Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Pharmacological Importance of Peach Gum Polysaccharide: A Review

Author(s): Ken Yang Goh and Lai Ti Gew*

Volume 18, Issue 6, 2022

Published on: 11 April, 2022

Article ID: e161221199072 Pages: 8

DOI: 10.2174/1573407218666211216110231

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Peach gum is a natural gum exudate secreted from a peach tree (Prunus persica) by a process known as physiological gummosis. Peach gum is a natural biopolymer that is composed of acidic polysaccharides with a high percentage of arabinose and galactose subunit, which classifies it as an arabinogalactan.

Objective: This review summarizes the composition, chemical structures, physical properties and biological properties of peach gum, and its potential biotechnological applications.

Methods: A literature search was performed using Google Scholar with keywords as Peach Gum and Prunus persica. Only articles written in English and articles with downloadable full-texts were included in this review.

Results: Peach gum polysaccharides possess antibacterial, antioxidant and anti-diabetic, and hypolipidemic properties. Excellent emulsification properties of PGP show that it has the potential to be employed as a food-grade emulsifier.

Conclusion: PGP exhibits excellent emulsification, antioxidant, antibacterial, anti-diabetic and hypolipidemic properties. As plastic pollution has become an alarming global issue, PGP could be a promising edible raw material in the field of bioplastic research and development.

Keywords: Bioplastics, biopolymer, carbohydrate, food chemistry, polysaccharide, Prunus persica, traditional Chinese medicine.

Graphical Abstract
[1]
Simas-Tosin, F.F.; Barraza, R.R.; Petkowicz, C.L.O.; Silveira, J.L.M.; Sassaki, G.L.; Santos, E.M.R.; Gorin, P.A.J.; Iacomini, M. Rheological and structural characteristics of peach tree gum exudate. Food Hydrocoll., 2010, 24, 486-493.
[http://dx.doi.org/10.1016/j.foodhyd.2009.12.010]
[2]
Yao, X.C.; Chang, C.F.; Wu, S.J. Effect of peach gum polysaccharides on quality changes of white shrimp. Int. J. Biol. Macromol., 2015, 72, 1076-1080.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.024] [PMID: 25450827]
[3]
Yao, X.C.; Cao, Y.; Pan, S.K.; Wu, S.J. Preparation of peach gum polysaccharides using hydrogen peroxide. Carbohydr. Polym., 2013, 94(1), 88-90.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.048] [PMID: 23544514]
[4]
Yang, H.; Wang, D.; Deng, J.; Yang, J.; Shi, C.; Zhou, F.; Shi, Z. Activity and structural characteristics of peach gum exudates. Int. J. Polym. Sci., 2018, 2018, 1-5.
[http://dx.doi.org/10.1155/2018/4593735]
[5]
Hamzah, Z.; Ibrahim, N.H.; Sarojini, J.; Hussin, K.; Hashim, O.; Lee, B.B. Nutritional properties of edible bird nest. J. Asian Sci. Res., 2013, 3, 600-607.
[6]
Lin, Y.; Chen, Z.; Yu, C.; Zhong, W. Heteroatom-doped sheet- like and hierarchical porous carbon based on natural biomass small molecule peach gum for high-performance supercapacitors. ACS Sustain. Chem. Eng., 2019, 7(3), 3389-3403.
[http://dx.doi.org/10.1021/acssuschemeng.8b05593]
[7]
Simas, F.F.; Gorin, P.A.J.; Wagner, R.; Sassaki, G.L.; Bonkerner, A.; Iacomini, M. Comparison of structure of gum exudate polysaccharides from the trunk and fruit of the peach tree (Prunus persica). Carbohydr. Polym., 2008, 71, 218-228.
[http://dx.doi.org/10.1016/j.carbpol.2007.05.032]
[8]
Yao, X.C.; Cao, Y.; Wu, S.J. Antioxidant activity and antibacterial activity of peach gum derived oligosaccharides. Int. J. Biol. Macromol., 2013, 62, 1-3.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.08.022] [PMID: 23973489]
[9]
Wei, C.; Zhang, Y.; Zhang, H.; Li, J.; Tao, W.; Linhardt, R.J.; Chen, S.; Ye, X. Physicochemical properties and conformations of water-soluble peach gums via different preparation methods. Food Hydrocoll., 2019, 95, 571-579.
[http://dx.doi.org/10.1016/j.foodhyd.2018.03.049]
[10]
Wei, C.; Zhang, Y.; He, L.; Cheng, J.; Li, J.; Tao, W.; Mao, G.; Zhang, H.; Linhardt, R.J.; Ye, X.; Chen, S. Structural characterization and anti-proliferative activities of partially degraded polysaccharides from peach gum. Carbohydr. Polym., 2019, 203, 193-202.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.029] [PMID: 30318204]
[11]
Wang, Y.; Lin, D.; Wang, X.; Zhu, W.; Ye, J.; Li, G.; Ma, Z.; Deng, X. The impact of a novel peach gum-derived polysaccharide on postprandial blood glucose control in streptozotocin-induced diabetic mice. Int. J. Biol. Macromol., 2017, 98, 379-386.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.085] [PMID: 28115227]
[12]
Li, C.; Tao, J.; Zhang, H. Peach gum polysaccharides-based edible coatings extend shelf life of cherry tomatoes. 3 Biotech, 2017, 7, 3-7.
[13]
Qian, H.F.; Cui, S.W.; Wang, Q.; Wang, C.; Zhou, H.M. Fractionation and physicochemical characterization of peach gum polysaccharides. Food Hydrocoll., 2011, 25, 1285-1290.
[http://dx.doi.org/10.1016/j.foodhyd.2010.09.027]
[14]
Simas-Tosin, F.F.; Wagner, R.; Santos, E.M.R.; Sassaki, G.L.; Gorin, P.A.J.; Iacomini, M. Polysaccharide of nectarine gum exudate: Comparison with that of peach gum. Carbohydr. Polym., 2009, 76, 485-487.
[http://dx.doi.org/10.1016/j.carbpol.2008.11.013]
[15]
Delgobo, C.L.; Gorin, P.A.; Jones, C.; Iacomini, M. Gum heteropolysaccharide and free reducing mono- and oligosaccharides of Anadenanthera colubrina. Phytochemistry, 1998, 47(7), 1207-1214.
[http://dx.doi.org/10.1016/S0031-9422(97)00776-0] [PMID: 9611824]
[16]
Menestrina, J.M.; Iacomini, M.; Jones, C.; Gorin, P.A. Similarity of monosaccharide, oligosaccharide and polysaccharide structures in gum exudate of Anacardium occidentale. Phytochemistry, 1998, 47(5), 715-721.
[http://dx.doi.org/10.1016/S0031-9422(97)00666-3] [PMID: 9542167]
[17]
Aspinall, G.O.; Whitehead, C.C. Mesquite gum. I. The 4-O-methylglucuronogalactan core. Can. J. Chem., 1970, 48, 3840-3849.
[http://dx.doi.org/10.1139/v70-647]
[18]
Aspinall, G.O.; Whitehead, C.C. Mesquite gum. II. The arabinan peripheral chains. Can. J. Chem., 1970, 48, 3850-3855.
[http://dx.doi.org/10.1139/v70-648]
[19]
De Paula, R.C.M.; Santana, S.A.; Rodrigues, J.F. Composition and rheological properties of Albizia lebbeck gum exudate. Carbohydr. Polym., 2001, 44, 133-139.
[http://dx.doi.org/10.1016/S0144-8617(00)00213-7]
[20]
Martínez, M.; Sanabria, L.; de Pinto, G.L.; Igartuburu, J.M. 1D-and 2D-NMR spectroscopy studies of the polysaccharide gum from Spondias purpurea var. lutea. Food Hydrocoll., 2005, 19, 37-43.
[http://dx.doi.org/10.1016/j.foodhyd.2003.09.007]
[21]
Lim, M.W.; Aroua, M.K.; Gew, L.T. Thanaka (H. crenulata, N. crenulata, L. acidissima L.): A systematic review of its chemical, biological properties and cosmeceutical applications. Cosmetics, 2021, 8, 68.
[http://dx.doi.org/10.3390/cosmetics8030068]
[22]
Mills, P.L.; Kokini, J.L. Comparison of steady shear and dynamic viscoelastic properties of guar and karaya gums. J. Food Sci., 1984, 49, 1-4.
[http://dx.doi.org/10.1111/j.1365-2621.1984.tb13654.x]
[23]
Mothé, C.; Rao, M. Rheological behavior of aqueous dispersions of cashew gum and gum arabic: Effect of concentration and blending. Food Hydrocoll., 1999, 13, 501-506.
[http://dx.doi.org/10.1016/S0268-005X(99)00035-1]
[24]
Mohammadifar, M.A.; Musavi, S.M.; Kiumarsi, A.; Williams, P.A. Solution properties of targacanthin (water-soluble part of gum tragacanth exudate from Astragalus gossypinus). Int. J. Biol. Macromol., 2006, 38(1), 31-39.
[http://dx.doi.org/10.1016/j.ijbiomac.2005.12.015] [PMID: 16469374]
[25]
Rincón, F.; Muñoz, J.; de Pinto, G.L.; Alfaro, M.C.; Calero, N. Rheological properties of Cedrela odorata gum exudate aqueous dispersions. Food Hydrocoll., 2009, 23, 1031-1037.
[http://dx.doi.org/10.1016/j.foodhyd.2008.08.006]
[26]
Ross-Murphy, S.B.; Morris, V.J.; Morris, E.R. Molecular viscoelasticity of xanthan polysaccharide. Faraday Symp. Chem. Soc., 1983, 18, 115-129.
[http://dx.doi.org/10.1039/fs9831800115]
[27]
Rinaudo, M. Relation between the molecular structure of some polysaccharides and original properties in sol and gel states. Food Hydrocoll., 2001, 15, 433-440.
[http://dx.doi.org/10.1016/S0268-005X(01)00041-8]
[28]
Morris, E.R.; Foster, T.J. Role of conformation in synergistic interactions of xanthan. Carbohydr. Polym., 1994, 23, 133-135.
[http://dx.doi.org/10.1016/0144-8617(94)90038-8]
[29]
Zhou, L.; Huang, J.; He, B.; Zhang, F.; Li, H. Peach gum for efficient removal of methylene blue and methyl violet dyes from aqueous solution. Carbohydr. Polym., 2014, 101, 574-581.
[http://dx.doi.org/10.1016/j.carbpol.2013.09.093] [PMID: 24299813]
[30]
Ndjouenkeu, R.; Goycoolea, F.M.; Morrisa, E.R.; Akingbala, J.O. Rheology of okra (Hibiscus esculentus L.) and dika nut (Irvingia gabonensis) polysaccharides. Carbohydr. Polym., 1996, 29, 263-269.
[http://dx.doi.org/10.1016/0144-8617(96)00016-1]
[31]
Alberghina, G.; Bianchini, R.; Fichera, M.; Fisichella, S. Dimerization of Cibacron Blue F3GA and other dyes: Influence of salts and temperature. Dyes Pigments, 2000, 46, 129-137.
[http://dx.doi.org/10.1016/S0143-7208(00)00045-0]
[32]
Huang, J.; Zhou, L. Peach gum polysaccharide polyelectrolyte: Preparation, properties and application in layer-by-layer self-assembly. Carbohydr. Polym., 2014, 113, 373-379.
[http://dx.doi.org/10.1016/j.carbpol.2014.07.030] [PMID: 25256497]
[33]
Huang, B.; Lu, M.; Wang, D.; Song, Y.; Zhou, L. Versatile magnetic gel from peach gum polysaccharide for efficient adsorption of Pb2+ and Cd2+ ions and catalysis. Carbohydr. Polym., 2018, 181, 785-792.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.077] [PMID: 29254037]
[34]
Phillips, G.O. Giving Nature a Helping Hand.Gums and Stabilisers for the Food Industry 14; The Royal Society of Chemistry, 2008, pp. 3-26.
[35]
Lorenzo, G.; Zaritzky, N.; Califano, A. Modeling rheological properties of low-in-fat o/w emulsions stabilized with xanthan/guar mixtures. Food Res. Int., 2008, 41, 487-494.
[http://dx.doi.org/10.1016/j.foodres.2008.02.005]
[36]
Garti, N.; Madar, Z.; Aserin, A.; Sternheim, B. Fenugreek galactomannans as food emulsifiers. Lebensm. Wiss. Technol., 1997, 30, 305-311.
[http://dx.doi.org/10.1006/fstl.1996.0179]
[37]
Dickinson, E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll., 2003, 17, 25-39.
[http://dx.doi.org/10.1016/S0268-005X(01)00120-5]
[38]
Brummer, Y.; Cui, W.; Wang, Q. Extraction, purification and physicochemical characterization of fenugreek gum. Food Hydrocoll., 2003, 17, 229-236.
[http://dx.doi.org/10.1016/S0268-005X(02)00054-1]
[39]
Du, Y.; Zhao, Y.; Dai, S.; Yang, B. Preparation of water-soluble chitosan from shrimp shell and its antibacterial activity. Innov. Food Sci. Emerg. Technol., 2009, 10, 103-107.
[http://dx.doi.org/10.1016/j.ifset.2008.07.004]
[40]
Saud, R.; Pokhrel, S.; Yadav, P.M. Synthesis, characterization and antimicrobial activity of maltol functionalized chitosan derivatives. J. Macromolecular Sci. Part A, 2019, 56, 375-383.
[http://dx.doi.org/10.1080/10601325.2019.1578616]
[41]
Yadav, M.K.; Pokhrel, S.; Yadav, P.N. Novel chitosan derivatives of 2-imidazolecarboxaldehyde and 2-thiophenecarboxaldehyde and their antibacterial activity. J. Macromolecular Sci. Part A, 2020, 57, 703-710.
[http://dx.doi.org/10.1080/10601325.2020.1763809]
[42]
Wu, S.; Lu, M.; Wang, S. Hypoglycaemic and hypolipidaemic properties of peach gum polysaccharides. 3 Biotech, 2017, 7, 1-5.
[43]
Zhang, T.; Gao, J.; Jin, Z.Y.; Xu, X.M.; Chen, H.Q. Protective effects of polysaccharides from Lilium lancifolium on streptozotocin-induced diabetic mice. Int. J. Biol. Macromol., 2014, 65, 436-440.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.063] [PMID: 24508917]
[44]
Pan, L.H.; Li, X.F.; Wang, M.N.; Zha, X.Q.; Yang, X.F.; Liu, Z.J.; Luo, Y.B.; Luo, J.P. Comparison of hypoglycemic and antioxidative effects of polysaccharides from four different Dendrobium species. Int. J. Biol. Macromol., 2014, 64, 420-427.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.12.024] [PMID: 24370475]
[45]
Sun, C.; Chen, Y.; Li, X.; Tai, G.; Fan, Y.; Zhou, Y. Anti-hyperglycemic and anti-oxidative activities of ginseng polysaccharides in STZ-induced diabetic mice. Food Funct., 2014, 5(5), 845-848.
[http://dx.doi.org/10.1039/c3fo60326a] [PMID: 24671219]
[46]
Kadan, S.; Saad, B.; Sasson, Y.; Zaid, H. In vitro evaluation of anti-diabetic activity and cytotoxicity of chemically analysed Ocimum basilicum extracts. Food Chem., 2016, 196, 1066-1074.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.044] [PMID: 26593590]
[47]
Remya, R.R.; Rajasree, S.R.R.; Aranganathan, L.; Suman, T.Y. An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnol. Rep. (Amst.), 2015, 8, 110-115.
[http://dx.doi.org/10.1016/j.btre.2015.10.004] [PMID: 28352579]
[48]
Williams, P.A.; Phillips, G.O. Gum arabic, 2nd ed; Handb. Hydrocoll, 2009, pp. 252-273.
[49]
Mirghani, M.E.S.; Elnour, A.A.M.; Kabbashi, N.A.; Alam, M.Z.; Musa, K.H.; Abdullah, A. Determination of antioxidant activity of gum Arabic: An exudation from two different locations. Sci. Asia, 2018, 44, 179-186.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2018.44.179]
[50]
Al Alawi, S.M.; Hossain, M.A.; Abusham, A.A. Antimicrobial and cytotoxic comparative study of different extracts of Omani and Sudanese Gum acacia. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7, 22-26.
[http://dx.doi.org/10.1016/j.bjbas.2017.10.007]
[51]
Devi, P.R.; Kumar, C.S.; Selvamani, P.; Subramanian, N.; Ruckmani, K. Synthesis and characterization of Arabic gum capped gold nanoparticles for tumor-targeted drug delivery. Mater. Lett., 2015, 139, 241-244.
[http://dx.doi.org/10.1016/j.matlet.2014.10.010]
[52]
Sarika, P.R.; Nirmala, R.J. Curcumin loaded gum arabic aldehyde-gelatin nanogels for breast cancer therapy. Mater. Sci. Eng. C, 2016, 65, 331-337.
[http://dx.doi.org/10.1016/j.msec.2016.04.044] [PMID: 27157759]
[53]
Bisht, S.; Kant, R.; Kumar, V. α-D-Glucosidase inhibitory activity of polysaccharide isolated from Acacia tortilis gum exudate. Int. J. Biol. Macromol., 2013, 59, 214-220.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.057] [PMID: 23624164]
[54]
Yang, N.; Wei, X.F.; Li, H. Sunlight irradiation induced green synthesis of silver nanoparticles using peach gum polysaccharide and colorimetric sensing of H2O2. Mater. Lett., 2015, 154, 21-24.
[http://dx.doi.org/10.1016/j.matlet.2015.03.034]
[55]
Liao, J.; Cheng, Z.; Zhou, L. Nitrogen-doping enhanced fluorescent carbon dots: green synthesis and their applications for bioimaging and label-free detection of Au3+ ions. ACS Sustain. Chem. Eng., 2016, 4, 3053-3061.
[http://dx.doi.org/10.1021/acssuschemeng.6b00018]
[56]
Ma, Y.; Chen, M.; Zheng, X.; Yu, D.; Dong, X. Synergetic effect of swelling and chemical blowing to develop peach gum derived nitrogen-doped porous carbon nanosheets for symmetric supercapacitors. J. Taiwan Inst. Chem. Eng., 2019, 101, 24-30.
[http://dx.doi.org/10.1016/j.jtice.2019.04.031]
[57]
Xie, Y.L.; Zhou, H.M.; Qian, H.F. Effect of addition of peach gum of physicochemical properties of gleatin-based microcapsule. J. Food Biochem., 2006, 30, 302-312.
[http://dx.doi.org/10.1111/j.1745-4514.2006.00061.x]
[58]
Li, C.; Wang, X.; Meng, D.; Zhou, L. Facile synthesis of low-cost magnetic biosorbent from peach gum polysaccharide for selective and efficient removal of cationic dyes. Int. J. Biol. Macromol, 2018, 107(Pt B), 1871-1878.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.058] [PMID: 29032084]
[59]
Tan, J.; Song, Y.; Huang, X.; Zhou, L. Facile functionalization of natural peach gum polysaccharide with multiple amine groups for highly efficient removal of toxic hexavalent chromium (Cr(VI)) ions from water. ACS Omega, 2018, 3(12), 17309-17318.
[http://dx.doi.org/10.1021/acsomega.8b02599] [PMID: 31458342]
[60]
Song, Y.; Tan, J.; Wang, G.; Zhou, L. Superior amine-rich gel adsorbent from peach gum polysaccharide for highly efficient removal of anionic dyes. Carbohydr. Polym., 2018, 199, 178-185.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.010] [PMID: 30143118]
[61]
Zhu, K.; Yu, D.; Chen, X.; Song, G. Preparation, characterization and controlled-release property of Fe3+ cross-linked hydrogels based on peach gum polysaccharide. Food Hydrocoll., 2019, 87, 260-269.
[http://dx.doi.org/10.1016/j.foodhyd.2018.08.019]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy