Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Design, Synthesis and Biological Evaluation of Coumarin Derivatives as NEDD8 Activating Enzyme Inhibitors in Pancreatic Cancer Cells

Author(s): Lei Gong, Peng Lu, Cheng Lu, Mengli Li, Huiyang Wan and Yubin Wang*

Volume 18, Issue 6, 2022

Published on: 18 January, 2022

Page: [679 - 693] Pages: 15

DOI: 10.2174/1573406418666211210163817

Price: $65

Open Access Journals Promotions 2
Abstract

Background: NEDD8 (neural precursor cell expressed developmentally downregulated protein 8) is one of the ubiquitin-like proteins which is activated by the NEDD8 activating enzyme (NAE). The overexpressed NAE can cause a variety of diseases such as numerous cancer types and inflammatory diseases. The selective inhibition of NAE could mediate the rate of ubiquitination and the subsequent degradation of proteins associated with cancer so as to achieve the purpose of treatment.

Objective: In this article, we decided to study the synthesis and screening of coumarin scaffold derivatives against cancer cell lines, specifically the human pancreatic cancer cell line BxPC-3.

Methods: Twenty-four targeted compounds were synthesized, and their anti-proliferative activity against three cancer cell lines, cytotoxicity against three normal cell lines through CCK-8 and MTT assay were evaluated to screen out the candidate compound. Then the target was further confirmed by both enzyme and cell-based experiments, as well as cell apoptosis research.

Results: Several new 4-position substituted coumarin derivatives (12a~x) were synthesized and most of them exhibit antiproliferative activity in three cancer cell lines. A series of experiments were performed to identify the best candidate compound 12v. This compound displayed the highest potency against BxPC-3 with an IC50 value of 0.28 μM. It can also inhibit NAE activity in enzyme and cellbased assay, and induce CRLs-mediated accumulation of the substrate and apoptosis in BxPC-3 cells. Meanwhile, it exhibited relatively low toxicity in three normal cells.

Conclusion: Based on these results, we found that compound 12v inhibited NAE activity in enzyme and cell-based systems and induced apoptosis in BxPC-3 cells. Additionally, it also had a low toxicity. These results suggested that 12v may be promising lead compounds for the development of new anticancer drugs.

Keywords: NEDD8, NAE inhibitor, coumarin scaffold, BxPC-3, synthesis, biological evaluation.

Graphical Abstract
[1]
Hershko, A. The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ., 2005, 12(9), 1191-1197.
[http://dx.doi.org/10.1038/sj.cdd.4401702] [PMID: 16094395]
[2]
Cohen, P.; Tcherpakov, M. Will the ubiquitin system furnish as many drug targets as protein kinases? Cell, 2010, 143(5), 686-693.
[http://dx.doi.org/10.1016/j.cell.2010.11.016] [PMID: 21111230]
[3]
Kim, K.B.; Crews, C.M. Chemical genetics: Exploring the role of the proteasome in cell biology using natural products and other small molecule proteasome inhibitors. J. Med. Chem., 2008, 51(9), 2600-2605.
[http://dx.doi.org/10.1021/jm070421s] [PMID: 18393403]
[4]
Demo, S.D.; Kirk, C.J.; Aujay, M.A.; Buchholz, T.J.; Dajee, M.; Ho, M.N.; Jiang, J.; Laidig, G.J.; Lewis, E.R.; Parlati, F.; Shenk, K.D.; Smyth, M.S.; Sun, C.M.; Vallone, M.K.; Woo, T.M.; Molineaux, C.J.; Bennett, M.K. Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res., 2007, 67(13), 6383-6391.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4086] [PMID: 17616698]
[5]
Gilardini, A.; Marmiroli, P.; Cavaletti, G. Proteasome inhibition: A promising strategy for treating cancer, but what about neurotoxicity? Curr. Med. Chem., 2008, 15(29), 3025-3035.
[http://dx.doi.org/10.2174/092986708786848622] [PMID: 19075650]
[6]
Deshaies, R.J. Drug discovery: Fresh target for cancer therapy. Nature, 2009, 458(7239), 709-710.
[http://dx.doi.org/10.1038/458709a] [PMID: 19360071]
[7]
Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet., 1996, 30, 405-439.
[http://dx.doi.org/10.1146/annurev.genet.30.1.405] [PMID: 8982460]
[8]
Hershko, A.; Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem., 1998, 67, 425-479.
[http://dx.doi.org/10.1146/annurev.biochem.67.1.425] [PMID: 9759494]
[9]
Pickart, C.M.; Cohen, R.E. Proteasomes and their kin: Proteases in the machine age. Nat. Rev. Mol. Cell Biol., 2004, 5(3), 177-187.
[http://dx.doi.org/10.1038/nrm1336] [PMID: 14990998]
[10]
Kravtsova-Ivantsiv, Y.; Sommer, T.; Ciechanover, A. The lysine48-based polyubiquitin chain proteasomal signal: Not a single child anymore. Angew. Chem. Int. Ed. Engl., 2013, 52(1), 192-198.
[http://dx.doi.org/10.1002/anie.201205656] [PMID: 23124625]
[11]
Ravid, T.; Hochstrasser, M. Diversity of degradation signals in the ubiquitin-proteasome system. Nat. Rev. Mol. Cell Biol., 2008, 9(9), 679-690.
[http://dx.doi.org/10.1038/nrm2468] [PMID: 18698327]
[12]
Nalepa, G.; Rolfe, M.; Harper, J.W. Drug discovery in the ubiquitin-proteasome system. Nat. Rev. Drug Discov., 2006, 5(7), 596-613.
[http://dx.doi.org/10.1038/nrd2056] [PMID: 16816840]
[13]
Xiong, C.; Zhou, L.; Tan, J.; Song, S.; Bao, X.; Zhang, N.; Ding, H.; Zhao, J.; He, J.X.; Miao, Z.H.; Zhang, A. Development of potent NEDD8-activating enzyme inhibitors bearing a pyrimidotriazole scaffold. J. Med. Chem., 2021, 64(9), 6161-6178.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00242] [PMID: 33857374]
[14]
Buckley, D.L.; Crews, C.M. Small-molecule control of intracellular protein levels through modulation of the ubiquitin proteasome system. Angew. Chem. Int. Ed. Engl., 2014, 53(9), 2312-2330.
[http://dx.doi.org/10.1002/anie.201307761] [PMID: 24459094]
[15]
van der Veen, A.G.; Ploegh, H.L. Ubiquitin-like proteins. Annu. Rev. Biochem., 2012, 81, 323-357.
[http://dx.doi.org/10.1146/annurev-biochem-093010-153308] [PMID: 22404627]
[16]
Duda, D.M.; Borg, L.A.; Scott, D.C.; Hunt, H.W.; Hammel, M.; Schulman, B.A. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell, 2008, 134(6), 995-1006.
[http://dx.doi.org/10.1016/j.cell.2008.07.022] [PMID: 18805092]
[17]
Saha, A.; Deshaies, R.J. Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol. Cell, 2008, 32(1), 21-31.
[http://dx.doi.org/10.1016/j.molcel.2008.08.021] [PMID: 18851830]
[18]
Linghu, B.; Callis, J.; Goebl, M.G. Rub1p processing by Yuh1p is required for wild-type levels of Rub1p conjugation to Cdc53p. Eukaryot. Cell, 2002, 1(3), 491-494.
[http://dx.doi.org/10.1128/EC.1.3.491-494.2002] [PMID: 12455997]
[19]
Wada, H.; Kito, K.; Caskey, L.S.; Yeh, E.T.; Kamitani, T. Cleavage of the C-terminus of NEDD8 by UCH-L3. Biochem. Biophys. Res. Commun., 1998, 251(3), 688-692.
[http://dx.doi.org/10.1006/bbrc.1998.9532] [PMID: 9790970]
[20]
Haas, A.L.; Warms, J.V.; Hershko, A.; Rose, I.A. Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. J. Biol. Chem., 1982, 257(5), 2543-2548.
[http://dx.doi.org/10.1016/S0021-9258(18)34958-5] [PMID: 6277905]
[21]
Bohnsack, R.N.; Haas, A.L. Conservation in the mechanism of Nedd8 activation by the human AppBp1-Uba3 heterodimer. J. Biol. Chem., 2003, 278(29), 26823-26830.
[http://dx.doi.org/10.1074/jbc.M303177200] [PMID: 12740388]
[22]
Enchev, R.I.; Schulman, B.A.; Peter, M. Protein neddylation: Beyond cullin-RING ligases. Nat. Rev. Mol. Cell Biol., 2015, 16(1), 30-44.
[http://dx.doi.org/10.1038/nrm3919] [PMID: 25531226]
[23]
Huang, D.T.; Miller, D.W.; Mathew, R.; Cassell, R.; Holton, J.M.; Roussel, M.F.; Schulman, B.A. A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Nat. Struct. Mol. Biol., 2004, 11(10), 927-935.
[http://dx.doi.org/10.1038/nsmb826] [PMID: 15361859]
[24]
Huang, D.T.; Paydar, A.; Zhuang, M.; Waddell, M.B.; Holton, J.M.; Schulman, B.A. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. Mol. Cell, 2005, 17(3), 341-350.
[http://dx.doi.org/10.1016/j.molcel.2004.12.020] [PMID: 15694336]
[25]
Hori, T.; Osaka, F.; Chiba, T.; Miyamoto, C.; Okabayashi, K.; Shimbara, N.; Kato, S.; Tanaka, K. Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene, 1999, 18(48), 6829-6834.
[http://dx.doi.org/10.1038/sj.onc.1203093] [PMID: 10597293]
[26]
Soucy, T.A.; Smith, P.G.; Milhollen, M.A.; Berger, A.J.; Gavin, J.M.; Adhikari, S.; Brownell, J.E.; Burke, K.E.; Cardin, D.P.; Critchley, S.; Cullis, C.A.; Doucette, A.; Garnsey, J.J.; Gaulin, J.L.; Gershman, R.E.; Lublinsky, A.R.; McDonald, A.; Mizutani, H.; Narayanan, U.; Olhava, E.J.; Peluso, S.; Rezaei, M.; Sintchak, M.D.; Talreja, T.; Thomas, M.P.; Traore, T.; Vyskocil, S.; Weatherhead, G.S.; Yu, J.; Zhang, J.; Dick, L.R.; Claiborne, C.F.; Rolfe, M.; Bolen, J.B.; Langston, S.P. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature, 2009, 458(7239), 732-736.
[http://dx.doi.org/10.1038/nature07884] [PMID: 19360080]
[27]
Nakayama, K.; Qi, J.; Ronai, Z. The ubiquitin ligase Siah2 and the hypoxia response. Mol. Cancer Res., 2009, 7(4), 443-451.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0458] [PMID: 19372575]
[28]
Zhang, Q.; Meng, Y.; Zhang, L.; Chen, J.; Zhu, D. RNF13: A novel RING-type ubiquitin ligase over-expressed in pancreatic cancer. Cell Res., 2009, 19(3), 348-357.
[http://dx.doi.org/10.1038/cr.2008.285] [PMID: 18794910]
[29]
Saxena, S.; Dutta, A. Geminin and p53: Deterrents to rereplication in human cancer cells. Cell Cycle, 2003, 2(4), 283-286.
[http://dx.doi.org/10.4161/cc.2.4.443] [PMID: 12851473]
[30]
Kim, Y.; Kipreos, E.T. Cdt1 degradation to prevent DNA re-replication: Conserved and non-conserved pathways. Cell Div., 2007, 2, 18-27.
[http://dx.doi.org/10.1186/1747-1028-2-18] [PMID: 17565698]
[31]
Lu, P.; Liu, X.; Yuan, X.; He, M.; Wang, Y.; Zhang, Q.; Ouyang, P.K. Discovery of a novel NEDD8 activating enzyme inhibitor with piperidin-4-amine scaffold by structure-based virtual screening. ACS Chem. Biol., 2016, 11(7), 1901-1907.
[http://dx.doi.org/10.1021/acschembio.6b00159] [PMID: 27135934]
[32]
Lafitte, D.; Lamour, V.; Tsvetkov, P.O.; Makarov, A.A.; Klich, M.; Deprez, P.; Moras, D.; Briand, C.; Gilli, R. DNA gyrase interaction with coumarin-based inhibitors: The role of the hydroxybenzoate isopentenyl moiety and the 5′-methyl group of the noviose. Biochemistry, 2002, 41(23), 7217-7223.
[http://dx.doi.org/10.1021/bi0159837] [PMID: 12044152]
[33]
Lamour, V.; Hoermann, L.; Jeltsch, J.M.; Oudet, P.; Moras, D. An open conformation of the Thermus thermophilus gyrase B ATP-binding domain. J. Biol. Chem., 2002, 277(21), 18947-18953.
[http://dx.doi.org/10.1074/jbc.M111740200] [PMID: 11850422]
[34]
Lukkarila, J.L.; da Silva, S.R.; Ali, M.; Shahani, V.M.; Xu, G.W.; Berman, J.; Roughton, A.; Dhe-Paganon, S.; Schimmer, A.D.; Gunning, P.T. Identification of NAE inhibitors exhibiting potent activity in leukemia cells: Exploring the structural determinants of NAE specificity. ACS Med. Chem. Lett., 2011, 2(8), 577-582.
[http://dx.doi.org/10.1021/ml2000615] [PMID: 24900352]
[35]
Nawrocki, S.T.; Kelly, K.R.; Smith, P.G.; Espitia, C.M.; Possemato, A.; Beausoleil, S.A.; Milhollen, M.; Blakemore, S.; Thomas, M.; Berger, A.; Carew, J.S. Disrupting protein NEDDylation with MLN4924 is a novel strategy to target cisplatin resistance in ovarian cancer. Clin. Cancer Res., 2013, 19(13), 3577-3590.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3212] [PMID: 23633453]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy