Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Biofunctionalized Nano-antimicrobials - Progress, Prospects and Challenges

Author(s): Lutfur Rahman, Sabahat Asif, Ata Ullah, Waheed S. Khan and Asma Rehman*

Volume 22, Issue 13, 2022

Published on: 12 January, 2022

Page: [1046 - 1067] Pages: 22

DOI: 10.2174/1568026622666211227151743

Price: $65

Open Access Journals Promotions 2
Abstract

The rapid emergence of multidrug-resistant bacterial strains highlights the need for the development of new antimicrobial compounds/materials to address associated healthcare challenges. Meanwhile, the adverse side effects of conventional antibiotics on human health urge the development of new natural product-based antimicrobials to minimize the side effects. In this respect, we concisely review the recent scientific contributions to develop natural product-based nano-antibiotics. The focus of the review is on the use of flavonoids, peptides, and cationic biopolymer functionalized metal/metal oxide nanoparticles as efficient tools to hit the MDR bacterial strains. It summarizes the most recent aspects of the functionalized nanoparticles against various pathogenic bacterial strains for their minimal inhibitory concentrations and mechanism of action at the cellular and molecular levels. In the end, the future perspectives to materialize the in vivo applications of nano-antimicrobials are suggested based on the available research.

Keywords: Nano-antimicrobials, Multidrug resistance, Flavonoids, Cationic polymers, Short peptides, Pathogenic bacterial strains.

Graphical Abstract
[1]
Bush, K.; Courvalin, P.; Dantas, G.; Davies, J.; Eisenstein, B.; Huovinen, P.; Jacoby, G.A.; Kishony, R.; Kreiswirth, B.N.; Kutter, E.; Lerner, S.A.; Levy, S.; Lewis, K.; Lomovskaya, O.; Miller, J.H.; Mobashery, S.; Piddock, L.J.; Projan, S.; Thomas, C.M.; Tomasz, A.; Tulkens, P.M.; Walsh, T.R.; Watson, J.D.; Witkowski, J.; Witte, W.; Wright, G.; Yeh, P.; Zgurskaya, H.I. Tackling antibiotic resistance. Nat. Rev. Microbiol., 2011, 9(12), 894-896.
[http://dx.doi.org/10.1038/nrmicro2693] [PMID: 22048738]
[2]
Petchiappan, A.; Chatterji, D. Antibiotic resistance: current perspectives. ACS Omega, 2017, 2(10), 7400-7409.
[http://dx.doi.org/10.1021/acsomega.7b01368] [PMID: 30023551]
[3]
Czuban, M.; Srinivasan, S.; Yee, N.A.; Agustin, E.; Koliszak, A.; Miller, E.; Khan, I.; Quinones, I.; Noory, H.; Motola, C.; Volkmer, R.; Di Luca, M.; Trampuz, A.; Royzen, M.; Mejia Oneto, J.M. Bio-orthogonal chemistry and reloadable biomaterial enable local activation of antibiotic prodrugs and enhance treatments against Staphylococcus aureus infections. ACS Cent. Sci., 2018, 4(12), 1624-1632.
[http://dx.doi.org/10.1021/acscentsci.8b00344] [PMID: 30648146]
[4]
Montassier, E.; Valdés-Mas, R.; Batard, E.; Zmora, N.; Dori-Bachash, M.; Suez, J.; Elinav, E. Probiotics impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner. Nat. Microbiol., 2021, 6(8), 1043-1054.
[http://dx.doi.org/10.1038/s41564-021-00920-0] [PMID: 34226711]
[5]
Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med., 2004, 10(12)(Suppl.), S122-S129.
[http://dx.doi.org/10.1038/nm1145] [PMID: 15577930]
[6]
Peterson, E.; Kaur, P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol., 2018, 9, 2928.
[http://dx.doi.org/10.3389/fmicb.2018.02928] [PMID: 30555448]
[7]
Wang, H.; Song, Z.; Gu, J.; Li, S.; Wu, Y.; Han, H. Nitrogen- doped carbon quantum dots for preventing biofilm formation and eradicating drug-resistant bacteria infection. ACS Biomater. Sci. Eng., 2019, 5(9), 4739-4749.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00583] [PMID: 33448817]
[8]
Sturge, C.R.; Felder-Scott, C.F.; Pifer, R.; Pybus, C.; Jain, R.; Geller, B.L.; Greenberg, D.E. AcrAB-TolC inhibition by peptide- conjugated phosphorodiamidate morpholino oligomers restores antibiotic activity in vitro and in vivo. ACS Infect. Dis., 2019, 5(8), 1446-1455.
[http://dx.doi.org/10.1021/acsinfecdis.9b00123] [PMID: 31119935]
[9]
Theuretzbacher, U. Dual-mechanism antibiotics. Nat. Microbiol., 2020, 5(8), 984-985.
[http://dx.doi.org/10.1038/s41564-020-0767-0] [PMID: 32710093]
[10]
Melander, R.J.; Melander, C. The challenge of overcoming antibiotic resistance: an adjuvant approach? ACS Infect. Dis., 2017, 3(8), 559-563.
[http://dx.doi.org/10.1021/acsinfecdis.7b00071] [PMID: 28548487]
[11]
Abbina, S.; Gill, A.; Mathew, S.; Abbasi, U.; Kizhakkedathu, J.N. Polyglycerol-based macromolecular iron chelator adjuvants for antibiotics to treat drug-resistant bacteria. ACS Appl. Mater. Interfaces, 2020, 12(34), 37834-37844.
[http://dx.doi.org/10.1021/acsami.0c06501] [PMID: 32639137]
[12]
Ammeter, D.; Idowu, T.; Zhanel, G.G.; Schweizer, F. Development of a nebramine-cyclam conjugate as an antibacterial adjuvant to potentiate β-lactam antibiotics against multidrug-resistant P. aeruginosa. J. Antibiot. (Tokyo), 2019, 72(11), 816-826.
[http://dx.doi.org/10.1038/s41429-019-0221-9] [PMID: 31420586]
[13]
Liebler, D.C.; Guengerich, F.P. Elucidating mechanisms of drug-induced toxicity. Nat. Rev. Drug Discov., 2005, 4(5), 410-420.
[http://dx.doi.org/10.1038/nrd1720] [PMID: 15864270]
[14]
Wong, E.H.; Khin, M.M.; Ravikumar, V.; Si, Z.; Rice, S.A.; Chan-Park, M.B. Modulating antimicrobial activity and mammalian cell biocompatibility with glucosamine-functionalized star polymers. Biomacromolecules, 2016, 17(3), 1170-1178.
[http://dx.doi.org/10.1021/acs.biomac.5b01766] [PMID: 26859230]
[15]
Gavel, P.K.; Dev, D.; Parmar, H.S.; Bhasin, S.; Das, A.K. Investigations of peptide-based biocompatible injectable shape-memory hydrogels: differential biological effects on bacterial and human blood cells. ACS Appl. Mater. Interfaces, 2018, 10(13), 10729-10740.
[http://dx.doi.org/10.1021/acsami.8b00501] [PMID: 29537812]
[16]
Osonga, F.J.; Akgul, A.; Miller, R.M.; Eshun, G.B.; Yazgan, I.; Akgul, A.; Sadik, O.A. Antimicrobial activity of a new class of phosphorylated and modified flavonoids. ACS Omega, 2019, 4(7), 12865-12871.
[http://dx.doi.org/10.1021/acsomega.9b00077] [PMID: 31460413]
[17]
Porras, G.; Chassagne, F.; Lyles, J.T.; Marquez, L.; Dettweiler, M.; Salam, A.M.; Samarakoon, T.; Shabih, S.; Farrokhi, D.R.; Quave, C.L. Ethnobotany and the role of plant natural products in antibiotic drug discovery. Chem. Rev., 2021, 121(6), 3495-3560.
[http://dx.doi.org/10.1021/acs.chemrev.0c00922] [PMID: 33164487]
[18]
Yadav, V.; Wang, Z.; Wei, C.; Amo, A.; Ahmed, B.; Yang, X.; Zhang, X. Phenylpropanoid pathway engineering: An emerging approach towards plant defense. Pathogens, 2020, 9(4), 312.
[http://dx.doi.org/10.3390/pathogens9040312] [PMID: 32340374]
[19]
Chen, O.; Deng, L.; Ruan, C.; Yi, L.; Zeng, K. Pichia galeiformis induces resistance in postharvest citrus by activating the phenylpropanoid biosynthesis pathway. J. Agric. Food Chem., 2021, 69(8), 2619-2631.
[http://dx.doi.org/10.1021/acs.jafc.0c06283] [PMID: 33594880]
[20]
Yang, J.H.; Choi, M-H.; Yang, S.H.; Cho, S.S.; Park, S.J.; Shin, H-J.; Ki, S.H. Potent anti-inflammatory and antiadipogenic properties of bamboo (Sasa coreana Nakai) leaves extract and its major constituent flavonoids. J. Agric. Food Chem., 2017, 65(31), 6665-6673.
[http://dx.doi.org/10.1021/acs.jafc.7b02203] [PMID: 28726396]
[21]
Zhang, J.; Zhao, L.; Cheng, Q.; Ji, B.; Yang, M.; Sanidad, K.Z.; Wang, C.; Zhou, F. Structurally different flavonoid subclasses attenuate high-fat and high-fructose diet induced metabolic syndrome in rats. J. Agric. Food Chem., 2018, 66(46), 12412-12420.
[http://dx.doi.org/10.1021/acs.jafc.8b03574] [PMID: 30360615]
[22]
Docampo-Palacios, M.L.; Alvarez-Hernández, A.; de Fátima, Â.; Lião, L.M.; Pasinetti, G.M.; Dixon, R.A. Efficient chemical synthesis of (epi)catechin glucuronides: brain-targeted metabolites for treatment of Alzheimer’s disease and other neurological disorders. ACS Omega, 2020, 5(46), 30095-30110.
[http://dx.doi.org/10.1021/acsomega.0c04512] [PMID: 33251444]
[23]
Mbaveng, A.T.; Sandjo, L.P.; Tankeo, S.B.; Ndifor, A.R.; Pantaleon, A.; Nagdjui, B.T.; Kuete, V. Antibacterial activity of nineteen selected natural products against multi-drug resistant Gram-negative phenotypes. Springerplus, 2015, 4(1), 823.
[http://dx.doi.org/10.1186/s40064-015-1645-8] [PMID: 26753111]
[24]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJ, 2013, 2013, 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[25]
Bouaziz, M.; Grayer, R.J.; Simmonds, M.S.; Damak, M.; Sayadi, S. Identification and antioxidant potential of flavonoids and low molecular weight phenols in olive cultivar chemlali growing in Tunisia. J. Agric. Food Chem., 2005, 53(2), 236-241.
[http://dx.doi.org/10.1021/jf048859d] [PMID: 15656655]
[26]
Yuan, M.; Shi, D.Z.; Wang, T.Y.; Zheng, S-Q.; Liu, L.J.; Sun, Z.X.; Wang, R.F.; Ding, Y. Transformation of trollioside and isoquercetin by human intestinal flora in vitro. Chin. J. Nat. Med., 2016, 14(3), 220-226.
[http://dx.doi.org/10.1016/S1875-5364(16)30019-X] [PMID: 27025369]
[27]
Shahzad, M.; Millhouse, E.; Culshaw, S.; Edwards, C.A.; Ramage, G.; Combet, E. Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation. Food Funct., 2015, 6(3), 719-729.
[http://dx.doi.org/10.1039/C4FO01087F] [PMID: 25585200]
[28]
Dey, D.; Ray, R.; Hazra, B. Antimicrobial activity of pomegranate fruit constituents against drug-resistant Mycobacterium tuberculosis and β-lactamase producing Klebsiella pneumoniae. Pharm. Biol., 2015, 53(10), 1474-1480.
[http://dx.doi.org/10.3109/13880209.2014.986687] [PMID: 25858784]
[29]
Hirai, I.; Okuno, M.; Katsuma, R.; Arita, N.; Tachibana, M.; Yamamoto, Y. Characterisation of anti-Staphylococcus aureus activity of quercetin. Int. J. Food Sci., 2010, 45(6), 1250-1254.
[http://dx.doi.org/10.1111/j.1365-2621.2010.02267.x]
[30]
Tiam, E.R.; Ngono Bikobo, D.S.; Abouem A Zintchem, A.; Mbabi Nyemeck, N., II; Moni Ndedi, E.D.F.; Betote Diboué, P.H.; Nyegue, M.A.; Atchadé, A.T.; Emmanuel Pegnyemb, D.; Bochet, C.G.; Koert, U. Secondary metabolites from Triclisia gilletii (De Wild) Staner (Menispermaceae) with antimycobacterial activity against Mycobacterium tuberculosis. Nat. Prod. Res., 2019, 33(5), 642-650.
[http://dx.doi.org/10.1080/14786419.2017.1402324] [PMID: 29144174]
[31]
Sun, D.; Zhang, W.; Mou, Z.; Chen, Y.; Guo, F.; Yang, E.; Wang, W. Transcriptome analysis reveals silver nanoparticle-decorated quercetin antibacterial molecular mechanism. ACS Appl. Mater. Interfaces, 2017, 9(11), 10047-10060.
[http://dx.doi.org/10.1021/acsami.7b02380] [PMID: 28240544]
[32]
Djeussi, D.E.; Sandjo, L.P.; Noumedem, J.A.; Omosa, L.K.; T Ngadjui, B.; Kuete, V. Antibacterial activities of the methanol extracts and compounds from Erythrina sigmoidea against Gram-negative multi-drug resistant phenotypes. BMC Complement. Altern. Med., 2015, 15(1), 453.
[http://dx.doi.org/10.1186/s12906-015-0978-8] [PMID: 26715029]
[33]
Zuo, G-Y.; Yang, C-X.; Han, J.; Li, Y-Q.; Wang, G-C. Synergism of prenylflavonoids from Morus alba root bark against clinical MRSA isolates. Phytomedicine, 2018, 39, 93-99.
[http://dx.doi.org/10.1016/j.phymed.2017.12.023] [PMID: 29433688]
[34]
Pereira, F.; Madureira, A.M.; Sancha, S.; Mulhovo, S.; Luo, X.; Duarte, A.; Ferreira, M-J.U. Cleistochlamys kirkii chemical constituents: antibacterial activity and synergistic effects against resistant Staphylococcus aureus strains. J. Ethnopharmacol., 2016, 178, 180-187.
[http://dx.doi.org/10.1016/j.jep.2015.12.009] [PMID: 26674158]
[35]
Joycharat, N.; Thammavong, S.; Limsuwan, S.; Homlaead, S.; Voravuthikunchai, S.P.; Yingyongnarongkul, B.E.; Dej-Adisai, S.; Subhadhirasakul, S. Antibacterial substances from Albizia myriophylla wood against cariogenic Streptococcus mutans. Arch. Pharm. Res., 2013, 36(6), 723-730.
[http://dx.doi.org/10.1007/s12272-013-0085-7] [PMID: 23479194]
[36]
Yusook, K.; Weeranantanapan, O.; Hua, Y.; Kumkrai, P.; Chudapongse, N. Lupinifolin from Derris reticulata possesses bactericidal activity on Staphylococcus aureus by disrupting bacterial cell membrane. J. Nat. Med., 2017, 71(2), 357-366.
[http://dx.doi.org/10.1007/s11418-016-1065-2] [PMID: 28039567]
[37]
Joycharat, N.; Boonma, C.; Thammavong, S.; Yingyongnarongkul, B.E.; Limsuwan, S.; Voravuthikunchai, S.P. Chemical constituents and biological activities of Albizia myriophylla wood. Pharm. Biol., 2016, 54(1), 62-73.
[http://dx.doi.org/10.3109/13880209.2015.1014920] [PMID: 25894212]
[38]
Dzoyem, J.P.; Hamamoto, H.; Ngameni, B.; Ngadjui, B.T.; Sekimizu, K. Antimicrobial action mechanism of flavonoids from Dorstenia species. Drug Discov. Ther., 2013, 7(2), 66-72.
[PMID: 23715504]
[39]
Chan, B.C-L.; Yu, H.; Wong, C-W.; Lui, S-L.; Jolivalt, C.; Ganem-Elbaz, C.; Paris, J-M.; Morleo, B.; Litaudon, M.; Lau, C.B.; Ip, M.; Fung, K.P.; Leung, P.C.; Han, Q.B. Quick identification of kuraridin, a noncytotoxic anti-MRSA (methicillin-resistant Staphylococcus aureus) agent from Sophora flavescens using high-speed counter-current chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 880(1), 157-162.
[http://dx.doi.org/10.1016/j.jchromb.2011.11.039] [PMID: 22177235]
[40]
Mabou, F.D.; Tamokou, J.D.; Ngnokam, D.; Voutquenne-Nazabadioko, L.; Kuiate, J-R.; Bag, P.K. Complex secondary metabolites from Ludwigia leptocarpa with potent antibacterial and antioxidant activities. Drug Discov. Ther., 2016, 10(3), 141-149.
[http://dx.doi.org/10.5582/ddt.2016.01040] [PMID: 27431270]
[41]
Zuo, G-Y.; Yang, C-X.; Ruan, Z-J.; Han, J.; Wang, G-C. Potent anti-MRSA activity and synergism with aminoglycosides by flavonoid derivatives from the root barks of Morus alba, a traditional Chinese medicine. Med. Chem. Res., 2019, 28(9), 1547-1556.
[http://dx.doi.org/10.1007/s00044-019-02393-7]
[42]
Zhou, Y.; Tang, R-C. Natural flavonoid-functionalized silk fiber presenting antibacterial, antioxidant, and UV protection performance. ACS Sustain. Chem. Eng., 2017, 5(11), 10518-10526.
[http://dx.doi.org/10.1021/acssuschemeng.7b02513]
[43]
Prasain, J.K.; Barnes, S. Metabolism and bioavailability of flavonoids in chemoprevention: current analytical strategies and future prospectus. Mol. Pharm., 2007, 4(6), 846-864.
[http://dx.doi.org/10.1021/mp700116u] [PMID: 18052086]
[44]
Ban, C.; Park, S.J.; Lim, S.; Choi, S.J.; Choi, Y.J. Improving flavonoid bioaccessibility using an edible oil-based lipid nanoparticle for oral delivery. J. Agric. Food Chem., 2015, 63(21), 5266-5272.
[http://dx.doi.org/10.1021/acs.jafc.5b01495] [PMID: 25976277]
[45]
Barros, C.H.; Casey, E. A review of nanomaterials and technologies for enhancing the antibiofilm activity of natural products and phytochemicals. ACS Appl. Nano Mater., 2020, 3(9), 8537-8556.
[http://dx.doi.org/10.1021/acsanm.0c01586]
[46]
Xiao, J.; Cao, Y.; Huang, Q. Edible nanoencapsulation vehicles for oral delivery of phytochemicals: a perspective paper. J. Agric. Food Chem., 2017, 65(32), 6727-6735.
[http://dx.doi.org/10.1021/acs.jafc.7b02128] [PMID: 28737908]
[47]
AlSheikh, H.M.A.; Sultan, I.; Kumar, V.; Rather, I.A.; Al-Sheikh, H.; Tasleem Jan, A.; Haq, Q.M.R. Plant-based phytochemicals as possible alternative to antibiotics in combating bacterial drug resistance. Antibiotics (Basel), 2020, 9(8), 1-23.
[http://dx.doi.org/10.3390/antibiotics9080480] [PMID: 32759771]
[48]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[49]
Riaz, S.; Fatima Rana, N.; Hussain, I.; Tanweer, T.; Nawaz, A.; Menaa, F.; Janjua, H.A.; Alam, T.; Batool, A.; Naeem, A.; Hameed, M.; Ali, S.M. Effect of flavonoid-coated gold nanoparticles on bacterial colonization in mice organs. Nanomaterials (Basel), 2020, 10(9), 1-24.
[http://dx.doi.org/10.3390/nano10091769] [PMID: 32906828]
[50]
Blunder, M.; Orthaber, A.; Bauer, R.; Bucar, F.; Kunert, O. Efficient identification of flavones, flavanones and their glycosides in routine analysis via off-line combination of sensitive NMR and HPLC experiments. Food Chem., 2017, 218, 600-609.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.077] [PMID: 27719955]
[51]
Ley, J.P.; Krammer, G.; Reinders, G.; Gatfield, I.L.; Bertram, H-J. Evaluation of bitter masking flavanones from Herba Santa (Eriodictyon californicum (H. and A.) Torr., Hydrophyllaceae). J. Agric. Food Chem., 2005, 53(15), 6061-6066.
[http://dx.doi.org/10.1021/jf0505170] [PMID: 16028996]
[52]
Shanmuganathan, R.; Sathishkumar, G.; Brindhadevi, K.; Pugazhendhi, A. Fabrication of naringenin functionalized-Ag/RGO nanocomposites for potential bactericidal effects. J. Mater. Res. Technol., 2020, 9(4), 7013-7019.
[http://dx.doi.org/10.1016/j.jmrt.2020.03.118]
[53]
Anwar, A.; Masri, A.; Rao, K.; Rajendran, K.; Khan, N.A.; Shah, M.R.; Siddiqui, R. Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Sci. Rep., 2019, 9(1), 3122.
[http://dx.doi.org/10.1038/s41598-019-39528-0] [PMID: 30816269]
[54]
Mothlalamme, T.; Daniels, R.; Klaasen, J.; Fielding, B.C. Additive antibacterial activity of naringenin and antibiotic combinations against multidrug resistant Staphylococcus aureus. Afr. J. Microbiol. Res., 2015, 9(23), 1513-1518.
[http://dx.doi.org/10.5897/AJMR2015.7514]
[55]
Prateeksha, ; Rao, C.V.; Das, A.K.; Barik, S.K.; Singh, B.N. ZnO/Curcumin nanocomposites for enhanced inhibition of Pseudomonas aeruginosa virulence via LasR-RhlR quorum sensing systems. Mol. Pharm., 2019, 16(8), 3399-3413.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00179] [PMID: 31260316]
[56]
Shruthi, T.S.; Meghana, M.R.; Medha, M.U.; Sanjana, S.; Navya, P.N.; Kumar Daima, H. Streptomycin functionalization on silver nanoparticles for improved antibacterial activity. Mater. Today Proc., 2019, 10, 8-15.
[http://dx.doi.org/10.1016/j.matpr.2019.02.181]
[57]
Rao, K.; Imran, M.; Jabri, T.; Ali, I.; Perveen, S.; Shafiullah, ; Ahmed, S.; Shah, M.R. Gum tragacanth stabilized green gold nanoparticles as cargos for Naringin loading: a morphological investigation through AFM. Carbohydr. Polym., 2017, 174, 243-252.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.071] [PMID: 28821064]
[58]
Islan, G.A.; Das, S.; Cacicedo, M.L.; Halder, A.; Mukherjee, A.; Cuestas, M.L.; Roy, P.; Castro, G.R.; Mukherjee, A. Silybin-conjugated gold nanoparticles for antimicrobial chemotherapy against Gram-negative bacteria. J. Drug Deliv. Sci. Technol., 2019, 53, 101181.
[http://dx.doi.org/10.1016/j.jddst.2019.101181]
[59]
Zhang, Y.; Pan, X.; Liao, S.; Jiang, C.; Wang, L.; Tang, Y.; Wu, G.; Dai, G.; Chen, L. Quantitative proteomics reveals the mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa biofilms. J. Proteome Res., 2020, 19(8), 3109-3122.
[http://dx.doi.org/10.1021/acs.jproteome.0c00114] [PMID: 32567865]
[60]
Vinson, J.A.; Dabbagh, Y.A.; Serry, M.M.; Jang, J. Plant flavonoids, especially tea flavonols, are powerful antioxidants using an in vitro oxidation model for heart disease. J. Agric. Food Chem., 1995, 43(11), 2800-2802.
[http://dx.doi.org/10.1021/jf00059a005]
[61]
Boots, A.W.; Haenen, G.R.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol., 2008, 585(2-3), 325-337.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.008] [PMID: 18417116]
[62]
Stewart, P.S. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol., 2002, 292(2), 107-113.
[http://dx.doi.org/10.1078/1438-4221-00196] [PMID: 12195733]
[63]
Transcriptome Analysis; Blumenberg, Miroslav, Ed.; BoD–Books on Demand, 2019.
[64]
Das, S.; Pramanik, T.; Jethwa, M.; Roy, P. Flavonoid-decorated nano-gold for antimicrobial therapy against gram-negative bacteria Escherichia coli. Appl. Biochem. Biotechnol., 2021, 193(6), 1727-1743.
[http://dx.doi.org/10.1007/s12010-021-03543-7] [PMID: 33713270]
[65]
Mittal, A.K.; Kumar, S.; Banerjee, U.C. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J. Colloid Interface Sci., 2014, 431, 194-199.
[http://dx.doi.org/10.1016/j.jcis.2014.06.030] [PMID: 25000181]
[66]
Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 2011, 27(7), 4020-4028.
[http://dx.doi.org/10.1021/la104825u] [PMID: 21401066]
[67]
Yu, L.; Shang, F.; Chen, X.; Ni, J.; Yu, L.; Zhang, M.; Sun, D.; Xue, T. The anti-biofilm effect of silver-nanoparticle-decorated quercetin nanoparticles on a multi-drug resistant Escherichia coli strain isolated from a dairy cow with mastitis. PeerJ, 2018, 6, e5711.
[http://dx.doi.org/10.7717/peerj.5711] [PMID: 30356998]
[68]
Yang, X.; Zhang, W.; Zhao, Z.; Li, N.; Mou, Z.; Sun, D.; Cai, Y.; Wang, W.; Lin, Y. Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J. Inorg. Biochem., 2017, 167, 36-48.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.11.023] [PMID: 27898345]
[69]
Nandana, C.N.; Christeena, M.; Bharathi, D. Synthesis and characterization of chitosan/silver nanocomposite using rutin for antibacterial, antioxidant and photocatalytic applications. J. Cluster Sci., 2021.
[http://dx.doi.org/10.1007/s10876-020-01947-9]
[70]
Semwal, D.K.; Semwal, R.B.; Combrinck, S.; Viljoen, A. Myricetin: a dietary molecule with diverse biological activities. Nutrients, 2016, 8(2), 90.
[http://dx.doi.org/10.3390/nu8020090] [PMID: 26891321]
[71]
Li, Z.; Ma, W.; Ali, I.; Zhao, H.; Wang, D.; Qiu, J. Green and facile synthesis and antioxidant and antibacterial evaluation of dietary myricetin-mediated silver nanoparticles. ACS Omega, 2020, 5(50), 32632-32640.
[http://dx.doi.org/10.1021/acsomega.0c05002] [PMID: 33376900]
[72]
Zhao, B.; Deng, S.; Li, J.; Sun, C.; Fu, Y.; Liu, Z. Green synthesis, characterization and antibacterial study on the catechin-functionalized ZnO nanoclusters. Mater. Res. Express, 2021, 8(2), 025006.
[http://dx.doi.org/10.1088/2053-1591/abe255]
[73]
Das, S.; Langbang, L.; Haque, M.; Belwal, V.K.; Aguan, K.; Singha Roy, A. Biocompatible silver nanoparticles: An investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies. J. Pharm. Anal., 2021, 11(4), 422-434.
[http://dx.doi.org/10.1016/j.jpha.2020.12.003] [PMID: 34513118]
[74]
Avila, S.R.R.; Schuenck, G.P.D.; Silva, L.P.C.; Keijok, W.J.; Xavier, L.M.; Endringer, D.C.; Oliveira, J.P.; Schuenck, R.P.; Guimarães, M.C.C. High antibacterial in vitro performance of gold nanoparticles synthesized by epigallocatechin 3-gallate. J. Mater. Res., 2021, 36(2), 518-532.
[http://dx.doi.org/10.1557/s43578-020-00012-5]
[75]
Taglietti, A.; Diaz Fernandez, Y.A.; Amato, E.; Cucca, L.; Dacarro, G.; Grisoli, P.; Necchi, V.; Pallavicini, P.; Pasotti, L.; Patrini, M. Antibacterial activity of glutathione-coated silver nanoparticles against Gram positive and Gram negative bacteria. Langmuir, 2012, 28(21), 8140-8148.
[http://dx.doi.org/10.1021/la3003838] [PMID: 22546237]
[76]
Kõljalg, S.; Naaber, P.; Mikelsaar, M. Antibiotic resistance as an indicator of bacterial chlorhexidine susceptibility. J. Hosp. Infect., 2002, 51(2), 106-113.
[http://dx.doi.org/10.1053/jhin.2002.1204] [PMID: 12090797]
[77]
Sahu, N.; Soni, D.; Chandrashekhar, B.; Satpute, D.; Saravanadevi, S.; Sarangi, B.; Pandey, R. Synthesis of silver nanoparticles using flavonoids: hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity. Int. Nano Lett., 2016, 6(3), 173-181.
[http://dx.doi.org/10.1007/s40089-016-0184-9]
[78]
Demirbas, A.; Kislakci, E.; Karaagac, Z.; Onal, I.; Ildiz, N.; Ocsoy, I. Preparation of biocompatible and stable iron oxide nanoparticles using anthocyanin integrated hydrothermal method and their antimicrobial and antioxidant properties. Mater. Res. Express, 2019, 6(12), 125011.
[http://dx.doi.org/10.1088/2053-1591/ab540c]
[79]
Allan, C.R.; Hadwiger, L.A. The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp. Mycol., 1979, 3(3), 285-287.
[http://dx.doi.org/10.1016/S0147-5975(79)80054-7]
[80]
Helander, I.M.; Nurmiaho-Lassila, E-L.; Ahvenainen, R.; Rhoades, J.; Roller, S. Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int. J. Food Microbiol., 2001, 71(2-3), 235-244.
[http://dx.doi.org/10.1016/S0168-1605(01)00609-2] [PMID: 11789941]
[81]
Young, D.H.; Köhle, H.; Kauss, H. Effect of chitosan on membrane permeability of suspension-cultured Glycine max and Phaseolus vulgaris cells. Plant Physiol., 1982, 70(5), 1449-1454.
[http://dx.doi.org/10.1104/pp.70.5.1449] [PMID: 16662696]
[82]
Gooday, G.W.; Jeuniaux, C.; Muzzarelli, R. Chitin in nature and technology; Springer Science & Business Media, 2012.
[83]
Goy, R.C.; Britto, D.D.; Assis, O.B. A review of the antimicrobial activity of chitosan. Polímeros, 2009, 19, 241-247.
[http://dx.doi.org/10.1590/S0104-14282009000300013]
[84]
Wei, D.; Sun, W.; Qian, W.; Ye, Y.; Ma, X. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr. Res., 2009, 344(17), 2375-2382.
[http://dx.doi.org/10.1016/j.carres.2009.09.001] [PMID: 19800053]
[85]
Parthasarathy, A.; Vijayakumar, S.; Malaikozhundan, B.; Thangaraj, M.P.; Ekambaram, P.; Murugan, T.; Velusamy, P.; Anbu, P.; Vaseeharan, B. Chitosan-coated silver nanoparticles promoted antibacterial, antibiofilm, wound-healing of murine macrophages and antiproliferation of human breast cancer MCF 7 cells. Polym. Test., 2020, 90, 106675.
[http://dx.doi.org/10.1016/j.polymertesting.2020.106675]
[86]
Dutta, T.; Ghosh, N.N.; Chattopadhyay, A.P.; Das, M. Chitosan encapsulated water-soluble silver bionanocomposite for size-dependent antibacterial activity. Nano-Struct. Nano-Objects., 2019, 20, 100393.
[http://dx.doi.org/10.1016/j.nanoso.2019.100393]
[87]
Nate, Z.; Moloto, M.J.; Mubiayi, P.K.; Sibiya, P.N. Green synthesis of chitosan capped silver nanoparticles and their antimicrobial activity. MRS Adv., 2018, 3(42-43), 2505-2517.
[http://dx.doi.org/10.1557/adv.2018.368]
[88]
Gouda Fouad, D. Chitosan as an antimicrobial compound: Modes of action and resistance mechanisms.. Doctoral Dissertation, Rhenish Friedrich-Wilhelms-Universität Bonn, Bonn, Germany. 2008.
[89]
Chang, T-Y.; Chen, C-C.; Cheng, K-M.; Chin, C-Y.; Chen, Y-H.; Chen, X-A.; Sun, J-R.; Young, J-J.; Chiueh, T-S. Trimethyl chitosan-capped silver nanoparticles with positive surface charge: Their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii. Colloids Surf. B Biointerfaces, 2017, 155, 61-70.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.054] [PMID: 28411476]
[90]
Kumari, G.V.; Mathavan, T.; Srinivasan, R.; Jothirajan, M. The influence of physical properties on the antibacterial activity of lysine conjugated chitosan functionalized silver nanoparticles. J. Inorg. Organomet. Polym. Mater., 2018, 28(6), 2418-2426.
[http://dx.doi.org/10.1007/s10904-018-0944-2]
[91]
Kalaivani, R.; Maruthupandy, M.; Muneeswaran, T.; Singh, M.; Sureshkumar, S.; Anand, M.; Ramakritinan, C.M.; Quero, F.; Kumaraguru, A.K. Chitosan mediated gold nanoparticles against pathogenic bacteria, fungal strains and MCF-7 cancer cells. Int. J. Biol. Macromol., 2020, 146, 560-568.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.037] [PMID: 31917985]
[92]
Regiel-Futyra, A.; Kus-Liśkiewicz, M.; Sebastian, V.; Irusta, S.; Arruebo, M.; Stochel, G.; Kyzioł, A. Development of noncytotoxic chitosan-gold nanocomposites as efficient antibacterial materials. ACS Appl. Mater. Interfaces, 2015, 7(2), 1087-1099.
[http://dx.doi.org/10.1021/am508094e] [PMID: 25522372]
[93]
Katas, H.; Lim, C.S.; Nor Azlan, A.Y.H.; Buang, F.; Mh Busra, M.F. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharm. J., 2019, 27(2), 283-292.
[http://dx.doi.org/10.1016/j.jsps.2018.11.010] [PMID: 30766441]
[94]
Sokary, R.; Abu el-naga, M.N.; Bekhit, M.; Atta, S. A potential antibiofilm, antimicrobial and anticancer activities of chitosan capped gold nanoparticles prepared by γ–irradiation. Mater. Technol., 2021, 1-10.
[http://dx.doi.org/10.1080/10667857.2020.1863555]
[95]
Khan, F.; Lee, J-W.; Manivasagan, P.; Pham, D.T.N.; Oh, J.; Kim, Y-M. Synthesis and characterization of chitosan oligosaccharide-capped gold nanoparticles as an effective antibiofilm drug against the Pseudomonas aeruginosa PAO1. Microb. Pathog., 2019, 135, 103623.
[http://dx.doi.org/10.1016/j.micpath.2019.103623] [PMID: 31325574]
[96]
Lu, B.; Lu, F.; Ran, L.; Yu, K.; Xiao, Y.; Li, Z.; Dai, F.; Wu, D.; Lan, G. Imidazole-molecule-capped chitosan-gold nanocomposites with enhanced antimicrobial activity for treating biofilm-related infections. J. Colloid Interface Sci., 2018, 531, 269-281.
[http://dx.doi.org/10.1016/j.jcis.2018.07.058] [PMID: 30036851]
[97]
Bhadra, P.; Mitra, M.; Das, G.; Dey, R.; Mukherjee, S. Interaction of chitosan capped ZnO nanorods with Escherichia coli. Mater. Sci. Eng. C, 2011, 31(5), 929-937.
[http://dx.doi.org/10.1016/j.msec.2011.02.015]
[98]
Toiserkani, H. Fabrication and characterization chitosan/functionalized zinc oxide bionanocomposites and study of their antibacterial activity. Compos. Interfaces, 2016, 23(3), 175-189.
[http://dx.doi.org/10.1080/09276440.2016.1123571]
[99]
Yusof, N.A.A.; Zain, N.M.; Pauzi, N. Synthesis of ZnO nanoparticles with chitosan as stabilizing agent and their antibacterial properties against Gram-positive and Gram-negative bacteria. Int. J. Biol. Macromol., 2019, 124, 1132-1136.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.228] [PMID: 30496864]
[100]
Dhillon, G.S.; Kaur, S.; Brar, S.K. Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity. Int. Nano Lett., 2014, 4(2), 107.
[http://dx.doi.org/10.1007/s40089-014-0107-6]
[101]
Preethi, S.; Abarna, K.; Nithyasri, M.; Kishore, P.; Deepika, K.; Ranjithkumar, R.; Bhuvaneshwari, V.; Bharathi, D. Synthesis and characterization of chitosan/zinc oxide nanocomposite for antibacterial activity onto cotton fabrics and dye degradation applications. Int. J. Biol. Macromol., 2020, 164, 2779-2787.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.047] [PMID: 32777425]
[102]
Perelshtein, I.; Ruderman, E.; Perkas, N.; Tzanov, T.; Beddow, J.; Joyce, E.; Mason, T.J.; Blanes, M.; Mollá, K.; Patlolla, A.; Frenkel, A.I.; Gedanken, A. Chitosan and chitosan-ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(14), 1968-1976.
[http://dx.doi.org/10.1039/c3tb00555k] [PMID: 32260910]
[103]
Mohammed, A.N.; Abdel Aziz, S.A.A. The prevalence of Campylobacter species in broiler flocks and their environment: assessing the efficiency of chitosan/zinc oxide nanocomposite for adopting control strategy. Environ. Sci. Pollut. Res. Int., 2019, 26(29), 30177-30187.
[http://dx.doi.org/10.1007/s11356-019-06030-z] [PMID: 31422531]
[104]
Patale, R.L.; Patravale, V.B.O. N-carboxymethyl chitosan–zinc complex: a novel chitosan complex with enhanced antimicrobial activity. Carbohydr. Polym., 2011, 85(1), 105-110.
[http://dx.doi.org/10.1016/j.carbpol.2011.02.001]
[105]
Zhong, Q.; Tian, J.; Liu, T.; Guo, Z.; Ding, S.; Li, H. Preparation and antibacterial properties of carboxymethyl chitosan/ZnO nanocomposite microspheres with enhanced biocompatibility. Mater. Lett., 2018, 212, 58-61.
[http://dx.doi.org/10.1016/j.matlet.2017.10.062]
[106]
Hemmati, F.; Salehi, R.; Ghotaslou, R.; Kafil, H.S.; Hasani, A.; Gholizadeh, P.; Rezaee, M.A. The assessment of antibiofilm activity of chitosan-zinc oxide-gentamicin nanocomposite on Pseudomonas aeruginosa and Staphylococcus aureus. Int. J. Biol. Macromol., 2020, 163, 2248-2258.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.037] [PMID: 32920055]
[107]
Ermini, M.L.; Voliani, V. Antimicrobial nano-agents: the copper age. ACS Nano, 2021, 15(4), 6008-6029.
[http://dx.doi.org/10.1021/acsnano.0c10756] [PMID: 33792292]
[108]
Syame, S.M.; Mohamed, W.; Mahmoud, R.K.; Omara, S.T. Synthesis of copper-chitosan nanocomposites and their applications in treatment of local pathogenic isolates bacteria. Orient. J. Chem., 2017, 33(6), 2959-2969.
[http://dx.doi.org/10.13005/ojc/330632]
[109]
Sathiyavimal, S.; Vasantharaj, S.; Kaliannan, T.; Pugazhendhi, A. Eco-biocompatibility of chitosan coated biosynthesized copper oxide nanocomposite for enhanced industrial (Azo) dye removal from aqueous solution and antibacterial properties. Carbohydr. Polym., 2020, 241, 116243.
[http://dx.doi.org/10.1016/j.carbpol.2020.116243] [PMID: 32507166]
[110]
Ahmed, S.B.; Mohamed, H.I.; Al-Subaie, A.M.; Al-Ohali, A.I.; Mahmoud, N.M.R. Investigation of the antimicrobial activity and hematological pattern of nano-chitosan and its nano-copper composite. Sci. Rep., 2021, 11(1), 9540.
[http://dx.doi.org/10.1038/s41598-021-88907-z] [PMID: 33953277]
[111]
Pecoraro, V.L. Preface: Peptide, protein and enzyme design. Methods Enzymol., 2016, 580, xvii-xxii.
[http://dx.doi.org/10.1016/S0076-6879(16)30242-7] [PMID: 27586351]
[112]
Kirkpatrick, P. Specificity concerns with antibodies for receptor mapping. Nat. Rev. Drug Discov., 2009, 8(4), 278-278.
[http://dx.doi.org/10.1038/nrd2854] [PMID: 19348032]
[113]
Wang, G.; Li, X.; Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[114]
Akram, A.; McCann, G. Effect of antimicrobial peptides and chemicals produced by animals on aspergillus fumigatus. J. Adv. Biol. Biotechnol., 2021, 12(6), 173-192.
[115]
Szymanowski, F.; Balatti, G.E.; Ambroggio, E.; Hugo, A.A.; Martini, M.F.; Fidelio, G.D.; Gómez-Zavaglia, A.; Pickholz, M.; Pérez, P.F. Differential activity of lytic α-helical peptides on lactobacilli and lactobacilli-derived liposomes. Biochim. Biophys. Acta Biomembr., 2019, 1861(6), 1069-1077.
[http://dx.doi.org/10.1016/j.bbamem.2019.03.004] [PMID: 30878358]
[116]
Yang, M.; Zhang, C.; Zhang, X.; Zhang, M.Z.; Rottinghaus, G.E.; Zhang, S. Structure-function analysis of Avian β-defensin-6 and β-defensin-12: role of charge and disulfide bridges. BMC Microbiol., 2016, 16(1), 210.
[http://dx.doi.org/10.1186/s12866-016-0828-y] [PMID: 27613063]
[117]
Gou, S.; Li, B.; Ouyang, X.; Ba, Z.; Zhong, C.; Zhang, T.; Chang, L.; Zhu, Y.; Zhang, J.; Zhu, N.; Zhang, Y.; Liu, H.; Ni, J. Novel broad-spectrum antimicrobial peptide derived from anoplin and its activity on bacterial pneumonia in mice. J. Med. Chem., 2021, 64(15), 11247-11266.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00614] [PMID: 34180670]
[118]
Xiao, X.; Zhu, W.; Zhang, Y.; Liao, Z.; Wu, C.; Yang, C.; Zhang, Y.; Xiao, S.; Su, J. Broad-spectrum robust direct bactericidal activity of fish ifnφ1 reveals an antimicrobial peptide-like function for type I IFNS in vertebrates. J. Immunol., 2021, 206(6), 1337-1347.
[http://dx.doi.org/10.4049/jimmunol.2000680] [PMID: 33568398]
[119]
Cho, H.S.; Choi, M.; Lee, Y.; Jeon, H.; Ahn, B.; Soundrarajan, N.; Hong, K.; Kim, J-H.; Park, C. High-Quality nucleic acid isolation from hard-to-lyse bacterial strains using pmap-36, a broad-spectrum antimicrobial peptide. Int. J. Mol. Sci., 2021, 22(8), 4149.
[http://dx.doi.org/10.3390/ijms22084149] [PMID: 33923762]
[120]
Wang, G. Antimicrobial peptides: discovery, design and novel therapeutic strategies; Cabi, 2017.
[http://dx.doi.org/10.1079/9781786390394.0000]
[121]
Wang, G. Improved methods for classification, prediction, and design of antimicrobial peptides. Methods Mol. Biol., 2015, 1268, 43-66.
[http://dx.doi.org/10.1007/978-1-4939-2285-7_3] [PMID: 25555720]
[122]
Adedeji, W.A. The treasure called antibiotics. Ann. Ib. Postgrad. Med., 2016, 14(2), 56-57.
[PMID: 28337088]
[123]
Li, C.; Zhu, C.; Ren, B.; Yin, X.; Shim, S.H.; Gao, Y.; Zhu, J.; Zhao, P.; Liu, C.; Yu, R.; Xia, X.; Zhang, L. Two optimized antimicrobial peptides with therapeutic potential for clinical antibiotic-resistant Staphylococcus aureus. Eur. J. Med. Chem., 2019, 183, 111686.
[http://dx.doi.org/10.1016/j.ejmech.2019.111686] [PMID: 31520928]
[124]
Dhople, V.; Krukemeyer, A.; Ramamoorthy, A. The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim. Biophys. Acta, 2006, 1758(9), 1499-1512.
[http://dx.doi.org/10.1016/j.bbamem.2006.07.007] [PMID: 16978580]
[125]
Harder, J.; Bartels, J.; Christophers, E.; Schroder, J.M. Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem., 2001, 276(8), 5707-5713.
[http://dx.doi.org/10.1074/jbc.M008557200] [PMID: 11085990]
[126]
Albrethsen, J.; Bøgebo, R.; Gammeltoft, S.; Olsen, J.; Winther, B.; Raskov, H. Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study. BMC Cancer, 2005, 5, 8.
[http://dx.doi.org/10.1186/1471-2407-5-8] [PMID: 15656915]
[127]
Philpott, M.P. Defensins and acne. Mol. Immunol., 2003, 40(7), 457-462.
[http://dx.doi.org/10.1016/S0161-5890(03)00154-8] [PMID: 14568392]
[128]
Craddock, R.M.; Huang, J.T.; Jackson, E.; Harris, N.; Torrey, E.F.; Herberth, M.; Bahn, S. Increased alpha-defensins as a blood marker for schizophrenia susceptibility. Mol. Cell. Proteomics, 2008, 7(7), 1204-1213.
[http://dx.doi.org/10.1074/mcp.M700459-MCP200] [PMID: 18349140]
[129]
Field, C.J. The immunological components of human milk and their effect on immune development in infants. J. Nutr., 2005, 135(1), 1-4.
[http://dx.doi.org/10.1093/jn/135.1.1] [PMID: 15623823]
[130]
Gschwandtner, M.; Zhong, S.; Tschachler, A.; Mlitz, V.; Karner, S.; Elbe-Bürger, A.; Mildner, M. Fetal human keratinocytes produce large amounts of antimicrobial peptides: involvement of histone-methylation processes. J. Invest. Dermatol., 2014, 134(8), 2192-2201.
[http://dx.doi.org/10.1038/jid.2014.165] [PMID: 24694903]
[131]
Sibel Akalın, A. Dairy-derived antimicrobial peptides: action mechanisms, pharmaceutical uses and production proposals. Trends Food Sci. Technol., 2014, 36(2), 79-95.
[http://dx.doi.org/10.1016/j.tifs.2014.01.002]
[132]
Gholizadeh, A.; Moradi, B. Cecropins activity against bacterial pathogens. Infect. Dis. Clin. Pract., 2021, 29(1), e6-e12.
[http://dx.doi.org/10.1097/IPC.0000000000000913]
[133]
Chen, J.; Guan, S.M.; Sun, W.; Fu, H. Melittin, the major pain-producing substance of bee venom. Neurosci. Bull., 2016, 32(3), 265-272.
[http://dx.doi.org/10.1007/s12264-016-0024-y] [PMID: 26983715]
[134]
Higashijima, T.; Uzu, S.; Nakajima, T.; Ross, E.M. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J. Biol. Chem., 1988, 263(14), 6491-6494.
[http://dx.doi.org/10.1016/S0021-9258(18)68669-7] [PMID: 3129426]
[135]
Lee, J.Y.; Edlund, T.; Ny, T.; Faye, I.; Boman, H.G. Insect immunity. Isolation of cDNA clones corresponding to attacins and immune protein P4 from Hyalophora cecropia. EMBO J., 1983, 2(4), 577-581.
[http://dx.doi.org/10.1002/j.1460-2075.1983.tb01466.x] [PMID: 6628361]
[136]
Imler, J.L.; Bulet, P. Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem. Immunol. Allergy, 2005, 86, 1-21.
[http://dx.doi.org/10.1159/000086648] [PMID: 15976485]
[137]
Michaut, L.; Fehlbaum, P.; Moniatte, M.; Van Dorsselaer, A.; Reichhart, J.M.; Bulet, P. Determination of the disulfide array of the first inducible antifungal peptide from insects: drosomycin from Drosophila melanogaster. FEBS Lett., 1996, 395(1), 6-10.
[http://dx.doi.org/10.1016/0014-5793(96)00992-1] [PMID: 8849679]
[138]
Hansen, J.N. Nisin as a model food preservative. Crit. Rev. Food Sci. Nutr., 1994, 34(1), 69-93.
[http://dx.doi.org/10.1080/10408399409527650] [PMID: 8142045]
[139]
Palm, J.; Fuchs, K.; Stammer, H.; Schumacher-Stimpfl, A.; Milde, J. Efficacy and safety of a triple active sore throat lozenge in the treatment of patients with acute pharyngitis: results of a multi-centre, randomised, placebo-controlled, double-blind, parallel-group trial (DoriPha). Int. J. Clin. Pract., 2018, 72(12), e13272.
[http://dx.doi.org/10.1111/ijcp.13272] [PMID: 30329199]
[140]
MacNair, C.R.; Stokes, J.M.; Carfrae, L.A.; Fiebig-Comyn, A.A.; Coombes, B.K.; Mulvey, M.R.; Brown, E.D. Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nat. Commun., 2018, 9(1), 458.
[http://dx.doi.org/10.1038/s41467-018-02875-z] [PMID: 29386620]
[141]
Shenkarev, Z.O.; Panteleev, P.V.; Balandin, S.V.; Gizatullina, A.K.; Altukhov, D.A.; Finkina, E.I.; Kokryakov, V.N.; Arseniev, A.S.; Ovchinnikova, T.V. Recombinant expression and solution structure of antimicrobial peptide aurelin from jellyfish Aurelia aurita. Biochem. Biophys. Res. Commun., 2012, 429(1-2), 63-69.
[http://dx.doi.org/10.1016/j.bbrc.2012.10.092] [PMID: 23137541]
[142]
Zhong, J.; Wang, W.; Yang, X.; Yan, X.; Liu, R. A novel cysteine-rich antimicrobial peptide from the mucus of the snail of Achatina fulica. Peptides, 2013, 39, 1-5.
[http://dx.doi.org/10.1016/j.peptides.2012.09.001] [PMID: 23103587]
[143]
Liao, Z.; Wang, X.C.; Liu, H.H.; Fan, M.H.; Sun, J.J.; Shen, W. Molecular characterization of a novel antimicrobial peptide from Mytilus coruscus. Fish Shellfish Immunol., 2013, 34(2), 610-616.
[http://dx.doi.org/10.1016/j.fsi.2012.11.030] [PMID: 23247103]
[144]
Wei, L.; Gao, J.; Zhang, S.; Wu, S.; Xie, Z.; Ling, G.; Kuang, Y-Q.; Yang, Y.; Yu, H.; Wang, Y. Identification and characterization of the first cathelicidin from sea snakes with potent antimicrobial and anti-inflammatory activity and special mechanism. J. Biol. Chem., 2015, 290(27), 16633-16652.
[http://dx.doi.org/10.1074/jbc.M115.642645] [PMID: 26013823]
[145]
Zhang, J.; Yu, L.P.; Li, M.F.; Sun, L. Turbot (Scophthalmus maximus) hepcidin-1 and hepcidin-2 possess antimicrobial activity and promote resistance against bacterial and viral infection. Fish Shellfish Immunol., 2014, 38(1), 127-134.
[http://dx.doi.org/10.1016/j.fsi.2014.03.011] [PMID: 24647314]
[146]
Oppegård, C.; Fimland, G.; Anonsen, J.H.; Nissen-Meyer, J. The pediocin PA-1 accessory protein ensures correct disulfide bond formation in the antimicrobial peptide pediocin PA-1. Biochemistry, 2015, 54(19), 2967-2974.
[http://dx.doi.org/10.1021/acs.biochem.5b00164] [PMID: 25961806]
[147]
Crost, E.H.; Ajandouz, E.H.; Villard, C.; Geraert, P.A.; Puigserver, A.; Fons, M. Ruminococcin C, a new anti-Clostridium perfringens bacteriocin produced in the gut by the commensal bacterium Ruminococcus gnavus E1. Biochimie, 2011, 93(9), 1487-1494.
[http://dx.doi.org/10.1016/j.biochi.2011.05.001] [PMID: 21586310]
[148]
Nagarajan, K.; Marimuthu, S.K.; Palanisamy, S.; Subbiah, L. Therapeutics, peptide therapeutics versus superbugs: highlight on current research and advancements. Int. J. Pept. Res. Ther., 2018, 24(1), 19-33.
[http://dx.doi.org/10.1007/s10989-017-9650-0]
[149]
Roblin, C.; Chiumento, S.; Bornet, O.; Nouailler, M.; Müller, C.S.; Jeannot, K.; Basset, C.; Kieffer-Jaquinod, S.; Couté, Y.; Torelli, S.; Le Pape, L.; Schünemann, V.; Olleik, H.; De La Villeon, B.; Sockeel, P.; Di Pasquale, E.; Nicoletti, C.; Vidal, N.; Poljak, L.; Iranzo, O.; Giardina, T.; Fons, M.; Devillard, E.; Polard, P.; Maresca, M.; Perrier, J.; Atta, M.; Guerlesquin, F.; Lafond, M.; Duarte, V. The unusual structure of Ruminococcin C1 antimicrobial peptide confers clinical properties. Proc. Natl. Acad. Sci. USA, 2020, 117(32), 19168-19177.
[http://dx.doi.org/10.1073/pnas.2004045117] [PMID: 32719135]
[150]
Corey, G.R.; Kabler, H.; Mehra, P.; Gupta, S.; Overcash, J.S.; Porwal, A.; Giordano, P.; Lucasti, C.; Perez, A.; Good, S.; Jiang, H.; Moeck, G.; O’Riordan, W. Single-dose oritavancin in the treatment of acute bacterial skin infections. N. Engl. J. Med., 2014, 370(23), 2180-2190.
[http://dx.doi.org/10.1056/NEJMoa1310422] [PMID: 24897083]
[151]
Field, D.; O’ Connor, R.; Cotter, P.D.; Ross, R.P.; Hill, C. In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms. Front. Microbiol., 2016, 7, 508.
[http://dx.doi.org/10.3389/fmicb.2016.00508] [PMID: 27148197]
[152]
Wassmann, C.S.; Højrup, P.; Klitgaard, J.K. Cannabidiol is an effective helper compound in combination with bacitracin to kill Gram-positive bacteria. Sci. Rep., 2020, 10(1), 4112.
[http://dx.doi.org/10.1038/s41598-020-60952-0] [PMID: 32139776]
[153]
Park, C.B.; Kim, H.S.; Kim, S.C. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun., 1998, 244(1), 253-257.
[http://dx.doi.org/10.1006/bbrc.1998.8159] [PMID: 9514864]
[154]
Budič, M.; Rijavec, M.; Petkovšek, Z.; Žgur-Bertok, D. Escherichia coli bacteriocins: Antimicrobial efficacy and prevalence among isolates from patients with bacteraemia. PLoS One, 2011, 6(12), e28769.
[http://dx.doi.org/10.1371/journal.pone.0028769] [PMID: 22205967]
[155]
Tang, Z.; Deng, H.; Zhang, X.; Zen, Y.; Xiao, D.; Sun, W.; Zhang, Z. Technology, Effects of orally administering the antimicrobial peptide buforin II on small intestinal mucosal membrane integrity, the expression of tight junction proteins and protective factors in weaned piglets challenged by enterotoxigenic Escherichia coli. Anim. Feed Sci. Technol., 2013, 186(3-4), 177-185.
[http://dx.doi.org/10.1016/j.anifeedsci.2013.10.012]
[156]
Browne, K.; Chakraborty, S.; Chen, R.; Willcox, M.D.; Black, D.S.; Walsh, W.R.; Kumar, N. A new era of antibiotics: The clinical potential of antimicrobial peptides. Int. J. Mol. Sci., 2020, 21(19), 7047.
[http://dx.doi.org/10.3390/ijms21197047] [PMID: 32987946]
[157]
Hammami, R.; Fernandez, B.; Lacroix, C.; Fliss, I. Anti-infective properties of bacteriocins: an update. Cell. Mol. Life Sci., 2013, 70(16), 2947-2967.
[http://dx.doi.org/10.1007/s00018-012-1202-3] [PMID: 23109101]
[158]
Hoang, K.V.; Stern, N.J.; Saxton, A.M.; Xu, F.; Zeng, X.; Lin, J. Prevalence, development, and molecular mechanisms of bacteriocin resistance in Campylobacter. Appl. Environ. Microbiol., 2011, 77(7), 2309-2316.
[http://dx.doi.org/10.1128/AEM.02094-10] [PMID: 21278269]
[159]
Nguyen, L.T.; Haney, E.F.; Vogel, H.J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol., 2011, 29(9), 464-472.
[http://dx.doi.org/10.1016/j.tibtech.2011.05.001] [PMID: 21680034]
[160]
Wang, S.; Zeng, X.; Yang, Q.; Qiao, S. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int. J. Mol. Sci., 2016, 17(5), 603.
[http://dx.doi.org/10.3390/ijms17050603] [PMID: 27153059]
[161]
Zhang, L.J.; Gallo, R.L. Antimicrobial peptides. Curr. Biol., 2016, 26(1), R14-R19.
[http://dx.doi.org/10.1016/j.cub.2015.11.017] [PMID: 26766224]
[162]
Brandelli, A. Nanostructures as promising tools for delivery of antimicrobial peptides. Mini Rev. Med. Chem., 2012, 12(8), 731-741.
[http://dx.doi.org/10.2174/138955712801264774] [PMID: 22512554]
[163]
Kang, S-J.; Park, S.J.; Mishig-Ochir, T.; Lee, B-J. Antimicrobial peptides: therapeutic potentials. Expert Rev. Anti Infect. Ther., 2014, 12(12), 1477-1486.
[http://dx.doi.org/10.1586/14787210.2014.976613] [PMID: 25371141]
[164]
Salouti, M.; Mirzaei, F.; Shapouri, R.; Ahangari, A. Synergistic antibacterial activity of plant peptide mbp-1 and silver nanoparticles combination on healing of infected wound due to Staphylococcus aureus. Jundishapur J. Microbiol., 2016, 9(1), e27997.
[http://dx.doi.org/10.5812/jjm.27997] [PMID: 27099683]
[165]
Rajchakit, U.; Sarojini, V. Recent developments in antimicrobial-peptide-conjugated gold nanoparticles. Bioconjug. Chem., 2017, 28(11), 2673-2686.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00368] [PMID: 28892365]
[166]
Coomber, D.; Bartczak, D.; Gerrard, S.R.; Tyas, S.; Kanaras, A.G.; Stulz, E. Programmed assembly of peptide-functionalized gold nanoparticles on DNA templates. Langmuir, 2010, 26(17), 13760-13762.
[http://dx.doi.org/10.1021/la1023554] [PMID: 20672816]
[167]
Hwang, L.; Chen, C-L.; Rosi, N.L. Preparation of 1-D nanoparticle superstructures with tailorable thicknesses using gold-binding peptide conjugates. Chem. Commun. (Camb.), 2011, 47(1), 185-187.
[http://dx.doi.org/10.1039/C0CC02257H] [PMID: 20730234]
[168]
Li, T.; He, X.; Wang, Z. The application of peptide functionalized gold nanoparticles. In: Functional Nanoparticles for Bioanalysis, Nanomedicine, and Bioelectronic Devices; ACS Publication, 2012; Vol. 2, pp. 55-68.
[http://dx.doi.org/10.1021/bk-2012-1113.ch004]
[169]
Zong, J.; Cobb, S.L.; Cameron, N.R. Peptide-functionalized gold nanoparticles: versatile biomaterials for diagnostic and therapeutic applications. Biomater. Sci., 2017, 5(5), 872-886.
[http://dx.doi.org/10.1039/C7BM00006E] [PMID: 28304023]
[170]
Giljohann, D.; Seferos, D.; Daniel, W.; Massich, M.; Patel, P. In vitro selection of structure-switching signaling aptamers. Angew. Chem. Int. Ed., 2010, 49, 3280-3294.
[http://dx.doi.org/10.1002/anie.200904359]
[171]
Pietersen, L.K.; Govender, P.; Kruger, H.G.; Maguire, G.E.; Govender, T. Enzymatic activation of a peptide functionalised gold nanoparticle system for prodrug delivery. J. Nanosci. Nanotechnol., 2011, 11(4), 3075-3083.
[http://dx.doi.org/10.1166/jnn.2011.3600] [PMID: 21776673]
[172]
Krpetić, Z.; Saleemi, S.; Prior, I.A.; Sée, V.; Qureshi, R.; Brust, M. Negotiation of intracellular membrane barriers by TAT-modified gold nanoparticles. ACS Nano, 2011, 5(6), 5195-5201.
[http://dx.doi.org/10.1021/nn201369k] [PMID: 21609028]
[173]
Yang, H.; Fung, S.Y.; Liu, M. Programming the cellular uptake of physiologically stable peptide-gold nanoparticle hybrids with single amino acids. Angew. Chem. Int. Ed. Engl., 2011, 50(41), 9643-9646.
[http://dx.doi.org/10.1002/anie.201102911] [PMID: 21948562]
[174]
Oh, E.; Delehanty, J.B.; Sapsford, K.E.; Susumu, K.; Goswami, R.; Blanco-Canosa, J.B.; Dawson, P.E.; Granek, J.; Shoff, M.; Zhang, Q.; Goering, P.L.; Huston, A.; Medintz, I.L. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano, 2011, 5(8), 6434-6448.
[http://dx.doi.org/10.1021/nn201624c] [PMID: 21774456]
[175]
Lee, S.S.; Kim, B.; Lee, S. Structures and bonding properties of gold–Arg-Cys complexes: DFT study of simple peptide-coated metal. J. Phys. Chem. C, 2014, 118(36), 20840-20847.
[http://dx.doi.org/10.1021/jp412438f]
[176]
Casciaro, B.; Moros, M.; Rivera-Fernández, S.; Bellelli, A.; de la Fuente, J.M.; Mangoni, M.L. Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1-21)NH2 as a reliable strategy for antipseudomonal drugs. Acta Biomater., 2017, 47, 170-181.
[http://dx.doi.org/10.1016/j.actbio.2016.09.041] [PMID: 27693686]
[177]
Pornpattananangkul, D.; Zhang, L.; Olson, S.; Aryal, S.; Obonyo, M.; Vecchio, K.; Huang, C-M.; Zhang, L. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J. Am. Chem. Soc., 2011, 133(11), 4132-4139.
[http://dx.doi.org/10.1021/ja111110e] [PMID: 21344925]
[178]
Yeom, J-H.; Lee, B.; Kim, D.; Lee, J.K.; Kim, S.; Bae, J.; Park, Y.; Lee, K. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar Typhimurium. Biomaterials, 2016, 104, 43-51.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.009] [PMID: 27424215]
[179]
Peng, L-H.; Huang, Y-F.; Zhang, C-Z.; Niu, J.; Chen, Y.; Chu, Y.; Jiang, Z-H.; Gao, J-Q.; Mao, Z-W. Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity. Biomaterials, 2016, 103, 137-149.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.057] [PMID: 27376562]
[180]
Liu, L.; Yang, J.; Xie, J.; Luo, Z.; Jiang, J.; Yang, Y.Y.; Liu, S. The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for gram-positive bacteria over erythrocytes. Nanoscale, 2013, 5(9), 3834-3840.
[http://dx.doi.org/10.1039/c3nr34254a] [PMID: 23525222]
[181]
Golubeva, O.Y.; Shamova, O.; Orlov, D.; Pazina, T.Y.; Boldina, A.; Drozdova, I.; Kokryakov, V. Chemistry, synthesis and study of antimicrobial activity of bioconjugates of silver nanoparticles and endogenous antibiotics. Glass Phys. Chem., 2011, 37(1), 78-84.
[http://dx.doi.org/10.1134/S1087659611010056]
[182]
Mohanty, S.; Jena, P.; Mehta, R.; Pati, R.; Banerjee, B.; Patil, S.; Sonawane, A. Cationic antimicrobial peptides and biogenic silver nanoparticles kill mycobacteria without eliciting DNA damage and cytotoxicity in mouse macrophages. Antimicrob. Agents Chemother., 2013, 57(8), 3688-3698.
[http://dx.doi.org/10.1128/AAC.02475-12] [PMID: 23689720]
[183]
Zhang, T.; Wang, L.; Chen, Q.; Chen, C. Cytotoxic potential of silver nanoparticles. Yonsei Med. J., 2014, 55(2), 283-291.
[http://dx.doi.org/10.3349/ymj.2014.55.2.283] [PMID: 24532494]
[184]
Pal, I.; Brahmkhatri, V.P.; Bera, S.; Bhattacharyya, D.; Quirishi, Y.; Bhunia, A.; Atreya, H.S. Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle. J. Colloid Interface Sci., 2016, 483, 385-393.
[http://dx.doi.org/10.1016/j.jcis.2016.08.043] [PMID: 27585423]
[185]
Pal, I.; Bhattacharyya, D.; Kar, R.K.; Zarena, D.; Bhunia, A.; Atreya, H.S. A peptide-nanoparticle system with improved efficacy against multidrug resistant bacteria. Sci. Rep., 2019, 9(1), 4485.
[http://dx.doi.org/10.1038/s41598-019-41005-7] [PMID: 30872680]
[186]
Mojsoska, B.; Zuckermann, R.N.; Jenssen, H. Structure-activity relationship study of novel peptoids that mimic the structure of antimicrobial peptides. Antimicrob. Agents Chemother., 2015, 59(7), 4112-4120.
[http://dx.doi.org/10.1128/AAC.00237-15] [PMID: 25941221]
[187]
Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), E4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[188]
Brogden, K.A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
[189]
Nazareth, T.M.; Luz, C.; Torrijos, R.; Quiles, J.M.; Luciano, F.B.; Mañes, J.; Meca, G. Potential application of lactic acid bacteria to reduce aflatoxin B(1) and fumonisin B(1) occurrence on corn kernels and corn ears. Toxins (Basel), 2020, 12(1), 21.
[http://dx.doi.org/10.3390/toxins12010021] [PMID: 33396547]
[190]
Mardirossian, M.; Grzela, R.; Giglione, C.; Meinnel, T.; Gennaro, R.; Mergaert, P.; Scocchi, M. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem. Biol., 2014, 21(12), 1639-1647.
[http://dx.doi.org/10.1016/j.chembiol.2014.10.009] [PMID: 25455857]
[191]
Lutkenhaus, J. Regulation of cell division in E. coli. Trends Genet., 1990, 6(1), 22-25.
[http://dx.doi.org/10.1016/0168-9525(90)90045-8] [PMID: 2183414]
[192]
Feng, Z.V.; Gunsolus, I.L.; Qiu, T.A.; Hurley, K.R.; Nyberg, L.H.; Frew, H.; Johnson, K.P.; Vartanian, A.M.; Jacob, L.M.; Lohse, S.E.; Torelli, M.D.; Hamers, R.J.; Murphy, C.J.; Haynes, C.L. Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria. Chem. Sci. (Camb.), 2015, 6(9), 5186-5196.
[http://dx.doi.org/10.1039/C5SC00792E] [PMID: 29449924]
[193]
Li, X.; Robinson, S.M.; Gupta, A.; Saha, K.; Jiang, Z.; Moyano, D.F.; Sahar, A.; Riley, M.A.; Rotello, V.M. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano, 2014, 8(10), 10682-10686.
[http://dx.doi.org/10.1021/nn5042625] [PMID: 25232643]
[194]
Franco-Ulloa, S.; Guarnieri, D.; Riccardi, L.; Pompa, P.P.; De Vivo, M. Association mechanism of peptide-coated metal nanoparticles with model membranes: a coarse-grained study. J. Chem. Theory Comput., 2021, 17(7), 4512-4523.
[http://dx.doi.org/10.1021/acs.jctc.1c00127] [PMID: 34077229]
[195]
Thapa, R.K.; Diep, D.B.; Tønnesen, H.H. Nanomedicine-based antimicrobial peptide delivery for bacterial infections: recent advances and future prospects. Int. J. Pharm. Investig., 2021, 51(4), 377-398.
[http://dx.doi.org/10.1007/s40005-021-00525-z]
[196]
Qayyum, S.; Khan, A.U. Nanoparticles vs. biofilms: a battle against another paradigm of antibiotic resistance. MedChemComm, 2016, 7(8), 1479-1498.
[http://dx.doi.org/10.1039/C6MD00124F]
[197]
Huh, A.J.; Kwon, Y.J. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release, 2011, 156(2), 128-145.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.002] [PMID: 21763369]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy