Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Indazole and its Derivatives in Cardiovascular Diseases: Overview, Current Scenario, and Future Perspectives

Author(s): Shravan Kumar Uppulapu, Md. Jahangir Alam, Santosh Kumar and Sanjay Kumar Banerjee*

Volume 22, Issue 14, 2022

Published on: 21 January, 2022

Page: [1177 - 1188] Pages: 12

DOI: 10.2174/1568026621666211214151534

Price: $65

conference banner
Abstract

Indazoles are a class of heterocyclic compounds with a bicyclic ring structure composed of a pyrazole ring and a benzene ring. Indazole-containing compounds with various functional groups have important pharmacological activities and can be used as structural motifs in designing novel drug molecules. Some of the indazole-containing molecules are approved by FDA and are already in the market. However, very few drugs with indazole rings have been developed against cardiovascular diseases. This review aims to summarize the structural and pharmacological functions of indazole derivatives which have shown efficacy against cardiovascular pathologies in experimental settings.

Keywords: Indazole derivatives, Cardiovascular diseases, Molecular mechanism, Cardiomyopathy, Drug discovery, N. sativa.

Graphical Abstract
[1]
Teixeira, F.C.; Ramos, H.; Antunes, I.F.; Curto, M.J.M.; Duarte, M.T.; Bento, I. Synthesis and structural characterization of 1- and 2-substituted indazoles: ester and carboxylic acid derivatives. Molecules, 2006, 11(11), 867-889.
[http://dx.doi.org/10.3390/11110867] [PMID: 18007393]
[2]
Steffan, R.J.; Matelan, E.; Ashwell, M.A.; Moore, W.J.; Solvibile, W.R.; Trybulski, E.; Chadwick, C.C.; Chippari, S.; Kenney, T.; Eckert, A.; Borges-Marcucci, L.; Keith, J.C.; Xu, Z.; Mosyak, L.; Harnish, D.C. Synthesis and activity of substituted 4-(indazol-3-yl)phenols as pathway-selective estrogen receptor ligands useful in the treatment of rheumatoid arthritis. J. Med. Chem., 2004, 47(26), 6435-6438.
[http://dx.doi.org/10.1021/jm049194+] [PMID: 15588074]
[3]
Giannouli, V.; Kostakis, I.K.; Pouli, N.; Marakos, P.; Kousidou, O.Ch.; Tzanakakis, G.N.; Karamanos, N.K. Design, synthesis, and evaluation of the antiproliferative activity of a series of novel fused xanthenone aminoderivatives in human breast cancer cells. J. Med. Chem., 2007, 50(7), 1716-1719.
[http://dx.doi.org/10.1021/jm061410m] [PMID: 17335189]
[4]
Sikorski, J.A. Oral cholesteryl ester transfer protein (CETP) inhibitors: a potential new approach for treating coronary artery disease. J. Med. Chem., 2006, 49(1), 1-22.
[http://dx.doi.org/10.1021/jm058224l] [PMID: 16392785]
[5]
Leroy, V.; Lee, G.E.; Lin, J.; Herman, S.H.; Lee, T.B. Facile preparation of 3-(1-piperazinyl)-1H-indazoles. Org. Process Res. Dev., 2001, 5(2), 179-183.
[http://dx.doi.org/10.1021/op0002242]
[6]
Schwan, T.J.; Honkomp, L.J.; Davis, C.S.; Lougheed, G.S. Synthesis and hypotensive activity of a series of 2-substituted 5,6-dimethoxyindazoles. J. Pharm. Sci., 1978, 67(7), 1022-1024.
[http://dx.doi.org/10.1002/jps.2600670742] [PMID: 660493]
[7]
Kym, P.R.; Iyengar, R.; Souers, A.J.; Lynch, J.K.; Judd, A.S.; Gao, J.; Freeman, J.; Mulhern, M.; Zhao, G.; Vasudevan, A.; Wodka, D.; Blackburn, C.; Brown, J.; Che, J.L.; Cullis, C.; Lai, S.J.; LaMarche, M.J.; Marsilje, T.; Roses, J.; Sells, T.; Geddes, B.; Govek, E.; Patane, M.; Fry, D.; Dayton, B.D.; Brodjian, S.; Falls, D.; Brune, M.; Bush, E.; Shapiro, R.; Knourek-Segel, V.; Fey, T.; McDowell, C.; Reinhart, G.A.; Preusser, L.C.; Marsh, K.; Hernandez, L.; Sham, H.L.; Collins, C.A. Discovery and characterization of aminopiperidinecoumarin melanin concentrating hormone receptor 1 antagonists. J. Med. Chem., 2005, 48(19), 5888-5891.
[http://dx.doi.org/10.1021/jm050598r] [PMID: 16161992]
[8]
Duan, J-X.; Cai, X.; Meng, F.; Lan, L.; Hart, C.; Matteucci, M. Potent antitubulin tumor cell cytotoxins based on 3-aroyl indazoles. J. Med. Chem., 2007, 50(5), 1001-1006.
[http://dx.doi.org/10.1021/jm061348t] [PMID: 17286393]
[9]
Wyrick, S.D.; Voorstad, P.J.; Cocolas, G.; Hall, I.H. Hypolipidemic activity of phthalimide derivatives. 7. Structure-activity studies of indazolone analogues. J. Med. Chem., 1984, 27(6), 768-772.
[http://dx.doi.org/10.1021/jm00372a011] [PMID: 6737419]
[10]
Arán, V.J.; Ochoa, C.; Boiani, L.; Buccino, P.; Cerecetto, H.; Gerpe, A.; González, M.; Montero, D.; Nogal, J.J.; Gómez-Barrio, A.; Azqueta, A.; López de Ceráin, A.; Piro, O.E.; Castellano, E.E. Synthesis and biological properties of new 5-nitroindazole derivatives. Bioorg. Med. Chem., 2005, 13(9), 3197-3207.
[http://dx.doi.org/10.1016/j.bmc.2005.02.043] [PMID: 15809155]
[11]
Badawey, E-S.A.; El-Ashmawey, I.M. Nonsteroidal antiinflammatory agents-part 1: antiinflammatory, analgesic and antipyretic activity of some new 1-(pyrimidin-2-yl)-3-pyrazolin-5-ones and 2-(pyrimidin-2-yl)-1, 2, 4, 5, 6, 7-hexahydro-3h-indazol-3-ones. Eur. J. Med. Chem., 1998, 33(5), 349-361.
[http://dx.doi.org/10.1016/S0223-5234(98)80002-0]
[12]
El-Hawash, S.A.; Badawey, S.A.; El-Ashmawey, I.M. Nonsteroidal antiinflammatory agents-part 2 antiinflammatory, analgesic and antipyretic activity of some substituted 3-pyrazolin-5-ones and 1,2,4,5,6,7-3H-hexahydroindazol-3-ones. Eur. J. Med. Chem., 2006, 41(2), 155-165.
[http://dx.doi.org/10.1016/j.ejmech.2005.09.006] [PMID: 16375992]
[13]
Onifade, A.A.; Jewell, A.P.; Adedeji, W.A. Nigella sativa concoction induced sustained seroreversion in HIV patient. Afr. J. Tradit. Complement. Altern. Med., 2013, 10(5), 332-335.
[http://dx.doi.org/10.4314/ajtcam.v10i5.18] [PMID: 24311845]
[14]
Bakathir, H.A.; Abbas, N.A. Detection of the antibacterial effect of Nigella sativa ground seeds with water. Afr. J. Tradit. Complement. Altern. Med., 2011, 8(2), 159-164.
[http://dx.doi.org/10.4314/ajtcam.v8i2.63203] [PMID: 22238497]
[15]
Gaikwad, D.D.; Chapolikar, A.D.; Devkate, C.G.; Warad, K.D.; Tayade, A.P.; Pawar, R.P.; Domb, A.J. Synthesis of indazole motifs and their medicinal importance: An overview. Eur. J. Med. Chem., 2015, 90, 707-731.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.029] [PMID: 25506810]
[16]
Mitsubishi Tanabe Pharma Corporation. An expanded controlled study of MCI-186 for treatment of amyotrophic lateral sclerosis in double-blind, parallel-group, placebo-controlled manner (phase 3) clinical trial registration NCT0042446, 2018.
[17]
Khare, C.P. Encyclopedia of Indian Medicinal Plants: Rational Western Therapy, Ayurvedic and Other Traditional Usage, Botany; Springer, 2004.
[18]
Maiti, S.; Banerjee, A.; Nazmeen, A.; Kanwar, M.; Das, S. Active-site Molecular docking of Nigellidine with nucleocapsid- NSP2-MPro of COVID-19 and to human IL1R-IL6R and strong antioxidant role of Nigella-sativa in experimental rats. J. Drug Target., 2020, 1-23.
[http://dx.doi.org/10.1080/1061186X.2020.1817040] [PMID: 32875925]
[19]
Radl, S. 12.10 - Bicyclic Systems with Two Bridgehead (Ring Junction) Nitrogen Atoms. In: Comprehensive Heterocyclic Chemistry III; Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V.; Taylor, R.J.K., Eds.; Elsevier: Oxford, 2008; pp. 365-479.
[http://dx.doi.org/10.1016/B978-008044992-0.01110-X]
[20]
Salem, E.M.; Yar, T.; Bamosa, A.O.; Al-Quorain, A.; Yasawy, M.I.; Alsulaiman, R.M.; Randhawa, M.A. Comparative study of Nigella Sativa and triple therapy in eradication of Helicobacter Pylori in patients with non-ulcer dyspepsia. Saudi J. Gastroenterol., 2010, 16(3), 207-214.
[http://dx.doi.org/10.4103/1319-3767.65201] [PMID: 20616418]
[21]
Yuan, T.; Nahar, P.; Sharma, M.; Liu, K.; Slitt, A.; Aisa, H.A.; Seeram, N.P. Indazole-type alkaloids from Nigella sativa seeds exhibit antihyperglycemic effects via AMPK activation in vitro. J. Nat. Prod., 2014, 77(10), 2316-2320.
[http://dx.doi.org/10.1021/np500398m] [PMID: 25299458]
[22]
Hashimoto, M.; Takada, Y.; Takeuchi, Y.; Kasahara, J.; Hisa, H.; Shirasaki, Y.; Fukunaga, K. Cytoprotective effect of 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate (DY-9760e) against ischemia/reperfusion-induced injury in rat heart involves inhibition of fodrin breakdown and protein tyrosine nitration. J. Pharmacol. Sci., 2005, 98(2), 142-150.
[http://dx.doi.org/10.1254/jphs.FP0040551] [PMID: 15937403]
[23]
Das, D.K.; Engelman, R.M.; Prasad, M.R.; Rousou, J.A.; Breyer, R.H.; Jones, R.; Young, H.; Cordis, G.A. Improvement of ischemia-reperfusion-induced myocardial dysfunction by modulating calcium-overload using a novel, specific calmodulin antagonist, CGS 9343B. Biochem. Pharmacol., 1989, 38(3), 465-471.
[http://dx.doi.org/10.1016/0006-2952(89)90386-9] [PMID: 2917008]
[24]
Schulman, H.; Anderson, M.E. Ca/Calmodulin-dependent Protein Kinase II in Heart Failure. Drug Discov. Today Dis. Mech., 2010, 7(2), e117-e122.
[http://dx.doi.org/10.1016/j.ddmec.2010.07.005] [PMID: 21503275]
[25]
Derbala, M.H.; Guo, A.S.; Mohler, P.J.; Smith, S.A. The role of βII spectrin in cardiac health and disease. Life Sci., 2018, 192, 278-285.
[http://dx.doi.org/10.1016/j.lfs.2017.11.009] [PMID: 29128512]
[26]
Moore, J.D.; Rothwell, N.J.; Gibson, R.M. Involvement of caspases and calpains in cerebrocortical neuronal cell death is stimulus-dependent. Br. J. Pharmacol., 2002, 135(4), 1069-1077.
[http://dx.doi.org/10.1038/sj.bjp.0704538] [PMID: 11861336]
[27]
Sugimura, M.; Sato, T.; Nakayama, W.; Morishima, Y.; Fukunaga, K.; Omitsu, M.; Miyamoto, E.; Shirasaki, Y. DY-9760e, a novel calmodulin antagonist with cytoprotective action. Eur. J. Pharmacol., 1997, 336(1), 99-106.
[http://dx.doi.org/10.1016/S0014-2999(97)01251-X] [PMID: 9384259]
[28]
Takagi, K.; Sato, T.; Shirasaki, Y.; Narita, K.; Tamura, A.; Sano, K. Post-ischemic administration of DY-9760e, a novel calmodulin antagonist, reduced infarct volume in the permanent focal ischemia model of spontaneously hypertensive rat. Neurol. Res., 2001, 23(6), 662-668.
[http://dx.doi.org/10.1179/016164101101198992] [PMID: 11547940]
[29]
Houang, E.M.; Sham, Y.Y.; Bates, F.S.; Metzger, J.M. Muscle membrane integrity in Duchenne muscular dystrophy: Recent advances in copolymer-based muscle membrane stabilizers. Skelet. Muscle, 2018, 8(1), 31.
[http://dx.doi.org/10.1186/s13395-018-0177-7] [PMID: 30305165]
[30]
Campos, E.C.; O’Connell, J.L.; Malvestio, L.M.; Romano, M.M.D.; Ramos, S.G.; Celes, M.R.N.; Prado, C.M.; Simões, M.V.; Rossi, M.A. Calpain-mediated dystrophin disruption may be a potential structural culprit behind chronic doxorubicin-induced cardiomyopathy. Eur. J. Pharmacol., 2011, 670(2-3), 541-553.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.021] [PMID: 21946105]
[31]
Han, F.; Lu, Y-M.; Hasegawa, H.; Kanai, H.; Hachimura, E.; Shirasaki, Y.; Fukunaga, K. Inhibition of dystrophin breakdown and endothelial nitric-oxide synthase uncoupling accounts for cytoprotection by 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl] ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate (DY-9760e) in left ventricular hypertrophied Mice. J. Pharmacol. Exp. Ther., 2010, 332(2), 421-428.
[http://dx.doi.org/10.1124/jpet.109.161646] [PMID: 19889795]
[32]
Fukunaga, K.; Han, F.; Shioda, N.; Moriguchi, S.; Kasahara, J.; Shirasaki, Y. DY-9760e, a novel calmodulin inhibitor, exhibits cardioprotective effects in the ischemic heart. Cardiovasc. Drug Rev., 2006, 24(2), 88-100.
[http://dx.doi.org/10.1111/j.1527-3466.2006.00088.x] [PMID: 16961723]
[33]
Lu, Y-M.; Shioda, N.; Han, F.; Kamata, A.; Shirasaki, Y.; Qin, Z-H.; Fukunaga, K. DY-9760e inhibits endothelin-1-induced cardiomyocyte hypertrophy through inhibition of CaMKII and ERK activities. Cardiovasc. Ther., 2009, 27(1), 17-27.
[http://dx.doi.org/10.1111/j.1755-5922.2008.00068.x] [PMID: 19207476]
[34]
Lu, Y-M.; Han, F.; Shioda, N.; Moriguchi, S.; Shirasaki, Y.; Qin, Z-H.; Fukunaga, K. Phenylephrine-induced cardiomyocyte injury is triggered by superoxide generation through uncoupled endothelial nitric-oxide synthase and ameliorated by 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxyindazole (DY-9836), a novel calmodulin antagonist. Mol. Pharmacol., 2009, 75(1), 101-112.
[http://dx.doi.org/10.1124/mol.108.050716] [PMID: 18952768]
[35]
Yeo, E-J.; Chun, Y-S.; Cho, Y-S.; Kim, J.; Lee, J-C.; Kim, M-S.; Park, J-W. YC-1: A potential anticancer drug targeting hypoxia-inducible factor 1. J. Natl. Cancer Inst., 2003, 95(7), 516-525.
[http://dx.doi.org/10.1093/jnci/95.7.516] [PMID: 12671019]
[36]
Pfizer. An open-label rollover study of arry-371797 in patients with symptomatic genetic dilated cardiomyopathy due to a lamin a/c gene mutation. Clinical trial registration: NCT02351856, 2021.
[37]
Pfizer. a phase 3, multinational, randomized, placebo-controlled study of arry-371797 (pf-07265803) in patients with symptomatic dilated cardiomyopathy due to a lamin a/c gene mutation. Clinical trial registration NCT03439514, 2021.
[38]
Muchir, A.; Wu, W.; Choi, J.C.; Iwata, S.; Morrow, J.; Homma, S.; Worman, H.J. Abnormal p38α mitogen-activated protein kinase signaling in dilated cardiomyopathy caused by lamin A/C gene mutation. Hum. Mol. Genet., 2012, 21(19), 4325-4333.
[http://dx.doi.org/10.1093/hmg/dds265] [PMID: 22773734]
[39]
De Angelis, M.; Stossi, F.; Carlson, K.A.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A. Indazole estrogens: Highly selective ligands for the estrogen receptor β. J. Med. Chem., 2005, 48(4), 1132-1144.
[http://dx.doi.org/10.1021/jm049223g] [PMID: 15715479]
[40]
Lusis, A.J. Atherosclerosis. Nature, 2000, 407(6801), 233-241.
[http://dx.doi.org/10.1038/35025203] [PMID: 11001066]
[41]
Chistiakov, D.A.; Orekhov, A.N.; Bobryshev, Y.V. Vascular smooth muscle cell in atherosclerosis. Acta Physiol. (Oxf.), 2015, 214(1), 33-50.
[http://dx.doi.org/10.1111/apha.12466] [PMID: 25677529]
[42]
Basatemur, G.L.; Jørgensen, H.F.; Clarke, M.C.H.; Bennett, M.R.; Mallat, Z. Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol., 2019, 16(12), 727-744.
[http://dx.doi.org/10.1038/s41569-019-0227-9] [PMID: 31243391]
[43]
Harris, H.A.; Albert, L.M.; Leathurby, Y.; Malamas, M.S.; Mewshaw, R.E.; Miller, C.P.; Kharode, Y.P.; Marzolf, J.; Komm, B.S.; Winneker, R.C.; Frail, D.E.; Henderson, R.A.; Zhu, Y.; Keith, J.C., Jr Evaluation of an estrogen receptor-beta agonist in animal models of human disease. Endocrinology, 2003, 144(10), 4241-4249.
[http://dx.doi.org/10.1210/en.2003-0550] [PMID: 14500559]
[44]
Park, C.; Park, J.; Shim, M.K.; Rhyu, M-R.; Yoon, B-K.; Kim, K.S.; Lee, Y. Indazole-Cl inhibits hypoxia-induced cyclooxygenase-2 expression in vascular smooth muscle cells. J. Mol. Endocrinol., 2019, 63(1), 27-38.
[http://dx.doi.org/10.1530/JME-19-0018] [PMID: 31075756]
[45]
Fu, H.; Luo, F.; Yang, L.; Wu, W.; Liu, X. Hypoxia stimulates the expression of macrophage migration inhibitory factor in human vascular smooth muscle cells via HIF-1α dependent pathway. BMC Cell Biol., 2010, 11(1), 66.
[http://dx.doi.org/10.1186/1471-2121-11-66] [PMID: 20727156]
[46]
Madak-Erdogan, Z.; Kim, S.H.; Gong, P.; Zhao, Y.C.; Zhang, H.; Chambliss, K.L.; Carlson, K.E.; Mayne, C.G.; Shaul, P.W.; Korach, K.S.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S. Design of pathway preferential estrogens that provide beneficial metabolic and vascular effects without stimulating reproductive tissues. Sci. Signal., 2016, 9(429), ra53.
[http://dx.doi.org/10.1126/scisignal.aad8170] [PMID: 27221711]
[47]
Li, Q.; Verma, I.M. NF-kappaB regulation in the immune system. Nat. Rev. Immunol., 2002, 2(10), 725-734.
[http://dx.doi.org/10.1038/nri910] [PMID: 12360211]
[48]
Pang, S.; Tao, Z.; Min, X.; Zhou, C.; Pan, D.; Cao, Z.; Wang, X. Correlation between the serum platelet-derived growth factor, angiopoietin-1, and severity of coronary heart disease. Cardiol. Res. Pract., 2020, 2020, 3602608.
[http://dx.doi.org/10.1155/2020/3602608] [PMID: 32963822]
[49]
Osornio-Vargas, A.R.; Goodell, A.L.; Hernández-Rodríguez, N.A.; Brody, A.R.; Coin, P.G.; Badgett, A.; Bonner, J.C. Platelet-derived growth factor (PDGF)-AA, -AB, and -BB induce differential chemotaxis of early-passage rat lung fibroblasts in vitro. Am. J. Respir. Cell Mol. Biol., 1995, 12(1), 33-40.
[http://dx.doi.org/10.1165/ajrcmb.12.1.7811469] [PMID: 7811469]
[50]
Kazlauskas, A. A new member of an old family. Nat. Cell Biol., 2000, 2(5), E78-E79.
[http://dx.doi.org/10.1038/35010508] [PMID: 10806490]
[51]
Li, X.; Pontén, A.; Aase, K.; Karlsson, L.; Abramsson, A.; Uutela, M.; Bäckström, G.; Hellström, M.; Boström, H.; Li, H.; Soriano, P.; Betsholtz, C.; Heldin, C.H.; Alitalo, K.; Ostman, A.; Eriksson, U. PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. Nat. Cell Biol., 2000, 2(5), 302-309.
[http://dx.doi.org/10.1038/35010579] [PMID: 10806482]
[52]
LaRochelle, W.J.; Jeffers, M.; McDonald, W.F.; Chillakuru, R.A.; Giese, N.A.; Lokker, N.A.; Sullivan, C.; Boldog, F.L.; Yang, M.; Vernet, C.; Burgess, C.E.; Fernandes, E.; Deegler, L.L.; Rittman, B.; Shimkets, J.; Shimkets, R.A.; Rothberg, J.M.; Lichenstein, H.S. PDGF-D, a new protease-activated growth factor. Nat. Cell Biol., 2001, 3(5), 517-521.
[http://dx.doi.org/10.1038/35074593] [PMID: 11331882]
[53]
Liu, J.; Wu, L.L.; Li, L.; Zhang, L.; Song, Z-E. Growth-promoting effect of platelet-derived growth factor on rat cardiac myocytes. Regul. Pept., 2005, 127(1-3), 11-18.
[http://dx.doi.org/10.1016/j.regpep.2004.10.018] [PMID: 15680465]
[54]
Gallini, R.; Lindblom, P.; Bondjers, C.; Betsholtz, C.; Andrae, J. PDGF-A and PDGF-B induces cardiac fibrosis in transgenic mice. Exp. Cell Res., 2016, 349(2), 282-290.
[http://dx.doi.org/10.1016/j.yexcr.2016.10.022] [PMID: 27816607]
[55]
Moore, S.M.; Khalaj, A.J.; Kumar, S.; Winchester, Z.; Yoon, J.; Yoo, T.; Martinez-Torres, L.; Yasui, N.; Katzenellenbogen, J.A.; Tiwari-Woodruff, S.K. Multiple functional therapeutic effects of the estrogen receptor β agonist indazole-Cl in a mouse model of multiple sclerosis. Proc. Natl. Acad. Sci. USA, 2014, 111(50), 18061-18066.
[http://dx.doi.org/10.1073/pnas.1411294111] [PMID: 25453074]
[56]
Kristek, F.; Cacanyiova, S.; Gerova, M. Hypotrophic effect of long-term neuronal NO-synthase inhibition on heart and conduit arteries of the Wistar rats. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc., 2009, 60(2), 21-27.
[PMID: 19617641]
[57]
Kristek, F.; Malekova, M.; Ondrias, K.; Cacanyiova, S. Blood pressure-independent hypotrophy of the heart, kidneys and conduit arteries after 7-nitroindazole administration to Wistar rats from the prenatal period to adulthood. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc., 2013, 64(1), 35-39.
[PMID: 23568969]
[58]
Edirimanne, V.E.R.; Woo, C.W.H.; Siow, Y.L.; Pierce, G.N.; Xie, J.Y. O, K. Homocysteine stimulates NADPH oxidase-mediated superoxide production leading to endothelial dysfunction in rats. Can. J. Physiol. Pharmacol., 2007, 85(12), 1236-1247.
[http://dx.doi.org/10.1139/Y07-112] [PMID: 18066125]
[59]
Dovinová, I.; Hrabárová, E.; Jansen, E.; Kvandová, M.; Majzúnová, M.; Berenyiová, A.; Barančík, M. ADMA, homocysteine and redox status improvement affected by 7-nitroindazole in spontaneously hypertensive rats. Biomed. Pharmacother. Biomedecine Pharmacother., 2018, 106, 1478-1483.
[http://dx.doi.org/10.1016/j.biopha.2018.07.096] [PMID: 30119222]
[60]
Kingma, J.G., Jr; Simard, D.; Rouleau, J.R. Nitric oxide bioavailability affects cardiovascular regulation dependent on cardiac nerve status. Auton. Neurosci., 2015, 187, 70-75.
[http://dx.doi.org/10.1016/j.autneu.2014.11.003] [PMID: 25468496]
[61]
Spiess, P.E.; Dion, S.B.; Zvara, P.; Merlin, S.L.; Chan, P.T.K.; Brock, G.B. 7-Nitroindazole: a selective inhibitor of penile erection: An in vivo study in a rat animal model. Urology, 1996, 47(1), 93-96.
[http://dx.doi.org/10.1016/S0090-4295(99)80389-6] [PMID: 8560670]
[62]
Boblewski, K.; Lehmann, A.; Sączewski, F.; Sączewski, J.; Kornicka, A.; Marchwińska, A.; Rybczyńska, A. Circulatory effect of TCS-80, a new imidazoline compound, in rats. Pharmacol. Rep., 2016, 68(4), 715-719.
[http://dx.doi.org/10.1016/j.pharep.2016.03.008] [PMID: 27127910]
[63]
Hein, L. Adrenoceptors and signal transduction in neurons. Cell Tissue Res., 2006, 326(2), 541-551.
[http://dx.doi.org/10.1007/s00441-006-0285-2] [PMID: 16896948]
[64]
Bylund, D.B.; Eikenberg, D.C.; Hieble, J.P.; Langer, S.Z.; Lefkowitz, R.J.; Minneman, K.P.; Molinoff, P.B.; Ruffolo, R.R., Jr; Trendelenburg, U. International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol. Rev., 1994, 46(2), 121-136.
[PMID: 7938162]
[65]
Ruffolo, R.R., Jr; Nichols, A.J.; Stadel, J.M.; Hieble, J.P. Pharmacologic and therapeutic applications of alpha 2-adrenoceptor subtypes. Annu. Rev. Pharmacol. Toxicol., 1993, 33, 243-279.
[http://dx.doi.org/10.1146/annurev.pa.33.040193.001331] [PMID: 8098595]
[66]
Wasilewska, A.; Sączewski, F.; Hudson, A.L.; Ferdousi, M.; Scheinin, M.; Laurila, J.M.; Rybczyńska, A.; Boblewski, K.; Lehmann, A. Fluorinated analogues of marsanidine, a highly α2-AR/imidazoline I1 binding site-selective hypotensive agent. Synthesis and biological activities. Eur. J. Med. Chem., 2014, 87, 386-397.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.083] [PMID: 25282262]
[67]
Saczewski, F.; Kornicka, A.; Rybczyńska, A.; Hudson, A.L.; Miao, S.S.; Gdaniec, M.; Boblewski, K.; Lehmann, A. 1-[(Imidazolidin-2-yl)imino]indazole. Highly alpha 2/I1 selective agonist: synthesis, X-ray structure, and biological activity. J. Med. Chem., 2008, 51(12), 3599-3608.
[http://dx.doi.org/10.1021/jm800112s] [PMID: 18517187]
[68]
Sączewski, F.; Kornicka, A.; Hudson, A.L.; Laird, S.; Scheinin, M.; Laurila, J.M.; Rybczyńska, A.; Boblewski, K.; Lehmann, A.; Gdaniec, M. 3-[(Imidazolidin-2-yl)imino]indazole ligands with selectivity for the α(2)-adrenoceptor compared to the imidazoline I(1) receptor. Bioorg. Med. Chem., 2011, 19(1), 321-329.
[http://dx.doi.org/10.1016/j.bmc.2010.11.020] [PMID: 21129985]
[69]
Saczewski, J.; Hudson, A.; Scheinin, M.; Rybczynska, A.; Ma, D.; Saczewski, F.; Laird, S.; Laurila, J.M.; Boblewski, K.; Lehmann, A.; Gu, J.; Watts, H. Synthesis and biological activities of 2-[(heteroaryl)methyl]imidazolines. Bioorg. Med. Chem., 2012, 20(1), 108-116.
[http://dx.doi.org/10.1016/j.bmc.2011.11.025] [PMID: 22172308]
[70]
Vanderpool, R.R.; Tang, H.; Rischard, F.; Yuan, J.X-J. Is p38 MAPK a dark force in right ventricular hypertrophy and failure in pulmonary arterial hypertension? Am. J. Respir. Cell Mol. Biol., 2017, 57(5), 506-508.
[http://dx.doi.org/10.1165/rcmb.2017-0197ED] [PMID: 29090954]
[71]
Heldin, C-H.; Lennartsson, J.; Westermark, B. Involvement of platelet-derived growth factor ligands and receptors in tumorigenesis. J. Intern. Med., 2018, 283(1), 16-44.
[http://dx.doi.org/10.1111/joim.12690] [PMID: 28940884]
[72]
Shrivastava, A.; Chakraborty, A.K.; Upmanyu, N.; Singh, A. Recent progress in chemistry and biology of indazole and its derivatives: A brief review. Austin J. Anal. Pharm. Chem., 2016, 3(4), 1076.
[73]
Farias, M., III; Jackson, K.; Johnson, M.; Caffrey, J.L. Cardiac enkephalins attenuate vagal bradycardia: Interactions with NOS-1-cGMP systems in canine sinoatrial node. Am. J. Physiol. Heart Circ. Physiol., 2003, 285(5), H2001-H2012.
[http://dx.doi.org/10.1152/ajpheart.00275.2003] [PMID: 12881216]
[74]
Wang, K.; Ding, R.; Ha, Y.; Jia, Y.; Liao, X.; Wang, S.; Li, R.; Shen, Z.; Xiong, H.; Guo, J.; Jie, W. Hypoxia-stressed cardiomyocytes promote early cardiac differentiation of cardiac stem cells through HIF-1α/Jagged1/Notch1 signaling. Acta Pharm. Sin. B, 2018, 8(5), 795-804.
[http://dx.doi.org/10.1016/j.apsb.2018.06.003] [PMID: 30245966]
[75]
Boblewski, K.; Lehmann, A.; Marchwinska, A.; Kornicka, A.; Wasilewska, A.; Saczewski, F.; Rybczynska, A. Comparison of the effects of marsanidine derivatives on rat cardiovascular system. Acta Pol. Pharm., 2017, 74(2), 579-586.
[PMID: 29624262]
[76]
Wróblewska, M.; Kasprzyk, J.; Sączewski, F.; Kornicka, A.; Boblewski, K.; Lehmann, A.; Rybczyńska, A. Marsanidine and 7-Me-marsanidine, the new hypotensive imidazolines augment sodium and urine excretion in rats. Pharmacol. Rep., 2013, 65(4), 1025-1032.
[http://dx.doi.org/10.1016/S1734-1140(13)71085-5] [PMID: 24145098]
[77]
May, J.A.; Sharif, N.A.; McLaughlin, M.A.; Chen, H-H.; Severns, B.S.; Kelly, C.R.; Holt, W.F.; Young, R.; Glennon, R.A.; Hellberg, M.R.; Dean, T.R. Ocular hypotensive response in nonhuman primates of (8R)-1-[(2S)-2-aminopropyl]-8,9-dihydro-7H-pyrano] [2,3-g]indazol-8-ol a selective 5-HT2 receptor agonist. J. Med. Chem., 2015, 58(22), 8818-8833.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00857] [PMID: 26551970]
[78]
Lamotte, Y.; Faucher, N.; Sançon, J.; Pineau, O.; Sautet, S.; Fouchet, M-H.; Beneton, V.; Tousaint, J-J.; Saintillan, Y.; Ancellin, N.; Nicodeme, E.; Grillot, D.; Martres, P. Discovery of novel indazole derivatives as dual angiotensin II antagonists and partial PPARγ agonists. Bioorg. Med. Chem. Lett., 2014, 24(4), 1098-1103.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.004] [PMID: 24462665]
[79]
Meyers, M.J.; Arhancet, G.B.; Hockerman, S.L.; Chen, X.; Long, S.A.; Mahoney, M.W.; Rico, J.R.; Garland, D.J.; Blinn, J.R.; Collins, J.T.; Yang, S.; Huang, H.C.; McGee, K.F.; Wendling, J.M.; Dietz, J.D.; Payne, M.A.; Homer, B.L.; Heron, M.I.; Reitz, D.B.; Hu, X. Discovery of (3S,3aR)-2-(3-chloro-4-cyanophenyl)-3-cyclopentyl-3,3a,4,5-tetrahydro-2H-benzo[g]indazole-7-carboxylic acid (PF-3882845), an orally efficacious mineralocorticoid receptor (MR) antagonist for hypertension and nephropathy. J. Med. Chem., 2010, 53(16), 5979-6002.
[http://dx.doi.org/10.1021/jm100505n] [PMID: 20672822]
[80]
Cheekavolu, C.; Muniappan, M. In vivo and in vitro anti-inflammatory activity of indazole and its derivatives. J. Clin. Diagn. Res., 2016, 10(9), FF01-FF06.
[http://dx.doi.org/10.7860/JCDR/2016/19338.8465] [PMID: 27790461]
[81]
Oh, K-S.; Oh, B.K.; Park, C.H.; Seo, H.W.; Kang, N.S.; Lee, J.H.; Lee, J.S.; Ho Lee, B. Cardiovascular effects of a novel selective Rho kinase inhibitor, 2-(1H-indazole-5-yl)amino-4-methoxy-6-piperazino triazine (DW1865). Eur. J. Pharmacol., 2013, 702(1-3), 218-226.
[http://dx.doi.org/10.1016/j.ejphar.2013.01.027] [PMID: 23376156]
[82]
Cameron, K.O.; Kung, D.W.; Kalgutkar, A.S.; Kurumbail, R.G.; Miller, R.; Salatto, C.T.; Ward, J.; Withka, J.M.; Bhattacharya, S.K.; Boehm, M.; Borzilleri, K.A.; Brown, J.A.; Calabrese, M.; Caspers, N.L.; Cokorinos, E.; Conn, E.L.; Dowling, M.S.; Edmonds, D.J.; Eng, H.; Fernando, D.P.; Frisbie, R.; Hepworth, D.; Landro, J.; Mao, Y.; Rajamohan, F.; Reyes, A.R.; Rose, C.R.; Ryder, T.; Shavnya, A.; Smith, A.C.; Tu, M.; Wolford, A.C.; Xiao, J. Discovery and preclinical characterization of 6-chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic acid (PF-06409577), a direct activator of adenosine monophosphate-activated protein kinase (AMPK), for the potential treatment of diabetic nephropathy. J. Med. Chem., 2016, 59(17), 8068-8081.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00866] [PMID: 27490827]
[83]
Wada, Y.; Shirahashi, H.; Iwanami, T.; Ogawa, M.; Nakano, S.; Morimoto, A.; Kasahara, K.; Tanaka, E.; Takada, Y.; Ohashi, S.; Mori, M.; Shuto, S. Discovery of novel indazole derivatives as highly potent and selective human β3-adrenergic receptor agonists with the possibility of having no cardiovascular side effects. J. Med. Chem., 2015, 58(15), 6048-6057.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00638] [PMID: 26125514]
[84]
Rajesh, K.G.; Sasaguri, S.; Suzuki, R.; Maeda, H. Antioxidant MCI-186 inhibits mitochondrial permeability transition pore and upregulates Bcl-2 expression. Am. J. Physiol. Heart Circ. Physiol., 2003, 285(5), H2171-H2178.
[http://dx.doi.org/10.1152/ajpheart.00143.2003] [PMID: 12816747]
[85]
Nath, K.; Guo, L.; Nancolas, B.; Nelson, D.S.; Shestov, A.A.; Lee, S-C.; Roman, J.; Zhou, R.; Leeper, D.B.; Halestrap, A.P.; Blair, I.A.; Glickson, J.D. Mechanism of antineoplastic activity of lonidamine. Biochim. Biophys. Acta, 2016, 1866(2), 151-162.
[http://dx.doi.org/10.1016/j.bbcan.2016.08.001] [PMID: 27497601]
[86]
Tash, J.S.; Chakrasali, R.; Jakkaraj, S.R.; Hughes, J.; Smith, S.K.; Hornbaker, K.; Heckert, L.L.; Ozturk, S.B.; Hadden, M.K.; Kinzy, T.G.; Blagg, B.S.; Georg, G.I. Gamendazole, an orally active indazole carboxylic acid male contraceptive agent, targets HSP90AB1 (HSP90BETA) and EEF1A1 (eEF1A), and stimulates Il1a transcription in rat Sertoli cells. Biol. Reprod., 2008, 78(6), 1139-1152.
[http://dx.doi.org/10.1095/biolreprod.107.062679] [PMID: 18218611]
[87]
Nya-Ngatchou, J-J.; Amory, J.K. New approaches to male non-hormonal contraception. Contraception, 2013, 87(3), 296-299.
[http://dx.doi.org/10.1016/j.contraception.2012.08.016] [PMID: 22995542]
[88]
Booth, E.A.; Marchesi, M.; Knittel, A.K.; Kilbourne, E.J.; Lucchesi, B.R. The pathway-selective estrogen receptor ligand WAY-169916 reduces infarct size after myocardial ischemia and reperfusion by an estrogen receptor dependent mechanism. J. Cardiovasc. Pharmacol., 2007, 49(6), 401-407.
[http://dx.doi.org/10.1097/FJC.0b013e3180544527] [PMID: 17577105]
[89]
Grima, J.; Silvestrini, B.; Cheng, C.Y. Reversible inhibition of spermatogenesis in rats using a new male contraceptive, 1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide. Biol. Reprod., 2001, 64(5), 1500-1508.
[http://dx.doi.org/10.1095/biolreprod64.5.1500] [PMID: 11319158]
[90]
Wang, L.; Yan, M.; Li, H.; Wu, S.; Ge, R.; Wong, C. K.; Silvestrini, B.; Sun, F.; Cheng, C. Y. The Non-Hormonal Male Contraceptive Adjudin Exerts Its Effects via MAPs and Signaling Proteins MTORC1/RpS6 and FAK-Y407. Endocrinology, 2021, 162(1), bqaa196.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy