Generic placeholder image

Drug Metabolism Letters

Editor-in-Chief

ISSN (Print): 1872-3128
ISSN (Online): 1874-0758

Research Article

Comparative In vitro Metabolism of Enflicoxib in Dogs, Rats, and Humans: Main Metabolites and Proposed Metabolic Pathways

Author(s): Josep Solà, Àngel Menargues, Josep Homedes*, Marta Salichs, Maria Teresa Serafini and Gregorio Encina

Volume 14, Issue 3, 2021

Published on: 22 December, 2021

Page: [206 - 218] Pages: 13

DOI: 10.2174/1872312814666211209161933

open access plus

conference banner
Abstract

Background: Enflicoxib is a non-steroidal anti-inflammatory drug of the coxib family characterized by a long-lasting pharmacological activity that has been attributed to its active metabolite E-6132.

Objectives: The aim of this work was to explore enflicoxib biotransformation In vitro in humans, rats and dogs, and to determine its metabolic pathways.

Methods: Different In vitro test systems were used, including hepatocytes and liver and non-hepatic microsomes. The samples were incubated with enflicoxib and/or any of its metabolites at 37°C for different times depending on the test system. The analyses were performed by liquid chromatography coupled with either radioactivity detection or high-resolution mass spectrometry.

Results: Enflicoxib was efficiently metabolized by cytochrome P-450 into three main phase I metabolites: M8, E-6132, and M7. The non-active hydroxy-pyrazoline metabolite M8 accounted for most of the fraction metabolized in all the three species. The active pyrazol metabolite E-6132 showed a slow formation rate, especially in dogs, whereas metabolite M7 was a secondary metabolite formed by oxidation of M8. In hepatocytes, diverse phase II metabolite conjugates were formed, including enflicoxib glucuronide, M8 glucuronide, E-6132 glucuronide, M7 glucuronide, and M7 sulfate. Metabolite E-6132 was most probably eliminated by a unique glucuronidation reaction at a very low rate.

Conclusion: The phase I metabolism of enflicoxib was qualitatively very similar among rats, humans and dogs. The low formation and glucuronidation rates of the active enflicoxib metabolite E-6132 in dogs are postulated as key factors underlying the mechanism of its long-lasting pharmacokinetics and enflicoxib's overall sustained efficacy.

Keywords: Enflicoxib, metabolism, CYP, COX-2, dog, rat, humans.

Graphical Abstract
[1]
European Commission Union Register of veterinary medicinal products. Daxocox. 2021. Available from: https://ec.europa.eu/health/documents/community-register/html/v270.htm [Accessed on: Jun 15, 2021
[2]
Wagemakers, M.; van der Wal, G.E.; Cuberes, R.; Alvarez, I.; Andrés, E.M.; Buxens, J.; Vela, J.M.; Moorlag, H.; Mooij, J.J.; Molema, G. COX-2 inhibition combined with radiation reduces orthotopic glioma outgrowth by targeting the tumor vasculature. Transl. Oncol., 2009, 2(1), 1-7.
[http://dx.doi.org/10.1593/tlo.08160] [PMID: 19252746]
[3]
Iñiguez, M.A.; Punzón, C.; Cacheiro-Llaguno, C.; Díaz-Muñoz, M.D.; Duque, J.; Cuberes, R.; Alvarez, I.; Andrés, E.M.; Buxens, J.; Buschmann, H.; Vela, J.M.; Fresno, M. Cyclooxygenase-independent inhibitory effects on T cell activation of novel 4,5-dihydro-3 trifluoromethyl pyrazole cyclooxygenase-2 inhibitors. Int. Immunopharmacol., 2010, 10(10), 1295-1304.
[http://dx.doi.org/10.1016/j.intimp.2010.07.013] [PMID: 20709632]
[4]
Orjales, A.; Mosquera, R.; López, B.; Olivera, R.; Labeaga, L.; Núñez, M.T. Novel 2-(4-methylsulfonylphenyl)pyrimidine derivatives as highly potent and specific COX-2 inhibitors. Bioorg. Med. Chem., 2008, 16(5), 2183-2199.
[http://dx.doi.org/10.1016/j.bmc.2007.11.079] [PMID: 18158247]
[5]
Pavase, L.S.; Mane, D.V.; Bahetib, K.G. Anti-inflammatory exploration of Sulfonamide containing Diaryl Pyrazoles with promising COX-2 selectivity and enhanced gastric safety profile. J. Heterocycl. Chem., 2018, 55, 913-922.
[http://dx.doi.org/10.1002/jhet.3118]
[6]
Calvet, C.; Cuberes, R.; Pérez-Maseda, C.; Frigola, J. Enantioseparation of novel COX-2 anti-inflammatory drugs by capillary electrophoresis using single and dual cyclodextrin systems. Electrophoresis, 2002, 23(11), 1702-1708.
[http://dx.doi.org/10.1002/1522-2683(200206)23:11<1702::AID-ELPS1702>3.0.CO;2-#] [PMID: 12179991]
[7]
Reinoso, R.F.; Farrán, R.; Moragón, T.; García-Soret, A.; Martínez, L. Pharmacokinetics of E-6087, a new anti-inflammatory agent, in rats and dogs. Biopharm. Drug Dispos., 2001, 22(6), 231-242.
[http://dx.doi.org/10.1002/bdd.258] [PMID: 11754039]
[8]
Homedes, J.; Salichs, M.; Solà, J.; Menargues, A.; Cendrós, J-M.; Encina, G. Pharmacokinetics of enflicoxib in dogs: Effects of prandial state and repeated administration. J. Vet. Pharmacol. Therap., 2021, 1-14.
[http://dx.doi.org/10.1111/jvp.12995]
[9]
Pretel, M.J.; Serafini, M.T.; Port, A.; Cuberes, R.; Frigola, J.; Martinez, L. E-6232 Metabolism. Drug Metab. Rev., 2001, 33(Suppl. 1), 116.
[10]
Woodward, K.N. Assessment of user safety, exposure and risk to veterinary medicinal products in the European Union. Regul. Toxicol. Pharmacol., 2008, 50(1), 114-128.
[http://dx.doi.org/10.1016/j.yrtph.2007.10.007] [PMID: 18060673]
[11]
European Agency for the Evaluation of Medicinal Products. Guideline on user safety for pharmaceutical veterinary medicinal products. 2010. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-user-safety-pharmaceutical-veterinary-medicinal-products_en.pdf [Accessed on: Jun 07, 2021
[12]
Serafini, M.T.; Reinoso, R.F.; Moragón, T.; García-Soret, A.; Carreras, J.; Puig, S. Disposition of [14C]E-6232 in rat. Drug Metab. Rev., 2001, 33(Suppl. 1), 119.
[13]
Subhahar, M.B.; Singh, J.; Albert, P.H.; Kadry, A.M. Pharmacokinetics, metabolism and excretion of celecoxib, a selective cyclooxygenase-2 inhibitor, in horses. J. Vet. Pharmacol. Ther., 2019, 42(5), 518-524.
[http://dx.doi.org/10.1111/jvp.12757] [PMID: 30888074]
[14]
Schneider, M.; Dron, F.; Cuinet, E.; Woehrlé, F. Comparative pharmacokinetic profile of cimicoxib in dogs and cats after IV administration. Vet. J., 2021, 270 120625, 1-5.
[http://dx.doi.org/10.1016/j.tvjl.2021.105625]
[15]
Zhang, J.Y.; Yuan, J.J.; Wang, Y-F.; Bible, R.H., Jr; Breau, A.P.; Breau, A. Pharmacokinetics and metabolism of a COX-2 inhibitor, valdecoxib, in mice. Drug Metab. Dispos., 2003, 31(4), 491-501.
[http://dx.doi.org/10.1124/dmd.31.4.491] [PMID: 12642477]
[16]
Slaughter, D.; Takenaga, N.; Lu, P.; Assang, C.; Walsh, D.J.; Arison, B.H.; Cui, D.; Halpin, R.A.; Geer, L.A.; Vyas, K.P.; Baillie, T.A. Metabolism of rofecoxib in vitro using human liver subcellular fractions. Drug Metab. Dispos., 2003, 31(11), 1398-1408.
[http://dx.doi.org/10.1124/dmd.31.11.1398] [PMID: 14570773]
[17]
Kvaternick, V.; Pollmeier, M.; Fischer, J.; Hanson, P.D. Pharmacokinetics and metabolism of orally administered firocoxib, a novel second generation coxib, in horses. J. Vet. Pharmacol. Ther., 2007, 30(3), 208-217.
[http://dx.doi.org/10.1111/j.1365-2885.2007.00840.x] [PMID: 17472652]

© 2024 Bentham Science Publishers | Privacy Policy