Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Neural Substrates for the Regulation of Sleep and General Anesthesia

Author(s): Qianzi Yang, Fang Zhou, Ao Li and Hailong Dong*

Volume 20, Issue 1, 2022

Page: [72 - 84] Pages: 13

DOI: 10.2174/1570159X19666211214144639

Price: $65

Open Access Journals Promotions 2
Abstract

General anesthesia has been successfully used in clinics for over 170 years, but its mechanisms of effect remain unclear. Behaviorally, general anesthesia is similar to sleep as it produces a reversible transition between wakefulness and the state of being unaware of one’s surroundings. A discussion regarding the common circuits of sleep and general anesthesia has been ongoing as an increasing number of sleep-arousal regulatory nuclei are reported to participate in the consciousness shift occurring during general anesthesia. Recently, with progress in research technology, both positive and negative evidence for overlapping neural circuits between sleep and general anesthesia has emerged. This article provides a review of the latest evidence on the neural substrates for sleep and general anesthesia regulation by comparing the roles of pivotal nuclei in sleep and anesthesia.

Keywords: Sleep, anesthesia, neural circuits, wakefulness, unconsciousness, sleep-arousal regulatory nuclei.

Graphical Abstract
[1]
Brown, R.E.; Basheer, R.; McKenna, J.T.; Strecker, R.E.; McCarley, R.W. Control of sleep and wakefulness. Physiol. Rev., 2012, 92(3), 1087-1187.
[http://dx.doi.org/10.1152/physrev.00032.2011] [PMID: 22811426]
[2]
Walter, A.; van der Spek, L.; Hardy, E.; Bemelmans, A.P.; Rouach, N.; Rancillac, A. Structural and functional connections between the median and the ventrolateral preoptic nucleus. Brain Struct. Funct., 2019, 224(9), 3045-3057.
[http://dx.doi.org/10.1007/s00429-019-01935-4] [PMID: 31493023]
[3]
Moffitt, J.R.; Bambah-Mukku, D.; Eichhorn, S.W.; Vaughn, E.; Shekhar, K.; Perez, J.D.; Rubinstein, N.D.; Hao, J.; Regev, A.; Dulac, C.; Zhuang, X. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science, 2018, 362(6416)eaau5324
[http://dx.doi.org/10.1126/science.aau5324] [PMID: 30385464]
[4]
Weber, F.; Dan, Y. Circuit-based interrogation of sleep control. Nature, 2016, 538(7623), 51-59.
[http://dx.doi.org/10.1038/nature19773] [PMID: 27708309]
[5]
Sterman, M.B.; Clemente, C.D. Forebrain inhibitory mechanisms: sleep patterns induced by basal forebrain stimulation in the behaving cat. Exp. Neurol., 1962, 6, 103-117.
[http://dx.doi.org/10.1016/0014-4886(62)90081-X] [PMID: 13916976]
[6]
Lu, J.; Greco, M.A.; Shiromani, P.; Saper, C.B. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J. Neurosci., 2000, 20(10), 3830-3842.
[http://dx.doi.org/10.1523/JNEUROSCI.20-10-03830.2000] [PMID: 10804223]
[7]
Sakai, K. Sleep-waking discharge profiles of median preoptic and surrounding neurons in mice. Neuroscience, 2011, 182, 144-161.
[http://dx.doi.org/10.1016/j.neuroscience.2011.03.010] [PMID: 21396987]
[8]
Vanini, G.; Bassana, M.; Mast, M.; Mondino, A.; Cerda, I.; Phyle, M.; Chen, V.; Colmenero, A.V.; Hambrecht-Wiedbusch, V.S.; Mashour, G.A. Activation of preoptic GABAergic or glutamatergic neurons modulates sleep-wake architecture, but not anesthetic state transitions. Curr. Biol., 2020, 30(5), 779-787.e4.
[http://dx.doi.org/10.1016/j.cub.2019.12.063] [PMID: 32084397]
[9]
Reichert, S.; Pavón Arocas, O.; Rihel, J. The neuropeptide galanin is required for homeostatic rebound sleep following increased neuronal activity. Neuron, 2019, 104(2), 370-384.e5.
[http://dx.doi.org/10.1016/j.neuron.2019.08.010] [PMID: 31537465]
[10]
Kroeger, D.; Absi, G.; Gagliardi, C.; Bandaru, S.S.; Madara, J.C.; Ferrari, L.L.; Arrigoni, E.; Münzberg, H.; Scammell, T.E.; Saper, C.B.; Vetrivelan, R. Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice. Nat. Commun., 2018, 9(1), 4129.
[http://dx.doi.org/10.1038/s41467-018-06590-7] [PMID: 30297727]
[11]
Lu, J.; Nelson, L.E.; Franks, N.; Maze, M.; Chamberlin, N.L.; Saper, C.B. Role of endogenous sleep-wake and analgesic systems in anesthesia. J. Comp. Neurol., 2008, 508(4), 648-662.
[http://dx.doi.org/10.1002/cne.21685] [PMID: 18383504]
[12]
Yuan, J.; Luo, Z.; Zhang, Y.; Zhang, Y.; Wang, Y.; Cao, S.; Fu, B.; Yang, H.; Zhang, L.; Zhou, W.; Yu, T. GABAergic ventrolateral pre optic nucleus neurons are involved in the mediation of the anesthetic hypnosis induced by propofol. Mol. Med. Rep., 2017, 16(3), 3179-3186.
[http://dx.doi.org/10.3892/mmr.2017.7035] [PMID: 28765955]
[13]
Zhang, Z.; Ferretti, V.; Güntan, İ.; Moro, A.; Steinberg, E.A.; Ye, Z.; Zecharia, A.Y.; Yu, X.; Vyssotski, A.L.; Brickley, S.G.; Yustos, R.; Pillidge, Z.E.; Harding, E.C.; Wisden, W.; Franks, N.P. Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists. Nat. Neurosci., 2015, 18(4), 553-561.
[http://dx.doi.org/10.1038/nn.3957] [PMID: 25706476]
[14]
Ma, Y.; Miracca, G.; Yu, X.; Harding, E.C.; Miao, A.; Yustos, R.; Vyssotski, A.L.; Franks, N.P.; Wisden, W. Galanin neurons unite sleep homeostasis and α2-adrenergic sedation. Curr. Biol., 2019, 29(19), 3315-3322.e3.
[http://dx.doi.org/10.1016/j.cub.2019.07.087] [PMID: 31543455]
[15]
Reitz, S.L.; Wasilczuk, A.Z.; Beh, G.H.; Proekt, A.; Kelz, M.B. Activation of preoptic tachykinin 1 neurons promotes wakefulness over sleep and volatile anesthetic-induced unconsciousness. Curr. Biol., 2021, 31(2), 394-405.e4.
[http://dx.doi.org/10.1016/j.cub.2020.10.050] [PMID: 33188746]
[16]
Chung, S.; Weber, F.; Zhong, P.; Tan, C.L.; Nguyen, T.N.; Beier, K.T.; Hörmann, N.; Chang, W.C.; Zhang, Z.; Do, J.P.; Yao, S.; Krashes, M.J.; Tasic, B.; Cetin, A.; Zeng, H.; Knight, Z.A.; Luo, L.; Dan, Y. Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature, 2017, 545(7655), 477-481.
[http://dx.doi.org/10.1038/nature22350] [PMID: 28514446]
[17]
Eikermann, M.; Vetrivelan, R.; Grosse-Sundrup, M.; Henry, M.E.; Hoffmann, U.; Yokota, S.; Saper, C.B.; Chamberlin, N.L. The ventrolateral preoptic nucleus is not required for isoflurane general anesthesia. Brain Res., 2011, 1426, 30-37.
[http://dx.doi.org/10.1016/j.brainres.2011.10.018] [PMID: 22041226]
[18]
Yang, C.; Thankachan, S.; McCarley, R.W.; Brown, R.E. The menagerie of the basal forebrain: how many (neural) species are there, what do they look like, how do they behave and who talks to whom? Curr. Opin. Neurobiol., 2017, 44, 159-166.
[http://dx.doi.org/10.1016/j.conb.2017.05.004] [PMID: 28538168]
[19]
Agostinelli, L.J.; Geerling, J.C.; Scammell, T.E. Basal forebrain subcortical projections. Brain Struct. Funct., 2019, 224(3), 1097-1117.
[http://dx.doi.org/10.1007/s00429-018-01820-6] [PMID: 30612231]
[20]
Peng, W.; Wu, Z.; Song, K.; Zhang, S.; Li, Y.; Xu, M. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science, 2020, 369(6508)eabb0556
[http://dx.doi.org/10.1126/science.abb0556] [PMID: 32883833]
[21]
Xu, M.; Chung, S.; Zhang, S.; Zhong, P.; Ma, C.; Chang, W.C.; Weissbourd, B.; Sakai, N.; Luo, L.; Nishino, S.; Dan, Y. Basal forebrain circuit for sleep-wake control. Nat. Neurosci., 2015, 18(11), 1641-1647.
[http://dx.doi.org/10.1038/nn.4143] [PMID: 26457552]
[22]
Irmak, S.O.; de Lecea, L. Basal forebrain cholinergic modulation of sleep transitions. Sleep, 2014, 37(12), 1941-1951.
[http://dx.doi.org/10.5665/sleep.4246] [PMID: 25325504]
[23]
Han, Y.; Shi, Y.F.; Xi, W.; Zhou, R.; Tan, Z.B.; Wang, H.; Li, X.M.; Chen, Z.; Feng, G.; Luo, M.; Huang, Z.L.; Duan, S.; Yu, Y.Q. Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions. Curr. Biol., 2014, 24(6), 693-698.
[http://dx.doi.org/10.1016/j.cub.2014.02.011] [PMID: 24613308]
[24]
Chen, L.; Yin, D.; Wang, T.X.; Guo, W.; Dong, H.; Xu, Q.; Luo, Y.J.; Cherasse, Y.; Lazarus, M.; Qiu, Z.L.; Lu, J.; Qu, W.M.; Huang, Z.L. Basal forebrain cholinergic neurons primarily contribute to inhibition of electroencephalogram delta activity, rather than inducing behavioral wakefulness in mice. Neuropsychopharmacology, 2016, 41(8), 2133-2146.
[http://dx.doi.org/10.1038/npp.2016.13] [PMID: 26797244]
[25]
Anaclet, C.; Pedersen, N.P.; Ferrari, L.L.; Venner, A.; Bass, C.E.; Arrigoni, E.; Fuller, P.M. Basal forebrain control of wakefulness and cortical rhythms. Nat. Commun., 2015, 6, 8744.
[http://dx.doi.org/10.1038/ncomms9744] [PMID: 26524973]
[26]
Kim, T.; Thankachan, S.; McKenna, J.T.; McNally, J.M.; Yang, C.; Choi, J.H.; Chen, L.; Kocsis, B.; Deisseroth, K.; Strecker, R.E.; Basheer, R.; Brown, R.E.; McCarley, R.W. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc. Natl. Acad. Sci. USA, 2015, 112(11), 3535-3540.
[http://dx.doi.org/10.1073/pnas.1413625112] [PMID: 25733878]
[27]
McKenna, J.T.; Thankachan, S.; Uygun, D.S.; Shukla, C.; McNally, J.M.; Schiffino, F.L.; Cordeira, J.; Katsuki, F.; Zant, J.C.; Gamble, M.C.; Deisseroth, K.; McCarley, R.W.; Brown, R.E.; Strecker, R.E.; Basheer, R. Basal forebrain parvalbumin neurons mediate arousals from sleep induced by hypercarbia or auditory stimuli. Curr. Biol., 2020, 30(12), 2379-2385.e4.
[http://dx.doi.org/10.1016/j.cub.2020.04.029] [PMID: 32413301]
[28]
Anaclet, C.; De Luca, R.; Venner, A.; Malyshevskaya, O.; Lazarus, M.; Arrigoni, E.; Fuller, P.M. Genetic activation, inactivation, and deletion reveal a limited and nuanced role for somatostatin-containing basal forebrain neurons in behavioral state control. J. Neurosci., 2018, 38(22), 5168-5181.
[http://dx.doi.org/10.1523/JNEUROSCI.2955-17.2018] [PMID: 29735555]
[29]
Do, J.P.; Xu, M.; Lee, S.H.; Chang, W.C.; Zhang, S.; Chung, S.; Yung, T.J.; Fan, J.L.; Miyamichi, K.; Luo, L.; Dan, Y. Cell type-specific long-range connections of basal forebrain circuit. eLife, 2016, 5, 13214.
[http://dx.doi.org/10.7554/eLife.13214] [PMID: 27642784]
[30]
Zaborszky, L.; Duque, A. Local synaptic connections of basal forebrain neurons. Behav. Brain Res., 2000, 115(2), 143-158.
[http://dx.doi.org/10.1016/S0166-4328(00)00255-2] [PMID: 11000417]
[31]
Lelkes, Z.; Abdurakhmanova, S.; Porkka-Heiskanen, T. Cholinergic basal forebrain structures are not essential for mediation of the arousing action of glutamate. J. Sleep Res., 2018, 27(4)e12605
[http://dx.doi.org/10.1111/jsr.12605] [PMID: 28921744]
[32]
Zant, J.C.; Kim, T.; Prokai, L.; Szarka, S.; McNally, J.; McKenna, J.T.; Shukla, C.; Yang, C.; Kalinchuk, A.V.; McCarley, R.W.; Brown, R.E.; Basheer, R. Cholinergic neurons in the basal forebrain promote wakefulness by actions on neighboring non-cholinergic neurons: an opto-dialysis study. J. Neurosci., 2016, 36(6), 2057-2067.
[http://dx.doi.org/10.1523/JNEUROSCI.3318-15.2016] [PMID: 26865627]
[33]
Yang, C.; McKenna, J.T.; Zant, J.C.; Winston, S.; Basheer, R.; Brown, R.E. Cholinergic neurons excite cortically projecting basal forebrain GABAergic neurons. J. Neurosci., 2014, 34(8), 2832-2844.
[http://dx.doi.org/10.1523/JNEUROSCI.3235-13.2014] [PMID: 24553925]
[34]
Pinto, L.; Goard, M.J.; Estandian, D.; Xu, M.; Kwan, A.C.; Lee, S.H.; Harrison, T.C.; Feng, G.; Dan, Y. Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat. Neurosci., 2013, 16(12), 1857-1863.
[http://dx.doi.org/10.1038/nn.3552] [PMID: 24162654]
[35]
Eggermann, E.; Kremer, Y.; Crochet, S.; Petersen, C.C.H. Cholinergic signals in mouse barrel cortex during active whisker sensing. Cell Rep., 2014, 9(5), 1654-1660.
[http://dx.doi.org/10.1016/j.celrep.2014.11.005] [PMID: 25482555]
[36]
Ni, K.M.; Hou, X.J.; Yang, C.H.; Dong, P.; Li, Y.; Zhang, Y.; Jiang, P.; Berg, D.K.; Duan, S.; Li, X.M. Selectively driving cholinergic fibers optically in the thalamic reticular nucleus promotes sleep. eLife, 2016, 5, 5.
[http://dx.doi.org/10.7554/eLife.10382] [PMID: 26880556]
[37]
Freund, T.F.; Meskenaite, V. gamma-Aminobutyric acid-containing basal forebrain neurons innervate inhibitory interneurons in the neocortex. Proc. Natl. Acad. Sci. USA, 1992, 89(2), 738-742.
[http://dx.doi.org/10.1073/pnas.89.2.738] [PMID: 1731348]
[38]
Henny, P.; Jones, B.E. Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. Eur. J. Neurosci., 2008, 27(3), 654-670.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06029.x] [PMID: 18279318]
[39]
McKenna, J.T.; Yang, C.; Franciosi, S.; Winston, S.; Abarr, K.K.; Rigby, M.S.; Yanagawa, Y.; McCarley, R.W.; Brown, R.E. Distribution and intrinsic membrane properties of basal forebrain GABAergic and parvalbumin neurons in the mouse. J. Comp. Neurol., 2013, 521(6), 1225-1250.
[http://dx.doi.org/10.1002/cne.23290] [PMID: 23254904]
[40]
Borbély, A.A.; Daan, S.; Wirz-Justice, A.; Deboer, T. The two-process model of sleep regulation: a reappraisal. J. Sleep Res., 2016, 25(2), 131-143.
[http://dx.doi.org/10.1111/jsr.12371] [PMID: 26762182]
[41]
Porkka-Heiskanen, T.; Strecker, R.E.; McCarley, R.W. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience, 2000, 99(3), 507-517.
[http://dx.doi.org/10.1016/S0306-4522(00)00220-7] [PMID: 11029542]
[42]
Dong, H.L.; Fukuda, S.; Murata, E.; Higuchi, T. Excitatory and inhibitory actions of isoflurane on the cholinergic ascending arousal system of the rat. Anesthesiology, 2006, 104(1), 122-133.
[http://dx.doi.org/10.1097/00000542-200601000-00018] [PMID: 16394698]
[43]
Détári, L.; Vanderwolf, C.H. Activity of identified cortically projecting and other basal forebrain neurones during large slow waves and cortical activation in anaesthetized rats. Brain Res., 1987, 437(1), 1-8.
[http://dx.doi.org/10.1016/0006-8993(87)91521-6] [PMID: 2827860]
[44]
Toth, A.; Hajnik, T.; Detari, L. Cholinergic modulation of slow cortical rhythm in urethane-anesthetized rats. Brain Res. Bull., 2012, 87(1), 117-129.
[http://dx.doi.org/10.1016/j.brainresbull.2011.10.005] [PMID: 22033501]
[45]
Liu, C.; Shi, F.; Fu, B.; Luo, T.; Zhang, L.; Zhang, Y.; Zhang, Y.; Yu, S.; Yu, T. GABAA receptors in the basal forebrain mediates emergence from propofol anaesthesia in rats. Int. J. Neurosci., 2020, •••, 1-13.
[http://dx.doi.org/10.1080/00207454.2020.1840375] [PMID: 33174773]
[46]
Luo, T.Y.; Cai, S.; Qin, Z.X.; Yang, S.C.; Shu, Y.; Liu, C.X.; Zhang, Y.; Zhang, L.; Zhou, L.; Yu, T.; Yu, S.Y. Basal forebrain cholinergic activity modulates isoflurane and propofol anesthesia. Front. Neurosci., 2020, 14559077
[http://dx.doi.org/10.3389/fnins.2020.559077] [PMID: 33192246]
[47]
Laalou, F.Z.; de Vasconcelos, A.P.; Oberling, P.; Jeltsch, H.; Cassel, J.C.; Pain, L. Involvement of the basal cholinergic forebrain in the mediation of general (propofol) anesthesia. Anesthesiology, 2008, 108(5), 888-896.
[http://dx.doi.org/10.1097/ALN.0b013e31816d919b] [PMID: 18431125]
[48]
Leung, L.S.; Ma, J.; Shen, B.; Nachim, I.; Luo, T. Medial septal lesion enhances general anesthesia response. Exp. Neurol., 2013, 247, 419-428.
[http://dx.doi.org/10.1016/j.expneurol.2013.01.010] [PMID: 23376225]
[49]
Dong, H.L.; Fukuda, S.; Murata, E.; Zhu, Z.; Higuchi, T. Orexins increase cortical acetylcholine release and electroencephalographic activation through orexin-1 receptor in the rat basal forebrain during isoflurane anesthesia. Anesthesiology, 2006, 104(5), 1023-1032.
[http://dx.doi.org/10.1097/00000542-200605000-00019] [PMID: 16645455]
[50]
Dong, H.; Niu, J.; Su, B.; Zhu, Z.; Lv, Y.; Li, Y.; Xiong, L. Activation of orexin signal in basal forebrain facilitates the emergence from sevoflurane anesthesia in rat. Neuropeptides, 2009, 43(3), 179-185.
[http://dx.doi.org/10.1016/j.npep.2009.04.006] [PMID: 19464733]
[51]
Luo, T.; Leung, L.S. Basal forebrain histaminergic transmission modulates electroencephalographic activity and emergence from isoflurane anesthesia. Anesthesiology, 2009, 111(4), 725-733.
[http://dx.doi.org/10.1097/ALN.0b013e3181b061a0] [PMID: 19741500]
[52]
Pillay, S.; Vizuete, J.A.; McCallum, J.B.; Hudetz, A.G. Norepinephrine infusion into nucleus basalis elicits microarousal in desflurane-anesthetized rats. Anesthesiology, 2011, 115(4), 733-742.
[http://dx.doi.org/10.1097/ALN.0b013e31822c5ee1] [PMID: 21804378]
[53]
Zhang, L.N.; Li, Z.J.; Tong, L.; Guo, C.; Niu, J.Y.; Hou, W.G.; Dong, H.L. Orexin-A facilitates emergence from propofol anesthesia in the rat. Anesth. Analg., 2012, 115(4), 789-796.
[http://dx.doi.org/10.1213/ANE.0b013e3182645ea3] [PMID: 22798527]
[54]
Zhang, L.N.; Yang, C.; Ouyang, P.R.; Zhang, Z.C.; Ran, M.Z.; Tong, L.; Dong, H.L.; Liu, Y. Orexin-A facilitates emergence of the rat from isoflurane anesthesia via mediation of the basal forebrain. Neuropeptides, 2016, 58, 7-14.
[http://dx.doi.org/10.1016/j.npep.2016.02.003] [PMID: 26919917]
[55]
Wang, D.; Guo, Y.; Li, H.; Li, J.; Ran, M.; Guo, J.; Yin, L.; Zhao, S.; Yang, Q.; Dong, H. Selective optogenetic activation of orexinergic terminals in the basal forebrain and locus coeruleus promotes emergence from isoflurane anaesthesia in rats. Br. J. Anaesth., 2021, 126(1), 279-292.
[http://dx.doi.org/10.1016/j.bja.2020.09.037] [PMID: 33131759]
[56]
Franks, N.P. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci., 2008, 9(5), 370-386.
[http://dx.doi.org/10.1038/nrn2372] [PMID: 18425091]
[57]
Kim, J.J.; Gharpure, A.; Teng, J.; Zhuang, Y.; Howard, R.J.; Zhu, S.; Noviello, C.M.; Walsh, R.M., Jr; Lindahl, E.; Hibbs, R.E. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature, 2020, 585(7824), 303-308.
[http://dx.doi.org/10.1038/s41586-020-2654-5] [PMID: 32879488]
[58]
Chen, L.; Yang, Z.L.; Cheng, J.; Zhang, P.P.; Zhang, L.S.; Liu, X.S.; Wang, L.C. Propofol decreases the excitability of cholinergic neurons in mouse basal forebrain via GABAA receptors. Acta Pharmacol. Sin., 2019, 40(6), 755-761.
[http://dx.doi.org/10.1038/s41401-018-0168-6] [PMID: 30367153]
[59]
Li, Y.; Chen, L.; Zhu, D.; Chen, Y.; Qin, W.; Cui, J. Propofol downregulates the activity of glutamatergic neurons in the basal forebrain via affecting intrinsic membrane properties and postsynaptic GABAARs. Neuroreport, 2020, 31(17), 1242-1248.
[http://dx.doi.org/10.1097/WNR.0000000000001540] [PMID: 33075002]
[60]
Ma, J.; Shen, B.; Stewart, L.S.; Herrick, I.A.; Leung, L.S. The septohippocampal system participates in general anesthesia. J. Neurosci., 2002, 22(2), RC200.
[http://dx.doi.org/10.1523/JNEUROSCI.22-02-j0004.2002] [PMID: 11784812]
[61]
Bonnavion, P.; Mickelsen, L.E.; Fujita, A.; de Lecea, L.; Jackson, A.C. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J. Physiol., 2016, 594(22), 6443-6462.
[http://dx.doi.org/10.1113/JP271946] [PMID: 27302606]
[62]
Mickelsen, L.E.; Bolisetty, M.; Chimileski, B.R.; Fujita, A.; Beltrami, E.J.; Costanzo, J.T.; Naparstek, J.R.; Robson, P.; Jackson, A.C. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nat. Neurosci., 2019, 22(4), 642-656.
[http://dx.doi.org/10.1038/s41593-019-0349-8] [PMID: 30858605]
[63]
Ammoun, S.; Holmqvist, T.; Shariatmadari, R.; Oonk, H.B.; Detheux, M.; Parmentier, M.; Akerman, K.E.; Kukkonen, J.P. Distinct recognition of OX1 and OX2 receptors by orexin peptides. J. Pharmacol. Exp. Ther., 2003, 305(2), 507-514.
[http://dx.doi.org/10.1124/jpet.102.048025] [PMID: 12606634]
[64]
Ono, D.; Yamanaka, A. Hypothalamic regulation of the sleep/wake cycle. Neurosci. Res., 2017, 118, 74-81.
[http://dx.doi.org/10.1016/j.neures.2017.03.013] [PMID: 28526553]
[65]
Sasaki, K.; Suzuki, M.; Mieda, M.; Tsujino, N.; Roth, B.; Sakurai, T. Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS One, 2011, 6(5)e20360
[http://dx.doi.org/10.1371/journal.pone.0020360] [PMID: 21647372]
[66]
Adamantidis, A.R.; Zhang, F.; Aravanis, A.M.; Deisseroth, K.; de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature, 2007, 450(7168), 420-424.
[http://dx.doi.org/10.1038/nature06310] [PMID: 17943086]
[67]
Yang, C.; Zhang, L.; Hao, H.; Ran, M.; Li, J.; Dong, H. Serotonergic neurons in the dorsal raphe nucleus mediate the arousal-promoting effect of orexin during isoflurane anesthesia in male rats. Neuropeptides, 2019, 75, 25-33.
[http://dx.doi.org/10.1016/j.npep.2019.03.004] [PMID: 30935682]
[68]
Li, J.; Li, H.; Wang, D.; Guo, Y.; Zhang, X.; Ran, M.; Yang, C.; Yang, Q.; Dong, H. Orexin activated emergence from isoflurane anaesthesia involves excitation of ventral tegmental area dopaminergic neurones in rats. Br. J. Anaesth., 2019, 123(4), 497-505.
[http://dx.doi.org/10.1016/j.bja.2019.07.005] [PMID: 31399212]
[69]
Kelz, M.B.; Sun, Y.; Chen, J.; Cheng Meng, Q.; Moore, J.T.; Veasey, S.C.; Dixon, S.; Thornton, M.; Funato, H.; Yanagisawa, M. An essential role for orexins in emergence from general anesthesia. Proc. Natl. Acad. Sci. USA, 2008, 105(4), 1309-1314.
[http://dx.doi.org/10.1073/pnas.0707146105] [PMID: 18195361]
[70]
Zhou, W.; Cheung, K.; Kyu, S.; Wang, L.; Guan, Z.; Kurien, P.A.; Bickler, P.E.; Jan, L.Y. Activation of orexin system facilitates anesthesia emergence and pain control. Proc. Natl. Acad. Sci. USA, 2018, 115(45), E10740-E10747.
[http://dx.doi.org/10.1073/pnas.1808622115] [PMID: 30348769]
[71]
Zhao, S.; Wang, S.; Li, H.M.; Guo, J.; Li, J.N.; Wang, D.; Zhang, X.X.; Yin, L.; Li, R.; Li, A.; Li, H.H.; Fan, Z.; Yang, Q.Z.; Zhong, H.X.; Dong, H.L. Activation of orexinergic neurons inhibits the anesthetic effect of desflurane on consciousness state via paraventricular thalamic nucleus in rats. Anesth. Analg., 2021, 133(3), 781-793.
[http://dx.doi.org/10.1213/ANE.0000000000005651] [PMID: 34403389]
[72]
Ren, S.; Wang, Y.; Yue, F.; Cheng, X.; Dang, R.; Qiao, Q.; Sun, X.; Li, X.; Jiang, Q.; Yao, J.; Qin, H.; Wang, G.; Liao, X.; Gao, D.; Xia, J.; Zhang, J.; Hu, B.; Yan, J.; Wang, Y.; Xu, M.; Han, Y.; Tang, X.; Chen, X.; He, C.; Hu, Z. The paraventricular thalamus is a critical thalamic area for wakefulness. Science, 2018, 362(6413), 429-434.
[http://dx.doi.org/10.1126/science.aat2512] [PMID: 30361367]
[73]
Herrera, C.G.; Cadavieco, M.C.; Jego, S.; Ponomarenko, A.; Korotkova, T.; Adamantidis, A. Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat. Neurosci., 2016, 19(2), 290-298.
[http://dx.doi.org/10.1038/nn.4209] [PMID: 26691833]
[74]
Venner, A.; Anaclet, C.; Broadhurst, R.Y.; Saper, C.B.; Fuller, P.M. A novel population of wake-promoting GABAergic neurons in the ventral lateral hypothalamus. Curr. Biol., 2016, 26(16), 2137-2143.
[http://dx.doi.org/10.1016/j.cub.2016.05.078] [PMID: 27426511]
[75]
Morales, M.; Margolis, E.B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci., 2017, 18(2), 73-85.
[http://dx.doi.org/10.1038/nrn.2016.165] [PMID: 28053327]
[76]
Yu, X.; Li, W.; Ma, Y.; Tossell, K.; Harris, J.J.; Harding, E.C.; Ba, W.; Miracca, G.; Wang, D.; Li, L.; Guo, J.; Chen, M.; Li, Y.; Yustos, R.; Vyssotski, A.L.; Burdakov, D.; Yang, Q.; Dong, H.; Franks, N.P.; Wisden, W. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat. Neurosci., 2019, 22(1), 106-119.
[http://dx.doi.org/10.1038/s41593-018-0288-9] [PMID: 30559475]
[77]
Monti, J.M.; Monti, D. The involvement of dopamine in the modulation of sleep and waking. Sleep Med. Rev., 2007, 11(2), 113-133.
[http://dx.doi.org/10.1016/j.smrv.2006.08.003] [PMID: 17275369]
[78]
Taylor, S.R.; Badurek, S.; Dileone, R.J.; Nashmi, R.; Minichiello, L.; Picciotto, M.R. GABAergic and glutamatergic efferents of the mouse ventral tegmental area. J. Comp. Neurol., 2014, 522(14), 3308-3334.
[http://dx.doi.org/10.1002/cne.23603] [PMID: 24715505]
[79]
Eban-Rothschild, A.; Rothschild, G.; Giardino, W.J.; Jones, J.R.; de Lecea, L. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat. Neurosci., 2016, 19(10), 1356-1366.
[http://dx.doi.org/10.1038/nn.4377] [PMID: 27595385]
[80]
Fifel, K.; Meijer, J.H.; Deboer, T. Circadian and homeostatic modulation of multi-unit activity in midbrain dopaminergic structures. Sci. Rep., 2018, 8(1), 7765.
[http://dx.doi.org/10.1038/s41598-018-25770-5] [PMID: 29773830]
[81]
Dahan, L.; Astier, B.; Vautrelle, N.; Urbain, N.; Kocsis, B.; Chouvet, G. Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology, 2007, 32(6), 1232-1241.
[http://dx.doi.org/10.1038/sj.npp.1301251] [PMID: 17151599]
[82]
Zhang, Z.; Liu, W.Y.; Diao, Y.P.; Xu, W.; Zhong, Y.H.; Zhang, J.Y.; Lazarus, M.; Liu, Y.Y.; Qu, W.M.; Huang, Z.L. Superior colliculus GABAergic neurons are essential for acute dark induction of wakefulness in mice. Curr. Biol., 2019, 29(4), 637-644.e3.
[http://dx.doi.org/10.1016/j.cub.2018.12.031] [PMID: 30713103]
[83]
Yu, X.; Ba, W.; Zhao, G.; Ma, Y.; Harding, E.C.; Yin, L.; Wang, D.; Li, H.; Zhang, P.; Shi, Y.; Yustos, R.; Vyssotski, A.L.; Dong, H.; Franks, N.P.; Wisden, W. Dysfunction of ventral tegmental area GABA neurons causes mania-like behavior. Mol. Psychiatry, 2021, 26(9), 5213-5228.
[http://dx.doi.org/10.1038/s41380-020-0810-9] [PMID: 32555422]
[84]
Solt, K.; Van Dort, C.J.; Chemali, J.J.; Taylor, N.E.; Kenny, J.D.; Brown, E.N. Electrical stimulation of the ventral tegmental area induces reanimation from general anesthesia. Anesthesiology, 2014, 121(2), 311-319.
[http://dx.doi.org/10.1097/ALN.0000000000000117] [PMID: 24398816]
[85]
Taylor, N.E.; Van Dort, C.J.; Kenny, J.D.; Pei, J.; Guidera, J.A.; Vlasov, K.Y.; Lee, J.T.; Boyden, E.S.; Brown, E.N.; Solt, K. Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia. Proc. Natl. Acad. Sci. USA, 2016, 113(45), 12826-12831.
[http://dx.doi.org/10.1073/pnas.1614340113] [PMID: 27791160]
[86]
Li, Y.D.; Luo, Y.J.; Xu, W.; Ge, J.; Cherasse, Y.; Wang, Y.Q.; Lazarus, M.; Qu, W.M.; Huang, Z.L. Ventral pallidal GABAergic neurons control wakefulness associated with motivation through the ventral tegmental pathway. Mol. Psychiatry, 2021, 26(7), 2912-2928.
[http://dx.doi.org/10.1038/s41380-020-00906-0] [PMID: 33057171]
[87]
Anafi, R.C.; Kayser, M.S.; Raizen, D.M. Exploring phylogeny to find the function of sleep. Nat. Rev. Neurosci., 2019, 20(2), 109-116.
[http://dx.doi.org/10.1038/s41583-018-0098-9] [PMID: 30573905]
[88]
Poe, G.R.; Foote, S.; Eschenko, O.; Johansen, J.P.; Bouret, S.; Aston-Jones, G.; Harley, C.W.; Manahan-Vaughan, D.; Weinshenker, D.; Valentino, R.; Berridge, C.; Chandler, D.J.; Waterhouse, B.; Sara, S.J. Locus coeruleus: a new look at the blue spot. Nat. Rev. Neurosci., 2020, 21(11), 644-659.
[http://dx.doi.org/10.1038/s41583-020-0360-9] [PMID: 32943779]
[89]
Sara, S.J.; Bouret, S. Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron, 2012, 76(1), 130-141.
[http://dx.doi.org/10.1016/j.neuron.2012.09.011] [PMID: 23040811]
[90]
Chu, N.; Bloom, F.E. Norepinephrine-containing neurons: changes in spontaneous discharge patterns during sleeping and waking. Science, 1973, 179(4076), 908-910.
[http://dx.doi.org/10.1126/science.179.4076.908] [PMID: 4347167]
[91]
Aston-Jones, G.; Bloom, F.E. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci., 1981, 1(8), 876-886.
[http://dx.doi.org/10.1523/JNEUROSCI.01-08-00876.1981] [PMID: 7346592]
[92]
Rajkowski, J.; Kubiak, P.; Aston-Jones, G. Locus coeruleus activity in monkey: phasic and tonic changes are associated with altered vigilance. Brain Res. Bull., 1994, 35(5-6), 607-616.
[http://dx.doi.org/10.1016/0361-9230(94)90175-9] [PMID: 7859118]
[93]
Foote, S.L.; Aston-Jones, G.; Bloom, F.E. Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc. Natl. Acad. Sci. USA, 1980, 77(5), 3033-3037.
[http://dx.doi.org/10.1073/pnas.77.5.3033] [PMID: 6771765]
[94]
Hayat, H.; Regev, N.; Matosevich, N.; Sales, A.; Paredes-Rodriguez, E.; Krom, A.J.; Bergman, L.; Li, Y.; Lavigne, M.; Kremer, E.J.; Yizhar, O.; Pickering, A.E.; Nir, Y. Locus coeruleus norepinephrine activity mediates sensory-evoked awakenings from sleep. Sci. Adv., 2020, 6(15)eaaz4232
[http://dx.doi.org/10.1126/sciadv.aaz4232] [PMID: 32285002]
[95]
Berridge, C.W.; Schmeichel, B.E.; España, R.A. Noradrenergic modulation of wakefulness/arousal. Sleep Med. Rev., 2012, 16(2), 187-197.
[http://dx.doi.org/10.1016/j.smrv.2011.12.003] [PMID: 22296742]
[96]
Carter, M.E.; Yizhar, O.; Chikahisa, S.; Nguyen, H.; Adamantidis, A.; Nishino, S.; Deisseroth, K.; de Lecea, L. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci., 2010, 13(12), 1526-1533.
[http://dx.doi.org/10.1038/nn.2682] [PMID: 21037585]
[97]
Yamaguchi, H.; Hopf, F.W.; Li, S.B.; de Lecea, L. In vivo cell type-specific CRISPR knockdown of dopamine beta hydroxylase reduces locus coeruleus evoked wakefulness. Nat. Commun., 2018, 9(1), 5211.
[http://dx.doi.org/10.1038/s41467-018-07566-3] [PMID: 30523254]
[98]
Du, W.J.; Zhang, R.W.; Li, J.; Zhang, B.B.; Peng, X.L.; Cao, S.; Yuan, J.; Yuan, C.D.; Yu, T.; Du, J.L. The locus coeruleus modulates intravenous general anesthesia of zebrafish via a cooperative mechanism. Cell Rep., 2018, 24(12), 3146-3155.e3.
[http://dx.doi.org/10.1016/j.celrep.2018.08.046] [PMID: 30231998]
[99]
Zhang, Y.; Yu, T.; Yuan, J.; Yu, B.W. The ventrolateral preoptic nucleus is required for propofol-induced inhibition of locus coeruleus neuronal activity. Neurol. Sci., 2015, 36(12), 2177-2184.
[http://dx.doi.org/10.1007/s10072-015-2292-0] [PMID: 26306695]
[100]
Kushikata, T.; Yoshida, H.; Kudo, M.; Kudo, T.; Kudo, T.; Hirota, K. Role of coerulean noradrenergic neurones in general anaesthesia in rats. Br. J. Anaesth., 2011, 107(6), 924-929.
[http://dx.doi.org/10.1093/bja/aer303] [PMID: 21965049]
[101]
Hu, F.Y.; Hanna, G.M.; Han, W.; Mardini, F.; Thomas, S.A.; Wyner, A.J.; Kelz, M.B. Hypnotic hypersensitivity to volatile anesthetics and dexmedetomidine in dopamine β-hydroxylase knockout mice. Anesthesiology, 2012, 117(5), 1006-1017.
[http://dx.doi.org/10.1097/ALN.0b013e3182700ab9] [PMID: 23042227]
[102]
Vazey, E.M.; Aston-Jones, G. Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proc. Natl. Acad. Sci. USA, 2014, 111(10), 3859-3864.
[http://dx.doi.org/10.1073/pnas.1310025111] [PMID: 24567395]
[103]
Ao, Y.; Yang, B.; Zhang, C.; Wu, B.; Zhang, X.; Xing, D.; Xu, H. Locus coeruleus to paraventricular thalamus projections facilitate emergence from isoflurane anesthesia in mice. Front. Pharmacol., 2021, 12643172
[http://dx.doi.org/10.3389/fphar.2021.643172] [PMID: 33986675]
[104]
Fu, B.; Yu, T.; Yuan, J.; Gong, X.; Zhang, M. Noradrenergic transmission in the central medial thalamic nucleus modulates the electroencephalographic activity and emergence from propofol anesthesia in rats. J. Neurochem., 2017, 140(6), 862-873.
[http://dx.doi.org/10.1111/jnc.13939] [PMID: 28092095]
[105]
Zhang, Y.; Fu, B.; Liu, C.; Yu, S.; Luo, T.; Zhang, L.; Zhou, W.; Yu, T. Activation of noradrenergic terminals in the reticular thalamus delays arousal from propofol anesthesia in mice. FASEB J., 2019, 33(6), 7252-7260.
[http://dx.doi.org/10.1096/fj.201802164RR] [PMID: 30860868]
[106]
Qiu, G.; Wu, Y.; Yang, Z.; Li, L.; Zhu, X.; Wang, Y.; Sun, W.; Dong, H.; Li, Y.; Hu, J. Dexmedetomidine activation of dopamine neurons in the ventral tegmental area attenuates the depth of sedation in mice. Anesthesiology, 2020, 133(2), 377-392.
[http://dx.doi.org/10.1097/ALN.0000000000003347] [PMID: 32412932]
[107]
Jacobs, B.L.; Fornal, C.A. Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology, 1999, 21(2)(Suppl.), 9S-15S.
[http://dx.doi.org/10.1016/S0893-133X(99)00012-3] [PMID: 10432483]
[108]
Muindi, F.; Kenny, J.D.; Taylor, N.E.; Solt, K.; Wilson, M.A.; Brown, E.N.; Van Dort, C.J. Electrical stimulation of the parabrachial nucleus induces reanimation from isoflurane general anesthesia. Behav. Brain Res., 2016, 306, 20-25.
[http://dx.doi.org/10.1016/j.bbr.2016.03.021] [PMID: 26971629]
[109]
Luo, T.; Yu, S.; Cai, S.; Zhang, Y.; Jiao, Y.; Yu, T.; Yu, W. Parabrachial neurons promote behavior and electroencephalographic arousal from general anesthesia. Front. Mol. Neurosci., 2018, 11, 420.
[http://dx.doi.org/10.3389/fnmol.2018.00420] [PMID: 30564094]
[110]
Oikonomou, G.; Altermatt, M.; Zhang, R.W.; Coughlin, G.M.; Montz, C.; Gradinaru, V.; Prober, D.A. The serotonergic raphe promote sleep in zebrafish and mice. Neuron, 2019, 103(4), 686-701.e8.
[http://dx.doi.org/10.1016/j.neuron.2019.05.038] [PMID: 31248729]
[111]
Li, A.; Li, R.; Ouyang, P.; Li, H.; Wang, S.; Zhang, X.; Wang, D.; Ran, M.; Zhao, G.; Yang, Q.; Zhu, Z.; Dong, H.; Zhang, H. Dorsal raphe serotonergic neurons promote arousal from isoflurane anesthesia. CNS Neurosci. Ther., 2021, 27(8), 941-950.
[http://dx.doi.org/10.1111/cns.13656] [PMID: 33973716]
[112]
Haas, H.; Panula, P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat. Rev. Neurosci., 2003, 4(2), 121-130.
[http://dx.doi.org/10.1038/nrn1034] [PMID: 12563283]
[113]
Takahashi, K.; Lin, J.S.; Sakai, K. Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J. Neurosci., 2006, 26(40), 10292-10298.
[http://dx.doi.org/10.1523/JNEUROSCI.2341-06.2006] [PMID: 17021184]
[114]
Nelson, L.E.; Lu, J.; Guo, T.; Saper, C.B.; Franks, N.P.; Maze, M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology, 2003, 98(2), 428-436.
[http://dx.doi.org/10.1097/00000542-200302000-00024] [PMID: 12552203]
[115]
Luo, T.; Leung, L.S. Involvement of tuberomamillary histaminergic neurons in isoflurane anesthesia. Anesthesiology, 2011, 115(1), 36-43.
[http://dx.doi.org/10.1097/ALN.0b013e3182207655] [PMID: 21562401]
[116]
Xia, C.; Zhao, Z.; Yu, L.; Yan, M. The role of the central histaminergic system in emergence from propofol anesthesia in rats model. Ann. Palliat. Med., 2021, 10(6), 6067-6078.
[http://dx.doi.org/10.21037/apm-20-2594] [PMID: 34118835]
[117]
Nelson, L.E.; Guo, T.Z.; Lu, J.; Saper, C.B.; Franks, N.P.; Maze, M. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat. Neurosci., 2002, 5(10), 979-984.
[http://dx.doi.org/10.1038/nn913] [PMID: 12195434]
[118]
Cazzin, C.; Piccoli, L.; Massagrande, M.; Garbati, N.; Michielin, F.; Knaus, H.G.; Ring, C.J.; Morrison, A.D.; Merlo-Pich, E.; Rovo, Z.; Astori, S.; Lüthi, A.; Corti, C.; Corsi, M. rKv1.2 overexpression in the central medial thalamic area decreases caffeine-induced arousal. Genes Brain Behav., 2011, 10(8), 817-827.
[http://dx.doi.org/10.1111/j.1601-183X.2011.00719.x] [PMID: 21762462]
[119]
Timic Stamenic, T.; Feseha, S.; Valdez, R.; Zhao, W.; Klawitter, J.; Todorovic, S.M. Alterations in oscillatory behavior of central medial thalamic neurons demonstrate a key role of CaV3.1 isoform of T-channels during isoflurane-induced anesthesia. Cereb. Cortex, 2019, 29(11), 4679-4696.
[http://dx.doi.org/10.1093/cercor/bhz002] [PMID: 30715245]
[120]
Baker, R.; Gent, T.C.; Yang, Q.; Parker, S.; Vyssotski, A.L.; Wisden, W.; Brickley, S.G.; Franks, N.P. Altered activity in the central medial thalamus precedes changes in the neocortex during transitions into both sleep and propofol anesthesia. J. Neurosci., 2014, 34(40), 13326-13335.
[http://dx.doi.org/10.1523/JNEUROSCI.1519-14.2014] [PMID: 25274812]
[121]
Ferrarelli, F.; Massimini, M.; Sarasso, S.; Casali, A.; Riedner, B.A.; Angelini, G.; Tononi, G.; Pearce, R.A. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2681-2686.
[http://dx.doi.org/10.1073/pnas.0913008107] [PMID: 20133802]
[122]
Lee, U.; Ku, S.; Noh, G.; Baek, S.; Choi, B.; Mashour, G.A. Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology, 2013, 118(6), 1264-1275.
[http://dx.doi.org/10.1097/ALN.0b013e31829103f5] [PMID: 23695090]
[123]
Cirelli, C.; Pompeiano, M.; Tononi, G. Sleep deprivation and c-fos expression in the rat brain. J. Sleep Res., 1995, 4(2), 92-106.
[http://dx.doi.org/10.1111/j.1365-2869.1995.tb00157.x] [PMID: 10607147]
[124]
Pompeiano, M.; Cirelli, C.; Tononi, G. Immediate-early genes in spontaneous wakefulness and sleep: expression of c-fos and NGFI-A mRNA and protein. J. Sleep Res., 1994, 3(2), 80-96.
[http://dx.doi.org/10.1111/j.1365-2869.1994.tb00111.x] [PMID: 10607112]
[125]
Gerashchenko, D.; Wisor, J.P.; Burns, D.; Reh, R.K.; Shiromani, P.J.; Sakurai, T.; de la Iglesia, H.O.; Kilduff, T.S. Identification of a population of sleep-active cerebral cortex neurons. Proc. Natl. Acad. Sci. USA, 2008, 105(29), 10227-10232.
[http://dx.doi.org/10.1073/pnas.0803125105] [PMID: 18645184]
[126]
Andrada, J.; Livingston, P.; Lee, B.J.; Antognini, J. Propofol and etomidate depress cortical, thalamic, and reticular formation neurons during anesthetic-induced unconsciousness. Anesth. Analg., 2012, 114(3), 661-669.
[http://dx.doi.org/10.1213/ANE.0b013e3182405228] [PMID: 22190559]
[127]
Guo, J.; Ran, M.; Gao, Z.; Zhang, X.; Wang, D.; Li, H.; Zhao, S.; Sun, W.; Dong, H.; Hu, J. Cell-type-specific imaging of neurotransmission reveals a disrupted excitatory-inhibitory cortical network in isoflurane anaesthesia. EBioMedicine, 2021, 65103272
[http://dx.doi.org/10.1016/j.ebiom.2021.103272] [PMID: 33691246]
[128]
Mody, I.; Pearce, R.A. Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci., 2004, 27(9), 569-575.
[http://dx.doi.org/10.1016/j.tins.2004.07.002] [PMID: 15331240]
[129]
Brohan, J.; Goudra, B.G. The role of GABA receptor agonists in anesthesia and sedation. CNS Drugs, 2017, 31(10), 845-856.
[http://dx.doi.org/10.1007/s40263-017-0463-7] [PMID: 29039138]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy