman, G.J.R. Structural insights into human Arginase-1 pH dependence and its inhibition by the small molecule inhibitor CB-1158. J. Struct. Biol.: X, 2019, 4, 100014.
[http://dx.doi.org/10.1016/j.yjsbx.2019.100014] [PMID: 32647818]
[69]
Colleluori, D.M.; Ash, D.E. Classical and slow-binding inhibitors of human type II arginase. Biochemistry, 2001, 40(31), 9356-9362.
[http://dx.doi.org/10.1021/bi010783g] [PMID: 11478904]
[70]
Bordage, S.; Pham, T-N.; Zedet, A.; Gugglielmetti, A-S.; Nappey, M.; Demougeot, C.; Girard-Thernier, C. Investigation of mammal arginase inhibitory properties of natural ubiquitous polyphenols by using an optimized colorimetric microplate assay. Planta Med., 2017, 83(7), 647-653.
[PMID: 27776374]
[71]
Pham, T-N.; Trinh, D-T.; Bordage, S.; Demougeot, C.; Pudlo, M. Thai, K.-M.; Girard, C. Arginase inhibitors: From chlorogenic acid to cinnamides 2016, 81, S381.
[72]
Muller, J.; Cardey, B.; Zedet, A.; Desingle, C.; Grzybowski, M.; Pomper, P.; Foley, S.; Harakat, D.; Ramseyer, C.; Girard, C.; Pudlo, M. Synthesis, evaluation and molecular modelling of piceatannol analogues as arginase inhibitors. RSC Med. Chem., 2020, 11(5), 559-568.
[http://dx.doi.org/10.1039/D0MD00011F] [PMID: 33479657]
[73]
Maquiaveli, C.C.; Lucon-Júnior, J.F.; Brogi, S.; Campiani, G.; Gemma, S.; Vieira, P.C.; Silva, E.R. Verbascoside inhibits promastigote growth and arginase activity of Leishmania amazonensis. J. Nat. Prod., 2016, 79(5), 1459-1463.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00875] [PMID: 27096224]
[74]
Woo, A.; Min, B.; Ryoo, S. Piceatannol-3′-O-beta-D-glucopyranoside as an active component of rhubarb activates endothelial nitric oxide synthase through inhibition of arginase activity. Exp. Mol. Med., 2010, 42(7), 524-532.
[http://dx.doi.org/10.3858/emm.2010.42.7.053] [PMID: 20543547]
[75]
da Silva, E.R. Maquiaveli, Cdo.C.; Magalhães, P.P. The leishmanicidal flavonols quercetin and quercitrin target Leishmania (Leishmania) amazonensis arginase. Exp. Parasitol., 2012, 130(3), 183-188.
[http://dx.doi.org/10.1016/j.exppara.2012.01.015] [PMID: 22327179]
[76]
de Sousa, L.R.F.; Ramalho, S.D.; Burger, M.C. de M.; Nebo, L.; Fernandes, J.B.; da Silva, M.F.; Iemma, M.R.; Corrêa, C.J.; de Souza, D.H.; Lima, M.I.; Vieira, P.C. Isolation of arginase inhibitors from the bioactivity-guided fractionation of Byrsonima coccolobifolia leaves and stems. J. Nat. Prod., 2014, 77(2), 392-396.
[http://dx.doi.org/10.1021/np400717m] [PMID: 24521209]
[77]
Minozzo, B.R.; Fernandes, D.; Beltrame, F.L. Phenolic compounds as arginase inhibitors: New insights regarding endothelial dysfunction treatment. Planta Med., 2018, 84(5), 277-295.
[http://dx.doi.org/10.1055/s-0044-100398] [PMID: 29342480]
[78]
de Sousa, L.R.F.; Ramalho, S.D.; Fernandes, J.B.; Silva, M.F. das G.F. da; Iemma, M.R. da C.; Corrêa, C.J.; Souza, D.H.F. de; Lima, M.I.S.; Vieira, P.C. Leishmanicidal Galloylquinic acids are noncompetitive inhibitors of arginase. J. Braz. Chem. Soc., 2014.
[79]
Cama, E.; Shin, H.; Christianson, D.W. Design of amino acid sulfonamides as transition-state analogue inhibitors of arginase. J. Am. Chem. Soc., 2003, 125(43), 13052-13057.
[http://dx.doi.org/10.1021/ja036365b] [PMID: 14570477]
[80]
Ilies, M.; Di Costanzo, L.; North, M.L.; Scott, J.A.; Christianson, D.W. 2-aminoimidazole amino acids as inhibitors of the binuclear manganese metalloenzyme human arginase I. J. Med. Chem., 2010, 53(10), 4266-4276.
[http://dx.doi.org/10.1021/jm100306a] [PMID: 20441173]
[81]
Zakharian, T.Y.; Di Costanzo, L.; Christianson, D.W. (S)-2-amino-6-nitrohexanoic acid binds to human arginase I through multiple nitro-metal coordination interactions in the binuclear manganese cluster. J. Am. Chem. Soc., 2008, 130(51), 17254-17255.
[http://dx.doi.org/10.1021/ja807702q] [PMID: 19032027]
[82]
da Silva, E.R.; Boechat, N.; Pinheiro, L.C.S.; Bastos, M.M.; Costa, C.C.P.; Bartholomeu, J.C.; da Costa, T.H. Novel selective inhibitor of Leishmania (Leishmania) amazonensis arginase. Chem. Biol. Drug Des., 2015, 86(5), 969-978.
[http://dx.doi.org/10.1111/cbdd.12566] [PMID: 25845502]
[83]
Feitosa, L.M.; da Silva, E.R.; Hoelz, L.V.B.; Souza, D.L.; Come, J.A.A.S.S.; Cardoso-Santos, C.; Batista, M.M.; Soeiro, M.N.C.; Boechat, N.; Pinheiro, L.C.S. New pyrazolopyrimidine derivatives as Leishmania amazonensis arginase inhibitors. Bioorg. Med. Chem., 2019, 27(14), 3061-3069.
[http://dx.doi.org/10.1016/j.bmc.2019.05.026] [PMID: 31176565]
[84]
Stevanovic, S.; Sencanski, M.; Danel, M.; Menendez, C.; Belguedj, R.; Bouraiou, A.; Nikolic, K.; Cojean, S.; Loiseau, P.M.; Glisic, S.; Baltas, M.; García-Sosa, A.T. Synthesis, in silico , and in vitro evaluation of anti-leishmanial activity of oxadiazoles and indolizine containing compounds flagged against anti-targets. Molecules, 2019, 24(7), 24.
[http://dx.doi.org/10.3390/molecules24071282] [PMID: 30986947]
[85]
Crizanto de Lima, E.; Castelo-Branco, F.S.; Maquiaveli, C.C.; Farias, A.B.; Rennó, M.N.; Boechat, N.; Silva, E.R. Phenylhydrazides as inhibitors of Leishmania amazonensis arginase and antileishmanial activity. Bioorg. Med. Chem., 2019, 27(17), 3853-3859.
[http://dx.doi.org/10.1016/j.bmc.2019.07.022] [PMID: 31311700]
[86]
Méndez-Cuesta, C.A.; Méndez-Lucio, O.; Castillo, R. Homology modeling, docking and molecular dynamics of the Leishmania mexicana arginase: A description of the catalytic site useful for drug design. J. Mol. Graph. Model., 2012, 38, 50-59.
[http://dx.doi.org/10.1016/j.jmgm.2012.08.003] [PMID: 23085157]
[87]
Nieto-Meneses, R.; Castillo, R.; Hernández-Campos, A.; Maldonado-Rangel, A.; Matius-Ruiz, J.B.; Trejo-Soto, P.J.; Nogueda-Torres, B.; Dea-Ayuela, M.A.; Bolás-Fernández, F.; Méndez-Cuesta, C.; Yépez-Mulia, L. In vitro activity of new N-benzyl-1H-benzimidazol-2-amine derivatives against cutaneous, mucocutaneous and visceral Leishmania species. Exp. Parasitol., 2018, 184, 82-89.
[http://dx.doi.org/10.1016/j.exppara.2017.11.009] [PMID: 29191699]
[88]
Asano, W.; Takahashi, Y.; Kawano, M.; Hantani, Y. Identification of an arginase ii inhibitor via rapidfire mass spectrometry combined with hydrophilic interaction chromatography. SLAS Discov., 2019, 24(4), 457-465.
[http://dx.doi.org/10.1177/2472555218812663] [PMID: 30523711]
[89]
Michael, D.Scholle; Zachary, A.Gurard-Levin, Eds.; Development of a novel label-free and high-throughput arginase-1 assay using self-assembled monolayer desorption ionization mass spectrometr; , 2021.
[http://dx.doi.org/10.1177/24725552211000677]
[90]
Grobben, Y.; Willemsen-Seegers, N.; Uitdehaag, J.C.M.; de Man, J.; van Groningen, J.; Friesen, J.; van den Hurk, H.; Buijsman, R.C.; Zaman, G.J.R. High-throughput fluorescence-based activity assay for arginase-1. SLAS Discov., 2020, 25(9), 1018-1025.
[http://dx.doi.org/10.1177/2472555220919340] [PMID: 32418491]
[91]
Guo, X.; Chen, Y.; Seto, C.T. Rational design of novel irreversible inhibitors for human arginase. Bioorg. Med. Chem., 2018, 26(14), 3939-3946.
[http://dx.doi.org/10.1016/j.bmc.2018.06.015] [PMID: 29914772]
[92]
Kuhn, N.J.; Ward, S.; Piponski, M.; Young, T.W. Purification of human hepatic arginase and its manganese (II)-dependent and pH-dependent interconversion between active and inactive forms: A possible pH-sensing function of the enzyme on the ornithine cycle. Arch. Biochem. Biophys., 1995, 320(1), 24-34.
[http://dx.doi.org/10.1006/abbi.1995.1338] [PMID: 7793981]
[93]
Carulli, N.; Kaihara, S.; Wagner, H.N., Jr Radioisotopic assay of arginase activity. Anal. Biochem., 1968, 24(3), 515-522.
[http://dx.doi.org/10.1016/0003-2697(68)90159-0] [PMID: 5723307]
[94]
Rüegg, U.T.; Russell, A.S. A rapid and sensitive assay for arginase. Anal. Biochem., 1980, 102(1), 206-212.
[http://dx.doi.org/10.1016/0003-2697(80)90340-1] [PMID: 7356155]
[95]
Kepka‐Lenhart, D.; Ash, D.E.; Morris, S.M. Determination of mammalian arginase activity. In: Methods in Enzymology; Nitric Oxide, Part F; Academic Press, 2008, 440, pp. 221-230.
[http://dx.doi.org/10.1016/S0076-6879(07)00813-0]
[96]
Tenu, J-P.; Lepoivre, M.; Moali, C.; Brollo, M.; Mansuy, D.; Boucher, J-L. Effects of the new arginase inhibitor N(ω)-hydroxy-nor-L-arginine on NO synthase activity in murine macrophages. Nitric Oxide, 1999, 3(6), 427-438.
[http://dx.doi.org/10.1006/niox.1999.0255] [PMID: 10637120]
[97]
Palmer, R.M.J.; Ashton, D.S.; Moncada, S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature, 1988, 333(6174), 664-666.
[http://dx.doi.org/10.1038/333664a0] [PMID: 3131684]
[98]
Buga, G.M.; Singh, R.; Pervin, S.; Rogers, N.E.; Schmitz, D.A.; Jenkinson, C.P.; Cederbaum, S.D.; Ignarro, L.J. Arginase activity in endothelial cells: Inhibition by NG-hydroxy-L-arginine during high-output NO production. Am. J. Physiol., 1996, 271(5 Pt 2), H1988-H1998.
[PMID: 8945918]
[99]
O’Meara, R.A.Q. The mechanism of the voges-proskauer reaction and the diacetyl reaction for proteins. Br. J. Exp. Pathol., 1931, 12, 346-356.
[100]
Fearon, W.R. The carbamido diacetyl reaction: A test for citrulline. Biochem. J., 1939, 33(6), 902-907.
[http://dx.doi.org/10.1042/bj0330902] [PMID: 16746990]
[101]
Wheatley, V.R. An improved diacetyl reaction for the estimation of urea in blood. Biochem. J., 1948, 43(3), 420-422.
[http://dx.doi.org/10.1042/bj0430420] [PMID: 16748424]
[102]
Beale, R.N.; Croft, D. A sensitive method for the colorimetric determination of urea. J. Clin. Pathol., 1961, 14, 418-424.
[http://dx.doi.org/10.1136/jcp.14.4.418] [PMID: 13688207]
[103]
Coulombe, J.J.; Favreau, L. A new simple semimicro method for colorimetric determination of urea. Clin. Chem., 1963, 9, 102-108.
[http://dx.doi.org/10.1093/clinchem/9.1.102] [PMID: 14023392]
[104]
Archibald, R.M.; Ortiz, P.; Stroh, E.; Beonnbe, J. Colorimetric determination of urea. J. Biol. Chem., 1945, 157, 507-518.
[http://dx.doi.org/10.1016/S0021-9258(18)51085-1]
[105]
Hagan, J.J.; Dallam, R.D. Measurement of arginase activity. Anal. Biochem., 1968, 22(3), 518-524.
[http://dx.doi.org/10.1016/0003-2697(68)90293-5] [PMID: 5672498]
[106]
Jung, D.; Biggs, H.; Erikson, J.; Ledyard, P.U. New Colorimetric reaction for end-point, continuous-flow, and kinetic measurement of urea. Clin. Chem., 1975, 21(8), 1136-1140.
[http://dx.doi.org/10.1093/clinchem/21.8.1136] [PMID: 1137920]
[107]
Zawada, R.J.X.; Kwan, P.; Olszewski, K.L.; Llinas, M.; Huang, S-G. Quantitative determination of urea concentrations in cell culture medium. Biochem. Cell Biol., 2009, 87(3), 541-544.
[http://dx.doi.org/10.1139/O09-011] [PMID: 19448747]
[108]
Maliha, B.; Hussain, I.; Tariq, M.; Siddiqui, H.L. Mechanistic studies on the reaction of O-phthalaldehyde (opta) with urea and its.N-Alkyl/Aryl derivatives. J. Chem. Soc. Pak., 2009, 31, 829-837.
[109]
Fawcett, J.K.; Scott, J.E. A rapid and precise method for the determination of urea. J. Clin. Pathol., 1960, 13, 156-159.
[http://dx.doi.org/10.1136/jcp.13.2.156] [PMID: 13821779]
[110]
Bolleter, W.T.; Bushman, C.J.; Tidwell, P.W. Spectrophotometric determination of ammonia as indophenol. Anal. Chem., 1961, 33, 592-594.
[http://dx.doi.org/10.1021/ac60172a034]
[111]
Ngo, T.T.; Phan, A.P.H.; Yam, C.F.; Lenhoff, H.M. Interference in determination of ammonia with the hypochlorite-alkaline phenol method of berthelot. Anal. Chem., 1982, 54, 46-49.
[http://dx.doi.org/10.1021/ac00238a015]
[112]
da Silva, E.R.; Come, J.A.A. dos S.S.; Brogi, S.; Calderone, V.; Chemi, G.; Campiani, G.; Oliveira, T.M.F. de S.; Pham, T-N.; Pudlo, M.; Girard, C.; Maquiaveli, C. do C. Cinnamides target leishmania amazonensis arginase selectively. Molecules, 2020, 25, 5271.
[http://dx.doi.org/10.3390/molecules25225271]
[113]
da Silva, E.R.; Brogi, S.; Lucon-Júnior, J.F.; Campiani, G.; Gemma, S.; Maquiaveli, C.D.C. Dietary polyphenols rutin, taxifolin and quercetin related compounds target Leishmania amazonensis arginase. Food Funct., 2019, 10(6), 3172-3180.
[http://dx.doi.org/10.1039/C9FO00265K] [PMID: 31134235]
[114]
Greenberg, D.M. Arginase.Methods in Enzymology; Academic Press, 1955, Vol. 2, pp. 368-374.
[http://dx.doi.org/10.1016/S0076-6879(55)02213-1]
[115]
McCaldin, D.J. The chemistry of ninhydrin. Chem. Rev., 1960, 60, 39-51.
[http://dx.doi.org/10.1021/cr60203a004]
[116]
Chinard, F.P. Photometric estimation of proline and ornithine. J. Biol. Chem., 1952, 199(1), 91-95.
[http://dx.doi.org/10.1016/S0021-9258(18)44814-4] [PMID: 12999819]
[117]
Han, S.; Moore, R.A.; Viola, R.E. Synthesis and evaluation of alternative substrates for arginase. Bioorg. Chem., 2002, 30(2), 81-94.
[http://dx.doi.org/10.1006/bioo.2001.1228] [PMID: 12020133]
[118]
Han, S.; Viola, R.E. A spectrophotometric assay of arginase. Anal. Biochem., 2001, 295(1), 117-119.
[http://dx.doi.org/10.1006/abio.2001.5189] [PMID: 11476554]
[119]
Lu, M.; Zhang, H.; Li, D.; Childers, M.; Pu, Q.; Palte, R.L.; Gathiaka, S.; Lyons, T.W.; Palani, A.; Fan, P.W.; Spacciapoli, P.; Miller, J.R.; Cho, H.; Cheng, M.; Chakravarthy, K.; O’Neil, J.; Eangoor, P.; Beard, A.; Kim, H-Y.; Saurí, J.; Gunaydin, H.; Sloman, D.L.; Siliphaivanh, P.; Cumming, J.; Fischer, C. Structure-based discovery of proline-derived arginase inhibitors with improved oral bioavailability for immuno-oncology. ACS Med. Chem. Lett., 2021, 12(9), 1380-1388.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00195] [PMID: 34527178]
[120]
Baggio, R.; Cox, J.D.; Harper, S.L.; Speicher, D.W.; Christianson, D.W. A new chromophoric assay for arginase activity. Anal. Biochem., 1999, 276(2), 251-253.
[http://dx.doi.org/10.1006/abio.1999.4355] [PMID: 10603248]
[121]
André, C.; Herlem, G.; Gharbi, T.; Guillaume, Y.C. A new arginase enzymatic reactor: Development and application for the research of plant-derived inhibitors. J. Pharm. Biomed. Anal., 2011, 55(1), 48-53.
[http://dx.doi.org/10.1016/j.jpba.2011.01.003] [PMID: 21310573]
[122]
Tommasi, S.; Elliot, D.J.; Da Boit, M.; Gray, S.R.; Lewis, B.C.; Mangoni, A.A. Homoarginine and inhibition of human arginase activity: Kinetic characterization and biological relevance. Sci. Rep., 2018, 8(1), 3697.
[http://dx.doi.org/10.1038/s41598-018-22099-x] [PMID: 29487337]
[123]
Attia, R.; Zedet, A.; Bourjot, M.; Skhiri, E.; Messaoud, C.; Girard, C. Thin-layer chromatography-bioautographic method for the detection of arginase inhibitors. J. Sep. Sci., 2020, 43(12), 2477-2486.
[http://dx.doi.org/10.1002/jssc.201901210] [PMID: 32233066]
[124]
Hirsch-Kolb, H.; Kolb, H.J.; Greenberg, D.M. Nuclear magnetic resonance studies of manganese binding of rat liver arginase. J. Biol. Chem., 1971, 246(2), 395-401.
[http://dx.doi.org/10.1016/S0021-9258(18)62504-9] [PMID: 5542009]
[125]
Uribe, E.; Reyes, M-B.; Martínez, I.; Mella, K.; Salas, M.; Tarifeño-Saldivia, E.; López, V.; García-Robles, M.; Martínez-Oyanedel, J.; Figueroa, M.; Carvajal, N.; Schenk, G. Functional analysis of the Mn2+ requirement in the catalysis of ureohydrolases arginase and agmatinase - a historical perspective. J. Inorg. Biochem., 2020, 202, 110812.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110812] [PMID: 31731096]
[126]
Orellana, M.S.; López, V.; Uribe, E.; Fuentes, M.; Salas, M.; Carvajal, N. Insights into the interaction of human liver arginase with tightly and weakly bound manganese ions by chemical modification and site-directed mutagenesis studies. Arch. Biochem. Biophys., 2002, 403(2), 155-159.
[http://dx.doi.org/10.1016/S0003-9861(02)00204-7] [PMID: 12139964]
[127]
Carvajal, N.; Salas, M.; López, V.; Uribe, E.; Herrera, P.; Cerpa, J.; Fuentes, M. Manganese-dependent inhibition of human liver arginase by borate. J. Inorg. Biochem., 1999, 77(3-4), 163-167.
[http://dx.doi.org/10.1016/S0162-0134(99)00187-7] [PMID: 10643656]
[128]
D’Antonio, E.L.; Hai, Y.; Christianson, D.W. Structure and function of non-native metal clusters in human arginase I. Biochemistry, 2012, 51(42), 8399-8409.
[http://dx.doi.org/10.1021/bi301145n] [PMID: 23061982]
[129]
Cama, E.; Pethe, S.; Boucher, J-L.; Han, S.; Emig, F.A.; Ash, D.E.; Viola, R.E.; Mansuy, D.; Christianson, D.W. Inhibitor coordination interactions in the binuclear manganese cluster of arginase. Biochemistry, 2004, 43(28), 8987-8999.
[http://dx.doi.org/10.1021/bi0491705] [PMID: 15248756]
[130]
Lisi, L.; Pizzoferrato, M.; Miscioscia, F.T.; Topai, A.; Navarra, P. Interactions between integrase inhibitors and human arginase 1. J. Neurochem., 2017, 142(1), 153-159.
[http://dx.doi.org/10.1111/jnc.14039] [PMID: 28397245]
[131]
Deutch, C.E. Inhibition of urease activity in the urinary tract pathogens Staphylococcus saprophyticus and Proteus mirabilis by dimethylsulfoxide (DMSO). J. Appl. Microbiol., 2020, 128(5), 1514-1523.
[http://dx.doi.org/10.1111/jam.14560] [PMID: 31860153]
[132]
Panyachariwat, N.; Steckel, H. Stability of urea in solution and pharmaceutical preparations. J. Cosmet. Sci., 2014, 65(3), 187-195.
[PMID: 25043489]
[133]
Cheng, N.; Leung, Y.; Lo, W. Pharmaceutical preparation and method of treatment of human malignancies with arginine deprivation. US20050244398A1, 2002.
[134]
Ikemoto, M.; Tabata, M.; Miyake, T.; Kono, T.; Mori, M.; Totani, M.; Murachi, T. Expression of human liver arginase in Escherichia coli . Purification and properties of the product. Biochem. J., 1990, 270(3), 697-703.
[http://dx.doi.org/10.1042/bj2700697] [PMID: 2241902]
[135]
da Silva, E.R.; da Silva, M.F.L.; Fischer, H.; Mortara, R.A.; Mayer, M.G.; Framesqui, K.; Silber, A.M.; Floeter-Winter, L.M. Biochemical and biophysical properties of a highly active recombinant arginase from Leishmania (Leishmania) amazonensis and subcellular localization of native enzyme. Mol. Biochem. Parasitol., 2008, 159(2), 104-111.
[http://dx.doi.org/10.1016/j.molbiopara.2008.02.011] [PMID: 18400316]
[136]
Lowe, M.M.; Boothby, I.; Clancy, S.; Ahn, R.S.; Liao, W.; Nguyen, D.N.; Schumann, K.; Marson, A.; Mahuron, K.M.; Kingsbury, G.A.; Liu, Z.; Munoz Sandoval, P.; Rodriguez, R.S.; Pauli, M.L.; Taravati, K.; Arron, S.T.; Neuhaus, I.M.; Harris, H.W.; Kim, E.A.; Shin, U.S.; Krummel, M.F.; Daud, A.; Scharschmidt, T.C.; Rosenblum, M.D.; Regulatory, T. Regulatory T cells use arginase 2 to enhance their metabolic fitness in tissues. JCI Insight, 2019, 4(24), 4.
[http://dx.doi.org/10.1172/jci.insight.129756] [PMID: 31852848]
[137]
Schnorr, O.; Brossette, T.; Momma, T.Y.; Kleinbongard, P.; Keen, C.L.; Schroeter, H.; Sies, H. Cocoa flavanols lower vascular arginase activity in human endothelial cells in vitro and in erythrocytes in vivo . Arch. Biochem. Biophys., 2008, 476(2), 211-215.
[http://dx.doi.org/10.1016/j.abb.2008.02.040] [PMID: 18348861]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy