Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Systematic Review Article

神经变性和神经胶质激活相关的脑脊液生物标志物作为阿尔茨海默病的诊断:系统综述和进一步分析

卷 19, 期 1, 2022

页: [32 - 46] 页: 15

弟呕挨: 10.2174/1567205018666211208142702

价格: $65

Open Access Journals Promotions 2
摘要

目的:最近,神经元特异性烯醇化酶 (NSE)、Visinin-like protein-1 (VLP-1)、neurogranin (Ng) 和 YKL-40 已被确定为神经元变性和神经胶质激活生物标志物的候选者。因此,我们进行了全面的荟萃分析,以评估 CSF NSE、VLP-1、Ng 和 YKL-40 在阿尔茨海默病 (AD) 中的诊断价值。 方法:我们搜索了 Pubmed、MEDLINE、EMBASE 数据库,以研究截至 2020 年 12 月与对照组或其他痴呆症患者相比,AD 患者的 CSF NSE、VLP-1、Ng 和 YKL-40 水平。 结果:本荟萃分析共包含 51 项研究,包括 6248 名痴呆症患者和 3861 名对照。其中AD患者3262例,轻度认知障碍(MCI)患者2456例,血管性痴呆(VaD)173例,额颞叶痴呆(FTD)221例,路易体痴呆(DLB)136例。我们的研究表明,与健康对照组相比,AD 患者的 CSF NSE、VLP-1、Ng 和 YKL-40 水平升高。我们还观察到 AD 中的 CSF NSE 水平高于 VaD,这表明 CSF NSE 可能在区分 AD 和 VaD 中起关键作用。有趣的是,AD 患者的 VLP-1 表达较高,而 DLB 患者的表达较低。此外,我们发现 AD 中 CSF Ng 水平高于 MCI,这意味着 CSF Ng 可能是识别 AD 进展的生物标志物。此外,不仅在 AD 中检测到显着更高的 CSF YKL-40 水平,而且在 FTD、DLB、VaD 中也检测到,表明 YKL-40 对 AD 的诊断不敏感。 结论:我们的研究证实,脑脊液中 NSE、VLP-1 和 Ng 水平可能是有价值的生物标志物,可用于识别更易患 AD 的患者并将 AD 与其他神经退行性痴呆症区分开来。

关键词: 脑脊液生物标志物、神经元特异性烯醇化酶、VLP-1、神经粒蛋白、YKL-40、阿尔茨海默病

[1]
Spence J, Chintapenta M, Kwon HI, Blaszczyk AT. A brief review of three common supplements used in Alzheimer’s disease. Consult Pharm 2017; 32(7): 412-4.
[http://dx.doi.org/10.4140/TCP.n.2017.412] [PMID: 28701253]
[2]
Llorens F, Thüne K, Tahir W, et al. YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol Neurodegener 2017; 12(1): 83.
[http://dx.doi.org/10.1186/s13024-017-0226-4] [PMID: 29126445]
[3]
Wang L, Gao T, Cai T, Li K, Zheng P, Liu J. Cerebrospinal fluid levels of YKL-40 in prodromal Alzheimer’s disease. Neurosci Lett 2020; 715: 134658.
[http://dx.doi.org/10.1016/j.neulet.2019.134658] [PMID: 31794792]
[4]
Hellwig K, Kvartsberg H, Portelius E, et al. Neurogranin and YKL-40: independent markers of synaptic degeneration and neuroinflammation in Alzheimer’s disease. Alzheimers Res Ther 2015; 7: 74.
[http://dx.doi.org/10.1186/s13195-015-0161-y] [PMID: 26698298]
[5]
Braunewell KH, Klein-Szanto AJ. Visinin-like proteins (VSNLs): interaction partners and emerging functions in signal transduction of a subfamily of neuronal Ca2+ -sensor proteins. Cell Tissue Res 2009; 335(2): 301-16.
[http://dx.doi.org/10.1007/s00441-008-0716-3] [PMID: 18989702]
[6]
Laterza OF, Modur VR, Crimmins DL, et al. Identification of novel brain biomarkers. Clin Chem 2006; 52(9): 1713-21.
[http://dx.doi.org/10.1373/clinchem.2006.070912] [PMID: 16858073]
[7]
Díez-Guerra FJ. Neurogranin, a link between calcium/calmodulin and protein kinase C signaling in synaptic plasticity. IUBMB Life 2010; 62(8): 597-606.
[http://dx.doi.org/10.1002/iub.357] [PMID: 20665622]
[8]
de Wilde MC, Overk CR, Sijben JW, Masliah E. Meta-analysis of synaptic pathology in Alzheimer’s disease reveals selective molecular vesicular machinery vulnerability. Alzheimers Dement 2016; 12(6): 633-44.
[http://dx.doi.org/10.1016/j.jalz.2015.12.005] [PMID: 26776762]
[9]
Kvartsberg H, Lashley T, Murray CE, et al. The intact postsynaptic protein neurogranin is reduced in brain tissue from patients with familial and sporadic Alzheimer’s disease. Acta Neuropathol 2019; 137(1): 89-102.
[http://dx.doi.org/10.1007/s00401-018-1910-3] [PMID: 30244311]
[10]
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34(7): 939-44.
[http://dx.doi.org/10.1212/WNL.34.7.939] [PMID: 6610841]
[11]
Román GC, Tatemichi TK, Erkinjuntti T, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 1993; 43(2): 250-60.
[http://dx.doi.org/10.1212/WNL.43.2.250] [PMID: 8094895]
[12]
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999; 56(3): 303-8.
[http://dx.doi.org/10.1001/archneur.56.3.303] [PMID: 10190820]
[13]
McKeith IG. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop. J Alzheimers Dis 2006; 9(3)(Suppl.): 417-23.
[http://dx.doi.org/10.3233/JAD-2006-9S347] [PMID: 16914880]
[14]
Faber R. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1999; 53(5): 1159.
[http://dx.doi.org/10.1212/WNL.53.5.1158-b] [PMID: 10496296]
[15]
Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25(9): 603-5.
[http://dx.doi.org/10.1007/s10654-010-9491-z] [PMID: 20652370]
[16]
Martinez-Merino L, Iridoy M, Galbete A, et al. Evaluation of chitotriosidase and CC-chemokine ligand 18 as biomarkers of microglia activation in amyotrophic lateral sclerosis. Neurodegener Dis 2018; 18(4): 208-15.
[http://dx.doi.org/10.1159/000490920] [PMID: 30134252]
[17]
Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015; 14(4): 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[18]
Isgrò MA, Bottoni P, Scatena R. Neuron-specific enolase as a biomarker: biochemical and clinical aspects. Adv Exp Med Biol 2015; 867: 125-43.
[http://dx.doi.org/10.1007/978-94-017-7215-0_9] [PMID: 26530364]
[19]
Blennow K, Wallin A, Ekman R. Neuron specific enolase in cerebrospinal fluid: a biochemical marker for neuronal degeneration in dementia disorders? J Neural Transm Park Dis Dement Sect 1994; 8(3): 183-91.
[http://dx.doi.org/10.1007/BF02260939] [PMID: 7748462]
[20]
Parnetti L, Palumbo B, Cardinali L, et al. Cerebrospinal fluid neuron-specific enolase in Alzheimer’s disease and vascular dementia. Neurosci Lett 1995; 183(1-2): 43-5.
[http://dx.doi.org/10.1016/0304-3940(94)11110-5] [PMID: 7746484]
[21]
Whitaker-Azmitia PM, Wingate M, Borella A, Gerlai R, Roder J, Azmitia EC. Transgenic mice overexpressing the neurotrophic factor S-100 beta show neuronal cytoskeletal and behavioral signs of altered aging processes: implications for Alzheimer’s disease and Down’s syndrome. Brain Res 1997; 776(1-2): 51-60.
[http://dx.doi.org/10.1016/S0006-8993(97)01002-0] [PMID: 9439795]
[22]
Schmidt FM, Mergl R, Stach B, Jahn I, Gertz HJ, Schönknecht P. Elevated levels of cerebrospinal fluid neuron-specific enolase (NSE) in Alzheimer’s disease. Neurosci Lett 2014; 570: 81-5.
[http://dx.doi.org/10.1016/j.neulet.2014.04.007] [PMID: 24746933]
[23]
Chaves ML, Camozzato AL, Ferreira ED, et al. Serum levels of S100B and NSE proteins in Alzheimer’s disease patients. J Neuroinflammation 2010; 7: 6.
[http://dx.doi.org/10.1186/1742-2094-7-6] [PMID: 20105309]
[24]
Palumbo B, Siepi D, Sabalich I, Tranfaglia C, Parnetti L. Cerebrospinal fluid neuron-specific enolase: a further marker of Alzheimer’s disease? Funct Neurol 2008; 23(2): 93-6.
[PMID: 18671910]
[25]
Andreasen N, Gottfries J, Vanmechelen E, et al. Evaluation of CSF biomarkers for axonal and neuronal degeneration, gliosis, and beta-amyloid metabolism in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2001; 71(4): 557-8.
[http://dx.doi.org/10.1136/jnnp.71.4.557] [PMID: 11561022]
[26]
Sulkava R, Viinikka L, Erkinjuntti T, Roine R. Cerebrospinal fluid neuron-specific enolase is decreased in multi-infarct dementia, but unchanged in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1988; 51(4): 549-51.
[http://dx.doi.org/10.1136/jnnp.51.4.549] [PMID: 3379429]
[27]
Braunewell KH. The visinin-like proteins VILIP-1 and VILIP-3 in Alzheimer’s disease-old wine in new bottles. Front Mol Neurosci 2012; 5: 20.
[http://dx.doi.org/10.3389/fnmol.2012.00020] [PMID: 22375104]
[28]
Mavroudis IA, Petridis F, Chatzikonstantinou S, Karantali E, Kazis D. A meta-analysis on the levels of VILIP-1 in the CSF of Alzheimer’s disease compared to normal controls and other neurodegenerative conditions. Aging Clin Exp Res 2021; 33(2): 265-72.
[http://dx.doi.org/10.1007/s40520-019-01458-2] [PMID: 31939203]
[29]
Kester MI, Teunissen CE, Sutphen C, et al. Cerebrospinal fluid VILIP-1 and YKL-40, candidate biomarkers to diagnose, predict and monitor Alzheimer’s disease in a memory clinic cohort. Alzheimers Res Ther 2015; 7(1): 59.
[http://dx.doi.org/10.1186/s13195-015-0142-1] [PMID: 26383836]
[30]
Lee JM, Blennow K, Andreasen N, et al. The brain injury biomarker VLP-1 is increased in the cerebrospinal fluid of Alzheimer disease patients. Clin Chem 2008; 54(10): 1617-23.
[http://dx.doi.org/10.1373/clinchem.2008.104497] [PMID: 18703769]
[31]
Babić Leko M, Willumsen N, Nikolac Perković M, et al. Association of MAPT haplotype-tagging polymorphisms with cerebrospinal fluid biomarkers of Alzheimer’s disease: A preliminary study in a Croatian cohort. Brain Behav 2018; 8(11): e01128.
[http://dx.doi.org/10.1002/brb3.1128] [PMID: 30329219]
[32]
Tarawneh R, D’Angelo G, Macy E, et al. Visinin-like protein-1: diagnostic and prognostic biomarker in Alzheimer disease. Ann Neurol 2011; 70(2): 274-85.
[http://dx.doi.org/10.1002/ana.22448] [PMID: 21823155]
[33]
Tarawneh R, Lee JM, Ladenson JH, Morris JC, Holtzman DM. CSF VILIP-1 predicts rates of cognitive decline in early Alzheimer disease. Neurology 2012; 78(10): 709-19.
[http://dx.doi.org/10.1212/WNL.0b013e318248e568] [PMID: 22357717]
[34]
Luo X, Hou L, Shi H, et al. CSF levels of the neuronal injury biomarker visinin-like protein-1 in Alzheimer’s disease and dementia with Lewy bodies. J Neurochem 2013; 127(5): 681-90.
[http://dx.doi.org/10.1111/jnc.12331] [PMID: 23800322]
[35]
Tarawneh R, Head D, Allison S, et al. Cerebrospinal Fluid markers of neurodegeneration and rates of brain atrophy in early Alzheimer Disease. JAMA Neurol 2015; 72(6): 656-65.
[http://dx.doi.org/10.1001/jamaneurol.2015.0202] [PMID: 25867677]
[36]
Babić Leko M, Borovečki F, Dejanović N, Hof PR, Šimić G. Predictive value of cerebrospinal fluid visinin-like protein-1 levels for Alzheimer’s Disease early detection and differential diagnosis in patients with mild cognitive impairment. J Alzheimers Dis 2016; 50(3): 765-78.
[http://dx.doi.org/10.3233/JAD-150705] [PMID: 26836160]
[37]
Zhang H, Ng KP, Therriault J, et al. Cerebrospinal fluid phosphorylated tau, visinin-like protein-1, and chitinase-3-like protein 1 in mild cognitive impairment and Alzheimer’s disease. Transl Neurodegener 2018; 7: 23.
[http://dx.doi.org/10.1186/s40035-018-0127-7] [PMID: 30311914]
[38]
Tarawneh R, D’Angelo G, Crimmins D, et al. Diagnostic and prognostic utility of the synaptic marker neurogranin in Alzheimer disease. JAMA Neurol 2016; 73(5): 561-71.
[http://dx.doi.org/10.1001/jamaneurol.2016.0086] [PMID: 27018940]
[39]
Masliah E, Mallory M, Alford M, et al. Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 2001; 56(1): 127-9.
[http://dx.doi.org/10.1212/WNL.56.1.127] [PMID: 11148253]
[40]
Petersen A, Gerges NZ. Neurogranin regulates CaM dynamics at dendritic spines. Sci Rep 2015; 5: 11135.
[http://dx.doi.org/10.1038/srep11135] [PMID: 26084473]
[41]
Portelius E, Brinkmalm G, Tran AJ, Zetterberg H, Westman-Brinkmalm A, Blennow K. Identification of novel APP/Abeta isoforms in human cerebrospinal fluid. Neurodegener Dis 2009; 6(3): 87-94.
[http://dx.doi.org/10.1159/000203774] [PMID: 19229112]
[42]
Kester MI, Teunissen CE, Crimmins DL, et al. Neurogranin as a cerebrospinal fluid biomarker for synaptic loss in symptomatic Alzheimer disease. JAMA Neurol 2015; 72(11): 1275-80.
[http://dx.doi.org/10.1001/jamaneurol.2015.1867] [PMID: 26366630]
[43]
Kvartsberg H, Duits FH, Ingelsson M, et al. Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer’s disease. Alzheimers Dement 2015; 11(10): 1180-90.
[http://dx.doi.org/10.1016/j.jalz.2014.10.009] [PMID: 25533203]
[44]
Portelius E, Olsson B, Höglund K, et al. Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology. Acta Neuropathol 2018; 136(3): 363-76.
[http://dx.doi.org/10.1007/s00401-018-1851-x] [PMID: 29700597]
[45]
Janelidze S, Hertze J, Zetterberg H, et al. Cerebrospinal fluid neurogranin and YKL-40 as biomarkers of Alzheimer’s disease. Ann Clin Transl Neurol 2015; 3(1): 12-20.
[http://dx.doi.org/10.1002/acn3.266] [PMID: 26783546]
[46]
Pereira JB, Westman E, Hansson O. Association between cerebrospinal fluid and plasma neurodegeneration biomarkers with brain atrophy in Alzheimer’s disease. Neurobiol Aging 2017; 58: 14-29.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.06.002] [PMID: 28692877]
[47]
De Vos A, Struyfs H, Jacobs D, et al. The cerebrospinal fluid neurogranin/bace1 ratio is a potential correlate of cognitive decline in Alzheimer’s disease. J Alzheimers Dis 2016; 53(4): 1523-38.
[http://dx.doi.org/10.3233/JAD-160227] [PMID: 27392859]
[48]
Wang L. Association of cerebrospinal fluid Neurogranin with Alzheimer’s disease. Aging Clin Exp Res 2019; 31(2): 185-91.
[http://dx.doi.org/10.1007/s40520-018-0948-3] [PMID: 29667155]
[49]
Headley A, De Leon-Benedetti A, Dong C, et al. Neurogranin as a predictor of memory and executive function decline in MCI patients. Neurology 2018; 90(10): e887-95.
[http://dx.doi.org/10.1212/WNL.0000000000005057] [PMID: 29429972]
[50]
Sanfilippo C, Forlenza O, Zetterberg H, Blennow K. Increased neurogranin concentrations in cerebrospinal fluid of Alzheimer’s disease and in mild cognitive impairment due to AD. J Neural Transm (Vienna) 2016; 123(12): 1443-7.
[http://dx.doi.org/10.1007/s00702-016-1597-3] [PMID: 27531278]
[51]
Lista S, Toschi N, Baldacci F, et al. Cerebrospinal fluid neurogranin as a biomarker of neurodegenerative diseases: a cross-sectional study. J Alzheimers Dis 2017; 59(4): 1327-34.
[http://dx.doi.org/10.3233/JAD-170368] [PMID: 28731449]
[52]
Antonell A, Tort-Merino A, Ríos J, et al. Synaptic, axonal damage and inflammatory cerebrospinal fluid biomarkers in neurodegenerative dementias. Alzheimers Dement 2020; 16(2): 262-72.
[http://dx.doi.org/10.1016/j.jalz.2019.09.001] [PMID: 31668967]
[53]
Merluzzi AP, Carlsson CM, Johnson SC, et al. Neurodegeneration, synaptic dysfunction, and gliosis are phenotypic of Alzheimer dementia. Neurology 2018; 91(5): e436-43.
[http://dx.doi.org/10.1212/WNL.0000000000005901] [PMID: 29959263]
[54]
Sutphen CL, McCue L, Herries EM, et al. Longitudinal decreases in multiple cerebrospinal fluid biomarkers of neuronal injury in symptomatic late onset Alzheimer’s disease. Alzheimers Dement 2018; 14(7): 869-79.
[http://dx.doi.org/10.1016/j.jalz.2018.01.012] [PMID: 29580670]
[55]
Blennow K, Diaz-Lucena D, Zetterberg H, et al. CSF neurogranin as a neuronal damage marker in CJD: a comparative study with AD. J Neurol Neurosurg Psychiatry 2019; 90(8): 846-53.
[http://dx.doi.org/10.1136/jnnp-2018-320155] [PMID: 31097472]
[56]
Vogt NM, Romano KA, Darst BF, et al. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease. Alzheimers Res Ther 2018; 10(1): 124.
[http://dx.doi.org/10.1186/s13195-018-0451-2] [PMID: 30579367]
[57]
Falgàs N, Ruiz-Peris M, Pérez-Millan A, et al. Contribution of CSF biomarkers to early-onset Alzheimer’s disease and frontotemporal dementia neuroimaging signatures. Hum Brain Mapp 2020; 41(8): 2004-13.
[http://dx.doi.org/10.1002/hbm.24925] [PMID: 31944489]
[58]
Galasko D, Xiao M, Xu D, et al. Synaptic biomarkers in CSF aid in diagnosis, correlate with cognition and predict progression in MCI and Alzheimer’s disease. Alzheimers Dement (N Y) 2019; 5: 871-82.
[http://dx.doi.org/10.1016/j.trci.2019.11.002] [PMID: 31853477]
[59]
Kvartsberg H, Portelius E, Andreasson U, et al. Characterization of the postsynaptic protein neurogranin in paired cerebrospinal fluid and plasma samples from Alzheimer’s disease patients and healthy controls. Alzheimers Res Ther 2015; 7(1): 40.
[http://dx.doi.org/10.1186/s13195-015-0124-3] [PMID: 26136856]
[60]
Wang J, Zhang X, Zhu B, Fu P. Association of clusterin levels in cerebrospinal fluid with synaptic degeneration across the Alzheimer’s disease continuum. Neuropsychiatr Dis Treat 2020; 16: 183-90.
[http://dx.doi.org/10.2147/NDT.S224877] [PMID: 32021212]
[61]
Bos I, Vos S, Verhey F, et al. Cerebrospinal fluid biomarkers of neurodegeneration, synaptic integrity, and astroglial activation across the clinical Alzheimer’s disease spectrum. Alzheimers Dement 2019; 15(5): 644-54.
[http://dx.doi.org/10.1016/j.jalz.2019.01.004] [PMID: 30853464]
[62]
De Vos A, Jacobs D, Struyfs H, et al. C-terminal neurogranin is increased in cerebrospinal fluid but unchanged in plasma in Alzheimer’s disease. Alzheimers Dement 2015; 11(12): 1461-9.
[http://dx.doi.org/10.1016/j.jalz.2015.05.012] [PMID: 26092348]
[63]
Ye X, Zhou W, Zhang J. Association of CSF CD40 levels and synaptic degeneration across the Alzheimer’s disease spectrum. Neurosci Lett 2019; 694: 41-5.
[http://dx.doi.org/10.1016/j.neulet.2018.11.019] [PMID: 30447377]
[64]
Weydt P, Oeckl P, Huss A, et al. Neurofilament levels as biomarkers in asymptomatic and symptomatic familial amyotrophic lateral sclerosis. Ann Neurol 2016; 79(1): 152-8.
[http://dx.doi.org/10.1002/ana.24552] [PMID: 26528863]
[65]
Schultz NA, Johansen JS. YKL-40-a protein in the field of translational medicine: A role as a biomarker in cancer patients? Cancers (Basel) 2010; 2(3): 1453-91.
[http://dx.doi.org/10.3390/cancers2031453] [PMID: 24281168]
[66]
Shao R. YKL-40 acts as an angiogenic factor to promote tumor angiogenesis. Front Physiol 2013; 4: 122.
[http://dx.doi.org/10.3389/fphys.2013.00122] [PMID: 23755018]
[67]
Qin G, Li X, Chen Z, et al. Prognostic value of YKL-40 in patients with Glioblastoma: a systematic review and meta-analysis. Mol Neurobiol 2017; 54(5): 3264-70.
[http://dx.doi.org/10.1007/s12035-016-9878-2] [PMID: 27090900]
[68]
Baldacci F, Lista S, Cavedo E, Bonuccelli U, Hampel H. Diagnostic function of the neuroinflammatory biomarker YKL-40 in Alzheimer’s disease and other neurodegenerative diseases. Expert Rev Proteomics 2017; 14(4): 285-99.
[http://dx.doi.org/10.1080/14789450.2017.1304217] [PMID: 28281838]
[69]
Abu-Rumeileh S, Steinacker P, Polischi B, et al. CSF biomarkers of neuroinflammation in distinct forms and subtypes of neurodegenerative dementia. Alzheimers Res Ther 2019; 12(1): 2.
[http://dx.doi.org/10.1186/s13195-019-0562-4] [PMID: 31892365]
[70]
Gispert JD, Monté GC, Falcon C, et al. CSF YKL-40 and pTau181 are related to different cerebral morphometric patterns in early AD. Neurobiol Aging 2016; 38: 47-55.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.10.022] [PMID: 26827642]
[71]
Antonell A, Mansilla A, Rami L, et al. Cerebrospinal fluid level of YKL-40 protein in preclinical and prodromal Alzheimer’s disease. J Alzheimers Dis 2014; 42(3): 901-8.
[http://dx.doi.org/10.3233/JAD-140624] [PMID: 25024322]
[72]
Craig-Schapiro R, Perrin RJ, Roe CM, et al. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry 2010; 68(10): 903-12.
[http://dx.doi.org/10.1016/j.biopsych.2010.08.025] [PMID: 21035623]
[73]
Olsson B, Hertze J, Lautner R, et al. Microglial markers are elevated in the prodromal phase of Alzheimer’s disease and vascular dementia. J Alzheimers Dis 2013; 33(1): 45-53.
[http://dx.doi.org/10.3233/JAD-2012-120787] [PMID: 22890100]
[74]
Rosén C, Andersson CH, Andreasson U, et al. Increased levels of chitotriosidase and YKL-40 in cerebrospinal fluid from patients with Alzheimer’s disease. Dement Geriatr Cogn Disord Extra 2014; 4(2): 297-304.
[http://dx.doi.org/10.1159/000362164] [PMID: 25254036]
[75]
Alcolea D, Martínez-Lage P, Sánchez-Juan P, et al. Amyloid precursor protein metabolism and inflammation markers in preclinical Alzheimer disease. Neurology 2015; 85(7): 626-33.
[http://dx.doi.org/10.1212/WNL.0000000000001859] [PMID: 26180139]
[76]
Mattsson N, Tabatabaei S, Johansson P, et al. Cerebrospinal fluid microglial markers in Alzheimer’s disease: elevated chitotriosidase activity but lack of diagnostic utility. Neuromolecular Med 2011; 13(2): 151-9.
[http://dx.doi.org/10.1007/s12017-011-8147-9] [PMID: 21567187]
[77]
Alcolea D, Carmona-Iragui M, Suárez-Calvet M, et al. Relationship between β-Secretase, inflammation and core cerebrospinal fluid biomarkers for Alzheimer’s disease. J Alzheimers Dis 2014; 42(1): 157-67.
[http://dx.doi.org/10.3233/JAD-140240] [PMID: 24820015]
[78]
Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 2016; 15(7): 673-84.
[http://dx.doi.org/10.1016/S1474-4422(16)00070-3] [PMID: 27068280]
[79]
Dulewicz M, Kulczyńska-Przybik A, Mroczko B. Neurogranin and VILIP-1 as molecular indicators of neurodegeneration in Alzheimer’s disease: a systematic review and meta-analysis. Int J Mol Sci 2020; 21(21): 8335.
[http://dx.doi.org/10.3390/ijms21218335] [PMID: 33172069]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy