Review Article

生物标志物和抗癌药物在癌症精准治疗中的重要作用

卷 23, 期 2, 2023

发表于: 16 February, 2022

页: [111 - 126] 页: 16

弟呕挨: 10.2174/1566524022666211221152947

价格: $65

Open Access Journals Promotions 2
摘要

精准医疗是当今最现代的医学方法,它以人们的健康、个人特征和生活环境的大量数据为基础,采用最有效的方法来预防和治疗疾病。癌症精准医疗是根据疾病的基因特征,为每个癌症患者提供最精确和可行的治疗。精准医学改变了标准的 "一刀切 "的用药模式,这种模式关注的是护理的平均反应。整合用于简化和检查抗癌药物的现代方法可能对理解结果产生长期影响。精准医疗可以帮助明确使用各种药物的抗癌治疗,甚至在发现中,从而成为未来癌症医学的范式。癌症生物标志物在精准医疗中意义重大,不同生物标志物的发现使这一领域更有前景,也更具挑战性。当然,遗传不稳定性和恶性生长细胞的额外变化的收集是癌细胞在恶劣环境中适应和生存的方式,例如,由这些治疗方式制造的环境。精准医疗的核心是根据患者的恶性生长和遗传特征,识别个体患者的最佳治疗。这个基因组学的新时代逐渐被称为精准医学,点燃了基因组学和抗癌药物开发之间关系的新篇章。

关键词: 精准医学、癌症生物标志物、抗癌药物、基因组学、恶性肿瘤生长、治疗方式。

Next »
[1]
Hood L, Rowen L. The human genome project: Big science transforms biology and medicine. Genome Med 2013; 5(9): 79.
[http://dx.doi.org/10.1186/gm483] [PMID: 24040834]
[2]
Auffray C, Griffin JL, Khoury MJ, et al. Ten years of genome medicine. Genome Med 2019; 7(2019)
[http://dx.doi.org/10.1186/s13073-019-0618-x]
[3]
Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. Molecular profiling for precision cancer therapies. Genome Med 2020; 12(1): 8.
[http://dx.doi.org/10.1186/s13073-019-0703-1] [PMID: 31937368]
[4]
Vamathevan J, Birney E. A review of recent advances in translational bioinformatics: Bridges from biology to medicine. Yearb Med Inform 2017; 26(1): 178-87.
[http://dx.doi.org/10.15265/IY-2017-017] [PMID: 29063562]
[5]
Iriart JAB. Precision medicine/personalized medicine: A critical analysis of movements in the transformation of biomedicine in the early 21st century. Cad 2019; 35(3)
[6]
Seyhan AA, Carini C. Are innovation and new technologies in precision medicine paving a new era in patients centric care? J Transl Med 2019; 17(1): 114.
[http://dx.doi.org/10.1186/s12967-019-1864-9] [PMID: 30953518]
[7]
Chen R, Snyder M. Promise of personalized omics to precision medicine. Wiley Interdiscip Rev Syst Biol Med 2013; 5(1): 73-82.
[http://dx.doi.org/10.1002/wsbm.1198] [PMID: 23184638]
[8]
Sandhu C, Qureshi A, Emili A. Panomics for precision medicine. Trends Mol Med 2018; 24(1): 85-101.
[http://dx.doi.org/10.1016/j.molmed.2017.11.001] [PMID: 29217119]
[9]
Manzoni C, Kia DA, Vandrovcova J, et al. Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Brief Bioinform 2018; 19(2): 286-302.
[http://dx.doi.org/10.1093/bib/bbw114] [PMID: 27881428]
[10]
Diamandis M, White NMA, Yousef GM. Personalized medicine: Marking a new epoch in cancer patient management. Mol Cancer Res 2010; 8(9): 1175-87.
[http://dx.doi.org/10.1158/1541-7786.MCR-10-0264] [PMID: 20693306]
[11]
Katschnig H. Modern medicine and the one-size-fits-all approach: A clinician’s comment to Alexandra Pârvan’s “Mind Electric” article. J Eval Clin Pract 2018; 24(5): 1079-83.
[http://dx.doi.org/10.1111/jep.13003] [PMID: 30109909]
[12]
Krzyszczyk P, Acevedo A, Davidoff EJ, et al. The growing role of precision and personalized medicine for cancer treatment. Technology (Singap) 2018; 6(3-4): 79-100.
[http://dx.doi.org/10.1142/S2339547818300020] [PMID: 30713991]
[13]
Lahiri C, Pawar S, Mishra R. Precision medicine and future of cancer treatment 2019.http://pcm.amegroups.com/article/view/5167/html
[http://dx.doi.org/10.21037/pcm.2019.09.01]
[14]
Vogenberg FR, Isaacson Barash C, Pursel M. Personalized medicine: part 1: Evolution and development into theranostics. P&T 2010; 35(10): 560-76.
[PMID: 21037908]
[15]
Esplin ED, Oei L, Snyder MP. Personalized sequencing and the future of medicine: Discovery, diagnosis and defeat of disease. Pharmacogenomics 2014; 15(14): 1771-90.
[http://dx.doi.org/10.2217/pgs.14.117] [PMID: 25493570]
[16]
Brooks AK, Gaj T. Innovations in CRISPR technology. Curr Opin Biotechnol 2018; 52: 95-101.
[http://dx.doi.org/10.1016/j.copbio.2018.03.007] [PMID: 29626736]
[17]
Shin SH, Bode AM, Dong Z. Precision medicine: The foundation of future cancer therapeutics. NPJ Precis Oncol 2017; 1(1): 12.
[http://dx.doi.org/10.1038/s41698-017-0016-z] [PMID: 29872700]
[18]
Fernández-Lázaro D, García Hernández JL, García AC, Córdova Martínez A, Mielgo-Ayuso J, Cruz-Hernández JJ. Liquid biopsy as novel tool in precision medicine: Origins, properties, identification and clinical perspective of cancer’s biomarkers. Diagnostics (Basel) 2020; 10(4): 215.
[http://dx.doi.org/10.3390/diagnostics10040215] [PMID: 32294884]
[19]
Taylor D. The pharmaceutical industry and the future of drug development. In: pharmaceuticals in the environment Royal Society of Chemistry. 2015; pp. 1-33.
[http://dx.doi.org/10.1039/9781782622345-00001]
[20]
Schuhmacher A, Gassmann O, Hinder M, Changing R, Changing R&D. models in research-based pharmaceutical companies. J Transl Med 2016; 14(1): 105.
[http://dx.doi.org/10.1186/s12967-016-0838-4] [PMID: 27118048]
[21]
Nelson MR, Tipney H, Painter JL, et al. The support of human genetic evidence for approved drug indications. Nat Genet 2015; 47(8): 856-60.
[http://dx.doi.org/10.1038/ng.3314] [PMID: 26121088]
[22]
Lin JZ, Long JY, Wang AQ, Zheng Y, Zhao HT. Precision medicine: In need of guidance and surveillance. World J Gastroenterol 2017; 23(28): 5045-50.
[http://dx.doi.org/10.3748/wjg.v23.i28.5045] [PMID: 28811702]
[23]
Roden DM, Wilke RA, Kroemer HK, Stein CM. Pharmacogenomics: The genetics of variable drug responses. Circulation 2011; 123(15): 1661-70.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.914820] [PMID: 21502584]
[24]
Borgiani P. Genomic personalized medicine: A dream or a reality? Biomed Prev 2016; 29.
[http://dx.doi.org/10.19252/00000001D]
[25]
Novelli G, Biancolella M, Latini A, Spallone A, Borgiani P, Papaluca M. Precision medicine in non-communicable diseases. High Throughput 2020; 9(1): 3.
[http://dx.doi.org/10.3390/ht9010003] [PMID: 32046063]
[26]
Palleria C, Di Paolo A, Giofrè C, et al. Pharmacokinetic drug-drug interaction and their implication in clinical management. J Res Med Sci 2013; 18(7): 601-10.
[PMID: 24516494]
[27]
Abubakar AR, Chedi BAZ, Mohammed KG, Haque M. Drug interaction and its implication in clinical practiceand personalized medicine. Natl J Physiol Pharm Pharmacol 2015; 5(5): 343-9.
[http://dx.doi.org/10.5455/njppp.2015.5.2005201557]
[28]
National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. (2011). Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. Washington, DC: National Academies Press (US) 2011.
[http://dx.doi.org/10.17226/13284] [PMID: 22536618]
[29]
Ginsburg GS, Phillips KA. Precision medicine: From science to value. Health Aff (Millwood) 2018; 37(5): 694-701.
[http://dx.doi.org/10.1377/hlthaff.2017.1624] [PMID: 29733705]
[30]
McCarthy JJ, McLeod HL, Ginsburg GS. Genomic medicine: A decade of successes, challenges, and opportunities. Sci Transl Med 2013; 5(189): 189sr4.
[http://dx.doi.org/10.1126/scitranslmed.3005785] [PMID: 23761042]
[31]
Krebs K, Milani L. Translating pharmacogenomics into clinical decisions: Do not let the perfect be the enemy of the good. Hum Genomics 2019; 13(1): 39.
[http://dx.doi.org/10.1186/s40246-019-0229-z] [PMID: 31455423]
[32]
Awad K, Dalby M, Cree IA, Challoner BR, Ghosh S, Thurston DE. The precision medicine approach to cancer therapy. Pharm J 2019.
[http://dx.doi.org/10.1211/PJ.2019.20207119]
[33]
Rossi JF, Céballos P, Lu ZY. Immune precision medicine for cancer: A novel insight based on the efficiency of immune effector cells. Cancer Commun (Lond) 2019; 39(1): 34.
[http://dx.doi.org/10.1186/s40880-019-0379-3] [PMID: 31200766]
[34]
Wurcel V, Cicchetti A, Garrison L, et al. The value of diagnostic information in personalised healthcare: A comprehensive concept to facilitate bringing this technology into healthcare systems. Public Health Genomics 2019; 22(1-2): 8-15.
[http://dx.doi.org/10.1159/000501832] [PMID: 31330522]
[35]
Kingsmore SF, Lindquist IE, Mudge J, Gessler DD, Beavis WD. Genome-wide association studies: Progress and potential for drug discovery and development. Nat Rev Drug Discov 2008; 7(3): 221-30.
[http://dx.doi.org/10.1038/nrd2519] [PMID: 18274536]
[36]
Lopes MC, Zeggini E, Panoutsopoulou K. Do genome-wide association scans have potential for translation? Clin Chem Lab Med 2011; 50(2): 255-60.
[http://dx.doi.org/10.1515/CCLM.2011.748] [PMID: 22022988]
[37]
Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: From polygenic to omnigenic. Cell 2017; 169(7): 1177-86.
[http://dx.doi.org/10.1016/j.cell.2017.05.038] [PMID: 28622505]
[38]
Ramaswami R, Bayer R, Galea S. Precision medicine from a public health perspective. Annu Rev Public Health 2018; 39: 153-68.
[http://dx.doi.org/10.1146/annurev-publhealth-040617-014158] [PMID: 29166244]
[39]
Osler W. Aequanimitas: With Other Addresses to Medical Students, Nurses and Practitioners of Medicine- Chauvinism in Medicine. London: HK Lewis 1902; p. 281.
[40]
Tim Hulsen T, Jamuar SS, Moody AR, Karnes JH, Varga O, Hedensted S. From big data to precision medicine. Front Med 2019; 6.
[http://dx.doi.org/10.3389/fmed.2019.00034]
[41]
Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015; 372(9): 793-5.
[http://dx.doi.org/10.1056/NEJMp1500523] [PMID: 25635347]
[42]
Phillips KA, Trosman JR, Kelley RK, Pletcher MJ, Douglas MP, Weldon CB. Genomic sequencing: Assessing the health care system, policy, and big-data implications. Health Aff (Millwood) 2014; 33(7): 1246-53.
[http://dx.doi.org/10.1377/hlthaff.2014.0020] [PMID: 25006153]
[43]
Plenge RM, Scolnick EM, Altshuler D. Validating therapeutic targets through human genetics. Nat Rev Drug Discov 2013; 12(8): 581-94.
[http://dx.doi.org/10.1038/nrd4051] [PMID: 23868113]
[44]
Kamb A, Harper S, Stefansson K. Human genetics as a foundation for innovative drug development. Nat Biotechnol 2013; 31(11): 975-8.
[http://dx.doi.org/10.1038/nbt.2732] [PMID: 24213769]
[45]
Eisenstein M. Amgen and regeneron push for a genetic renaissance in drug discovery. Nat Biotechnol 2014; 32(3): 208-9.
[http://dx.doi.org/10.1038/nbt0314-208] [PMID: 24727759]
[47]
Krier JB, Kalia SS, Green RC. Genomic sequencing in clinical practice: Applications, challenges, and opportunities. Dialogues Clin Neurosci 2016; 18(3): 299-312.
[http://dx.doi.org/10.31887/DCNS.2016.18.3/jkrier] [PMID: 27757064]
[48]
Dash S, Shakyawar SK, Sharma M, et al. Big data in healthcare: Management, analysis and future prospects. J Big Data 2019; 6: 54.
[http://dx.doi.org/10.1186/s40537-019-0217-0]
[49]
Kulynych J, Greely HT. Clinical genomics, big data, and electronic medical records: Reconciling patient rights with research when privacy and science collide. J Law Biosci 2017; 4(1): 94-132.
[http://dx.doi.org/10.1093/jlb/lsw061] [PMID: 28852559]
[50]
Horton RH, Lucassen AM. Recent developments in genetic/genomic medicine. Clin Sci (Lond) 2019; 133(5): 697-708.
[http://dx.doi.org/10.1042/CS20180436] [PMID: 30837331]
[51]
Blum BC, Mousavi F, Emili A. Single-platform ‘multi-omic’ profiling: Unified mass spectrometry and computational workflows for integrative proteomics-metabolomics analysis. Mol Omics 2018; 14(5): 307-19.
[http://dx.doi.org/10.1039/C8MO00136G] [PMID: 30211418]
[52]
Gorbach SL. Microbiology of the Gastrointestinal Tract Medical Microbiology. (4th ed.), Galveston, TX: University of Texas Medical Branch at Galveston 1996.https://www.ncbi.nlm.nih.gov/books/NBK7670/
[53]
Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 2016; 14(1): 20-32.
[http://dx.doi.org/10.1038/nrmicro3552] [PMID: 26499895]
[54]
Zhang XD. Precision medicine, personalized medicine, omics and big data: Concepts and relationships. Pharmacogenom Pharmacoproteom 2015; 6(14): 2153-0645.
[55]
Vucic EA, Thu KL, Robison K, et al. Translating cancer ‘omics’ to improved outcomes. Genome Res 2012; 22(2): 188-95.
[http://dx.doi.org/10.1101/gr.124354.111] [PMID: 22301133]
[56]
Parsons J, Francavilla C. Omics approaches to explore the breast cancer landscape. Front Cell Dev Biol 2020; 7: 395.
[http://dx.doi.org/10.3389/fcell.2019.00395] [PMID: 32039208]
[57]
Yankeelov TE, An G, Saut O, et al. Multi-scale modeling in clinical oncology: Opportunities and barriers to success. Ann Biomed Eng 2016; 44(9): 2626-41.
[http://dx.doi.org/10.1007/s10439-016-1691-6] [PMID: 27384942]
[58]
Jean-Quartier C, Jeanquartier F, Jurisica I, Holzinger A. In silico cancer research towards 3R. BMC Cancer 2018; 18(1): 408.
[http://dx.doi.org/10.1186/s12885-018-4302-0] [PMID: 29649981]
[59]
Längst G, Manelyte L. Chromatin remodelers: From function to dysfunction. Genes (Basel) 2015; 6(2): 299-324.
[http://dx.doi.org/10.3390/genes6020299] [PMID: 26075616]
[60]
Kadoch C, Copeland RA, Keilhack H. PRC2 and SWI/SNF chromatin remodeling complexes in health and disease. Biochemistry 2016; 55(11): 1600-14.
[http://dx.doi.org/10.1021/acs.biochem.5b01191] [PMID: 26836503]
[61]
Fabbri M. MicroRNAs and cancer: Towards a personalized medicine. Curr Mol Med 2013; 13(5): 751-6.
[http://dx.doi.org/10.2174/1566524011313050006] [PMID: 23642056]
[62]
Chakravarthi BV, Nepal S, Varambally S. Genomic and epigenomic alterations in cancer. Am J Pathol 2016; 186(7): 1724-35.
[http://dx.doi.org/10.1016/j.ajpath.2016.02.023] [PMID: 27338107]
[63]
Xu T, Lin CM, Cheng SQ, et al. Pathological bases and clinical impact of long noncoding RNAs in prostate cancer: A new budding star. Mol Cancer 2018; 17(1): 103.
[http://dx.doi.org/10.1186/s12943-018-0852-7] [PMID: 30037351]
[64]
Fang Y, Zhang C, Wu T, Wang Q, Liu J, Dai P. Transcriptome sequencing reveals key pathways and genes associated with cisplatin resistance in lung adenocarcinoma A549 cells. PLoS One 2017; 12(1): e0170609.
[http://dx.doi.org/10.1371/journal.pone.0170609] [PMID: 28114404]
[65]
Men X, Ma J, Wu T, et al. Transcriptome profiling identified differentially expressed genes and pathways associated with tamoxifen resistance in human breast cancer. Oncotarget 2017; 9(3): 4074-89.
[http://dx.doi.org/10.18632/oncotarget.23694] [PMID: 29423105]
[66]
Ikeda S, Elkin SK, Tomson BN, Carter JL, Kurzrock R. Next-generation sequencing of prostate cancer: Genomic and pathway alterations, potential actionability patterns, and relative rate of use of clinical-grade testing. Cancer Biol Ther 2019; 20(2): 219-26.
[http://dx.doi.org/10.1080/15384047.2018.1523849] [PMID: 30339521]
[67]
McGranahan N, Favero F, de Bruin EC, Birkbak NJ, Szallasi Z, Swanton C. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci Transl Med 2015; 7(283): 283ra54.
[http://dx.doi.org/10.1126/scitranslmed.aaa1408] [PMID: 25877892]
[68]
Breccia M, Efficace F, Alimena G. Imatinib treatment in chronic myelogenous leukemia: What have we learned so far? Cancer Lett 2011; 300(2): 115-21.
[http://dx.doi.org/10.1016/j.canlet.2010.10.018] [PMID: 21074936]
[69]
Din OS, Woll PJ. Treatment of gastrointestinal stromal tumor: Focus on imatinib mesylate. Ther Clin Risk Manag 2008; 4(1): 149-62.
[http://dx.doi.org/10.2147/tcrm.s1526] [PMID: 18728705]
[70]
Worley S. Knowledge of Tumors’ molecular diversity is opening new pathways to treatment lung cancer research is taking on new challenges. P&T 2014; 39(10): 698-703.
[PMID: 25336866]
[71]
Le AD, Alzghari SK, Jean GW, La-Beck NM. Update on targeted therapies for advanced non-small cell lung cancer: Nivolumab in context. Ther Clin Risk Manag 2017; 13: 223-36.
[http://dx.doi.org/10.2147/TCRM.S104343] [PMID: 28260909]
[72]
Dugger SA, Platt A, Goldstein DB. Drug development in the era of precision medicine. Nat Rev Drug Discov 2018; 17(3): 183-96.
[http://dx.doi.org/10.1038/nrd.2017.226] [PMID: 29217837]
[73]
Stegmeier F, Warmuth M, Sellers WR, Dorsch M. Targeted cancer therapies in the twenty-first century: Lessons from imatinib. Clin Pharmacol Ther 2010; 87(5): 543-52.
[http://dx.doi.org/10.1038/clpt.2009.297] [PMID: 20237469]
[74]
Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344(11): 783-92.
[http://dx.doi.org/10.1056/NEJM200103153441101] [PMID: 11248153]
[75]
Tewari KS, Eskander RN, Monk BJ. Development of olaparib for BRCA-deficient recurrent epithelial ovarian cancer. Clin Cancer Res 2015; 21(17): 3829-35.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0088] [PMID: 26169965]
[76]
Yver A. Osimertinib (AZD9291)-a science-driven, collaborative approach to rapid drug design and development. Ann Oncol 2016; 27(6): 1165-70.
[http://dx.doi.org/10.1093/annonc/mdw129] [PMID: 26961148]
[77]
Manolio TA, Abramowicz M, Al-Mulla F, et al. Global implementation of genomic medicine: We are not alone. Sci Transl Med 2015; 7(290): 290ps13.
[http://dx.doi.org/10.1126/scitranslmed.aab0194] [PMID: 26041702]
[78]
Jackson SE, Chester JD. Personalised cancer medicine. Int J Cancer 2015; 137(2): 262-6.
[http://dx.doi.org/10.1002/ijc.28940] [PMID: 24789362]
[79]
Morash M, Mitchell H, Beltran H, Elemento O, Pathak J. The role of next-generation sequencing in precision medicine: A review of outcomes in oncology. J Pers Med 2018; 8(3): 30.
[http://dx.doi.org/10.3390/jpm8030030] [PMID: 30227640]
[80]
Dzau VJ, Ginsburg GS. Realizing the full potential of precision medicine in health and health care. JAMA 2016; 316(16): 1659-60.
[http://dx.doi.org/10.1001/jama.2016.14117] [PMID: 27669484]
[81]
Heald B, Edelman E, Eng C. Prospective comparison of family medical history with personal genome screening for risk assessment of common cancers. Eur J Hum Genet 2012; 20(5): 547-51.
[http://dx.doi.org/10.1038/ejhg.2011.224] [PMID: 22215421]
[82]
Marteau TM, Senior V, Humphries SE, Bobrow M, Cranston T. Psychological impact of genetic testing for familial hypercholesterolemia within a previously aware population: A randomized controlled trial. Am J Med Genet 2004; 128A(3): 285-93.
[http://dx.doi.org/10.1002/ajmg.a.30102] [PMID: 15216550]
[83]
Jameson JL, Longo DL. Precision medicine-personalized, problematic, and promising. N Engl J Med 2015; 372(23): 2229-34.
[http://dx.doi.org/10.1056/NEJMsb1503104] [PMID: 26014593]
[84]
Abrams J, Conley B, Mooney M, et al. National cancer institute’s precision medicine initiatives for the new national clinical trials network. Am Soc Clin Oncol Educ Book 2014; 34: 71-6.
[http://dx.doi.org/10.14694/EdBook_AM.2014.34.71] [PMID: 24857062]
[85]
Biankin AV, Piantadosi S, Hollingsworth SJ. Patient-centric trials for therapeutic development in precision oncology. Nature 2015; 526(7573): 361-70.
[http://dx.doi.org/10.1038/nature15819] [PMID: 26469047]
[86]
Redig AJ, Jänne PA. Basket trials and the evolution of clinical trial design in an era of genomic medicine. J Clin Oncol 2015; 33(9): 975-7.
[http://dx.doi.org/10.1200/JCO.2014.59.8433] [PMID: 25667288]
[87]
Robert C, Karaszewska B, Schachter J, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 2015; 372(1): 30-9.
[http://dx.doi.org/10.1056/NEJMoa1412690] [PMID: 25399551]
[88]
Renfro LA, Sargent DJ. Statistical controversies in clinical research: Basket trials, umbrella trials, and other master protocols: A review and examples. Ann Oncol 2017; 28(1): 34-43.
[http://dx.doi.org/10.1093/annonc/mdw413] [PMID: 28177494]
[89]
Bates SE. Clinical applications of serum tumor markers. Ann Intern Med 1991; 115(8): 623-38.
[http://dx.doi.org/10.7326/0003-4819-115-8-623] [PMID: 1716430]
[90]
Wick W, Meisner C, Hentschel B, et al. Prognostic or predictive value of MGMT promoter methylation in gliomas depends on IDH1 mutation. Neurology 2013; 81(17): 1515-22.
[http://dx.doi.org/10.1212/WNL.0b013e3182a95680] [PMID: 24068788]
[91]
de Albuquerque A, Kubisch I, Stölzel U, et al. Prognostic and predictive value of circulating tumor cell analysis in colorectal cancer patients. J Transl Med 2012; 10: 222.
[http://dx.doi.org/10.1186/1479-5876-10-222] [PMID: 23146106]
[92]
Kulasingam V, Pavlou MP, Diamandis EP. Integrating high-throughput technologies in the quest for effective biomarkers for ovarian cancer. Nat Rev Cancer 2010; 10(5): 371-8.
[http://dx.doi.org/10.1038/nrc2831] [PMID: 20383179]
[93]
Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 2005; 5(11): 845-56.
[http://dx.doi.org/10.1038/nrc1739] [PMID: 16239904]
[94]
Bax C, Lotesoriere BJ, Sironi S, Capelli L. Review and comparison of cancer biomarker trends in urine as a basis for new diagnostic pathways. Cancers (Basel) 2019; 11(9): 1244.
[http://dx.doi.org/10.3390/cancers11091244] [PMID: 31450698]
[95]
Wu L, Qu X. Cancer biomarker detection: Recent achievements and challenges. Chem Soc Rev 2015; 44(10): 2963-97.
[http://dx.doi.org/10.1039/C4CS00370E] [PMID: 25739971]
[96]
Chirita-Emandi A, Andreescu N, Zimbru CG, et al. Challenges in reporting pathogenic/potentially pathogenic variants in 94 cancer predisposing genes - in pediatric patients screened with NGS panels. Sci Rep 2020; 10(1): 223.
[http://dx.doi.org/10.1038/s41598-019-57080-9] [PMID: 31937788]
[97]
Nussinov R, Jang H, Tsai CJ, Cheng F. Correction: Review: Precision medicine and driver mutations: Computational methods, functional assays and conformational principles for interpreting cancer drivers. PLOS Comput Biol 2019; 15(6): e1007114.
[http://dx.doi.org/10.1371/journal.pcbi.1007114] [PMID: 31188819]
[98]
Sachdev JC, Sandoval AC, Jahanzeb M. Update on precision medicine in breast cancer. Cancer Treat Res 2019; 178: 45-80.
[http://dx.doi.org/10.1007/978-3-030-16391-4_2] [PMID: 31209841]
[99]
Naito Y, Urasaki T. Precision medicine in breast cancer. Chin Clin Oncol 2018; 7(3): 29.
[http://dx.doi.org/10.21037/cco.2018.06.04] [PMID: 30056731]
[100]
Harris EER. Precision medicine for breast cancer: The paths to truly individualized diagnosis and treatment. Int J Breast Cancer 2018; 2018: 4809183.
[http://dx.doi.org/10.1155/2018/4809183] [PMID: 29862084]
[101]
Dowsett M, Houghton J, Iden C, et al. Benefit from adjuvant tamoxifen therapy in primary breast cancer patients according oestrogen receptor, progesterone receptor, EGF receptor and HER2 status. Ann Oncol 2006; 17(5): 818-26.
[http://dx.doi.org/10.1093/annonc/mdl016] [PMID: 16497822]
[102]
Morgan DA, Refalo NA, Cheung KL. Strength of ER-positivity in relation to survival in ER-positive breast cancer treated by adjuvant tamoxifen as sole systemic therapy. Breast 2011; 20(3): 215-9.
[http://dx.doi.org/10.1016/j.breast.2010.11.004] [PMID: 21159509]
[103]
James CR, Quinn JE, Mullan PB, Johnston PG, Harkin DP. BRCA1, a potential predictive biomarker in the treatment of breast cancer. Oncologist 2007; 12(2): 142-50.
[http://dx.doi.org/10.1634/theoncologist.12-2-142] [PMID: 17296808]
[104]
Mass RD, Press MF, Anderson S, et al. Evaluation of clinical outcomes according to HER2 detection by fluorescence in situ hybridization in women with metastatic breast cancer treated with trastuzumab. Clin Breast Cancer 2005; 6(3): 240-6.
[http://dx.doi.org/10.3816/CBC.2005.n.026] [PMID: 16137435]
[105]
Grell P, Fabian P, Khoylou M, et al. Akt expression and compartmentalization in prediction of clinical outcome in HER2-positive metastatic breast cancer patients treated with trastuzumab. Int J Oncol 2012; 41(4): 1204-12.
[http://dx.doi.org/10.3892/ijo.2012.1576] [PMID: 22842582]
[106]
Capoun O, Soukup V, Mikulová V, et al. Circulating tumor cells and prostate cancer prognosis. Cas Lek Cesk 2014; 153(2): 72-7.
[PMID: 24797777]
[107]
Gu Z, Thomas G, Yamashiro J, et al. Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene 2000; 19(10): 1288-96.
[http://dx.doi.org/10.1038/sj.onc.1203426] [PMID: 10713670]
[108]
Kamel H, Nassir A. Conventional and promising biomarkers for prostate cancer their clinical implication and prospective role. J Mol Biomark Diagn 2015; 7: 2-6.
[109]
Kamel HFM, Al-Amodi HSAB. Exploitation of gene expression and cancer biomarkers in paving the path to era of personalized medicine. Genomics Proteomics Bioinformatics 2017; 15(4): 220-35.
[http://dx.doi.org/10.1016/j.gpb.2016.11.005] [PMID: 28813639]
[110]
Huo YR, Huang Y, Liauw W, Zhao J, Morris DL. Prognostic value of carcinoembryonic antigen (CEA), AFP, CA19-9 and CA125 for patients with colorectal cancer with peritoneal carcinomatosis treated by cytoreductive surgery and intraperitoneal chemotherapy. Anticancer Res 2016; 36(3): 1041-9.
[PMID: 26976996]
[111]
Wang J, Wang X, Yu F, et al. Combined detection of preoperative serum CEA, CA19-9 and CA242 improve prognostic prediction of surgically treated colorectal cancer patients. Int J Clin Exp Pathol 2015; 8(11): 14853-63.
[PMID: 26823815]
[112]
Dawood S, Sirohi B, Shrikhande SV, Toh HC, Eng C. Potential prognostic impact of baseline CEA level and surgery of primary tumor among patients with synchronous stage IV colorectal cancer: A large population based study. Indian J Surg Oncol 2015; 6(3): 198-206.
[http://dx.doi.org/10.1007/s13193-015-0419-7] [PMID: 27217664]
[113]
Custodio A, Feliu J. Prognostic and predictive biomarkers for epidermal growth factor receptor-targeted therapy in colorectal cancer: Beyond KRAS mutations. Crit Rev Oncol Hematol 2013; 85(1): 45-81.
[http://dx.doi.org/10.1016/j.critrevonc.2012.05.001] [PMID: 22647972]
[114]
Tsao MS, Aviel-Ronen S, Ding K, et al. Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer. J Clin Oncol 2007; 25(33): 5240-7.
[http://dx.doi.org/10.1200/JCO.2007.12.6953] [PMID: 18024870]
[115]
Pan W, Yang Y, Zhu H, Zhang Y, Zhou R, Sun X. KRAS mutation is a weak, but valid predictor for poor prognosis and treatment outcomes in NSCLC: A meta-analysis of 41 studies. Oncotarget 2016; 7(7): 8373-88.
[http://dx.doi.org/10.18632/oncotarget.7080] [PMID: 26840022]
[116]
Zheng Z, Chen T, Li X, Haura E, Sharma A, Bepler G. DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. N Engl J Med 2007; 356(8): 800-8.
[http://dx.doi.org/10.1056/NEJMoa065411] [PMID: 17314339]
[117]
Mascaux C, Iannino N, Martin B, et al. The role of RAS oncogene in survival of patients with lung cancer: A systematic review of the literature with meta-analysis. Br J Cancer 2005; 92(1): 131-9.
[http://dx.doi.org/10.1038/sj.bjc.6602258] [PMID: 15597105]
[118]
Nathanson KL, Wooster R, Weber BL. Breast cancer genetics: What we know and what we need. Nat Med 2001; 7(5): 552-6.
[http://dx.doi.org/10.1038/87876] [PMID: 11329055]
[119]
Lima ZS, Ghadamzadeh M, Arashloo FT, Amjad G, Ebadi MR, Younesi L. Recent advances of therapeutic targets based on the molecular signature in breast cancer: Genetic mutations and implications for current treatment paradigms. J Hematol Oncol 2019; 12(1): 38.
[http://dx.doi.org/10.1186/s13045-019-0725-6] [PMID: 30975222]
[120]
Khanna KK. Cancer risk and the ATM gene: A continuing debate. J Natl Cancer Inst 2000; 92(10): 795-802.
[http://dx.doi.org/10.1093/jnci/92.10.795] [PMID: 10814674]
[121]
Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cancer review 2002; 108(2): 171-82.
[http://dx.doi.org/10.1016/S0092-8674(02)00615-3]
[122]
Plawski A, Banasiewicz T, Borun P, et al. Familial adenomatous polyposis of the colon. Hered Cancer Clin Pract 2013; 11(1): 15.
[http://dx.doi.org/10.1186/1897-4287-11-15] [PMID: 24148210]
[123]
Leoz ML, Carballal S, Moreira L, Ocaña T, Balaguer F. The genetic basis of familial adenomatous polyposis and its implications for clinical practice and risk management. Appl Clin Genet 2015; 8: 95-107.
[http://dx.doi.org/10.2147/TACG.S51484] [PMID: 25931827]
[124]
Half E, Bercovich D, Rozen P. Familial adenomatous polyposis. Orphanet J Rare Dis 2009; 4: 22.
[http://dx.doi.org/10.1186/1750-1172-4-22] [PMID: 19822006]
[125]
Wuerstlein R, Kates R, Gluz O, et al. Strong impact of mammaprint and blueprint on treatment decisions in luminal early breast cancer: Results of the WSG-PRIMe study. Breast Cancer Res Treat 2019; 175(2): 389-99.
[http://dx.doi.org/10.1007/s10549-018-05075-x] [PMID: 30796651]
[126]
Soliman H, Shah V, Srkalovic G, et al. MammaPrint guides treatment decisions in breast Cancer: Results of the IMPACt trial. BMC Cancer 2020; 20(1): 81.
[http://dx.doi.org/10.1186/s12885-020-6534-z] [PMID: 32005181]
[127]
Blank PR, Moch H, Szucs TD, Schwenkglenks M. KRAS and BRAF mutation analysis in metastatic colorectal cancer: A cost-effectiveness analysis from a Swiss perspective. Clin Cancer Res 2011; 17(19): 6338-46.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2267] [PMID: 21807639]
[128]
Rako I, Jakić-Razumović J, Caban D, et al. The role of KRAS gene mutation testing in colorectal cancer--a predictive biomarker of response to EGFR inhibitors therapy. Lijec Vjesn 2011; 133(11-12): 403-7.
[PMID: 22329297]
[129]
Luo HY, Xu RH. Predictive and prognostic biomarkers with therapeutic targets in advanced colorectal cancer. World J Gastroenterol 2014; 20(14): 3858-74.
[http://dx.doi.org/10.3748/wjg.v20.i14.3858] [PMID: 24744578]
[130]
da Silva WC, de Araujo VE, Lima EMEA, et al. Comparative effectiveness and safety of monoclonal antibodies (bevacizumab, cetuximab, and panitumumab) in combination with chemotherapy for metastatic colorectal cancer: A systematic review and meta-analysis. BioDrugs 2018; 32(6): 585-606.
[http://dx.doi.org/10.1007/s40259-018-0322-1] [PMID: 30499082]
[131]
Françoso A, Simioni PU. Immunotherapy for the treatment of colorectal tumors: Focus on approved and in-clinical-trial monoclonal antibodies. Drug Des Devel Ther 2017; 11: 177-84.
[http://dx.doi.org/10.2147/DDDT.S119036] [PMID: 28138221]
[132]
García-Foncillas J, Sunakawa Y, Aderka D, et al. Distinguishing features of cetuximab and panitumumab in colorectal cancer and other solid tumors. Front Oncol 2019; 9: 849.
[http://dx.doi.org/10.3389/fonc.2019.00849] [PMID: 31616627]
[133]
Lewandowska MA. Jóźwicki W, Żurawski B. KRAS and BRAF mutation analysis in colorectal adenocarcinoma specimens with a low percentage of tumor cells. Mol Diagn Ther 2013; 17(3): 193-203.
[http://dx.doi.org/10.1007/s40291-013-0025-8] [PMID: 23606169]
[134]
Yokota T. Are KRAS/BRAF mutations potent prognostic and/or predictive biomarkers in colorectal cancers? Anticancer Agents Med Chem 2012; 12(2): 163-71.
[http://dx.doi.org/10.2174/187152012799014968] [PMID: 22043994]
[135]
Gong J, Cho M, Fakih M. RAS and BRAF in metastatic colorectal cancer management. J Gastrointest Oncol 2016; 7(5): 687-704.
[http://dx.doi.org/10.21037/jgo.2016.06.12] [PMID: 27747083]
[136]
Vaezi A, Feldman CH, Niedernhofer LJ. ERCC1 and XRCC1 as biomarkers for lung and head and neck cancer. Pharm Genomics Pers Med 2011; 4: 47-63.
[http://dx.doi.org/10.2147/PGPM.S20317] [PMID: 23226053]
[137]
Vegter MW. Towards precision medicine; A new biomedical cosmology. Med Health Care Philos 2018; 21(4): 443-56.
[http://dx.doi.org/10.1007/s11019-018-9828-z] [PMID: 29429062]
[138]
Delhalle S, Bode SF, Balling R, et al. A roadmap towards personalized immunology. NPJ Syst Biol Appl 2018; 4: 9.
[139]
Agustí A, Bafadhel M, Beasley R, et al. Precision medicine in airway diseases: Moving to clinical practice. Eur Respir J 2017; 50(4): 1701655.
[http://dx.doi.org/10.1183/13993003.01655-2017] [PMID: 29051276]
[140]
Kasztura M, Richard A, Bempong NE, Loncar D, Flahault A. Cost-effectiveness of precision medicine: A scoping review. Int J Public Health 2019; 64(9): 1261-71.
[http://dx.doi.org/10.1007/s00038-019-01298-x] [PMID: 31650223]
[141]
Arruebo M, Vilaboa N, Sáez-Gutierrez B, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel) 2011; 3(3): 3279-330.
[http://dx.doi.org/10.3390/cancers3033279] [PMID: 24212956]
[142]
Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol 2019; 12(1): 134.
[http://dx.doi.org/10.1186/s13045-019-0818-2] [PMID: 31815659]
[143]
Huang CY, Ju DT, Chang CF, Muralidhar Reddy P, Velmurugan BK. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine (Taipei) 2017; 7(4): 23.
[http://dx.doi.org/10.1051/bmdcn/2017070423] [PMID: 29130448]
[144]
Yao Y, Dai W. Genomic instability and cancer. J Carcinog Mutagen 2014; 5: 1000165.
[http://dx.doi.org/10.4172/2157-2518.1000165] [PMID: 25541596]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy