Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Role of Mechanoinsensitive Nociceptors in Painful Diabetic Peripheral Neuropathy

Author(s): Mikhail I. Nemenov*, J. Robinson Singleton and Louis S. Premkumar*

Volume 18, Issue 5, 2022

Published on: 12 January, 2022

Article ID: e081221198649 Pages: 16

DOI: 10.2174/1573399818666211208101555

Price: $65

Open Access Journals Promotions 2
Abstract

The cutaneous mechanisms that trigger spontaneous neuropathic pain in diabetic peripheral neuropathy (PDPN) are far from clear. Two types of nociceptors are found within the epidermal and dermal skin layers. Small-diameter lightly myelinated Aδ and unmyelinated C cutaneous mechano and heat-sensitive (AMH and CMH) and C mechanoinsensitive (CMi) nociceptors transmit pain from the periphery to central nervous system. AMH and CMH fibers are mainly located in the epidermis, and CMi fibers are distributed in the dermis. In DPN, dying back intra-epidermal AMH and CMH fibers leads to reduced pain sensitivity, and the patients exhibit significantly increased pain thresholds to acute pain when tested using traditional methods. The role of CMi fibers in painful neuropathies has not been fully explored. Microneurography has been the only tool to access CMi fibers and differentiate AMH, CMH, and CMi fiber types. Due to the complexity, its use is impractical in clinical settings. In contrast, a newly developed diode laser fiber selective stimulation (DLss) technique allows to safely and selectively stimulate Aδ and C fibers in the superficial and deep skin layers. DLss data demonstrate that patients with painful DPN have increased Aδ fiber pain thresholds, while C-fiber thresholds are intact because, in these patients, CMi fibers are abnormally spontaneously active. It is also possible to determine the involvement of CMi fibers by measuring the area of DLss-induced neurogenic axon reflex flare. The differences in AMH, CMH, and CMi fibers identify patients with painful and painless neuropathy. In this review, we will discuss the role of CMi fibers in PDPN.

Keywords: Diabetic peripheral neuropathy DPN, painful diabetic neuropathy PDPN, aδ-mechano heat sensitive AMH, Cmechano heat sensitive CMH, C-mechano insensitive CMi, transient receptor potential vanilloid 1 TRPV1.

[1]
Gaskin DJ, Richard P. The economic costs of pain in the United States. J Pain 2012; 13(8): 715-24.
[http://dx.doi.org/10.1016/j.jpain.2012.03.009] [PMID: 22607834]
[2]
Gylfadottir SS, Weeracharoenkul D, Andersen ST, Niruthisard S, Suwanwalaikorn S, Jensen TS. Painful and non-painful diabetic polyneuropathy: Clinical characteristics and diagnostic issues. J Diabetes Investig 2019; 10(5): 1148-57.
[http://dx.doi.org/10.1111/jdi.13105] [PMID: 31222961]
[3]
Boulton AJ, Malik RA, Arezzo JC, Sosenko JM. Diabetic somatic neuropathies. Diabetes Care 2004; 27(6): 1458-86.
[http://dx.doi.org/10.2337/diacare.27.6.1458] [PMID: 15161806]
[4]
Boulton AJ, Vinik AI, Arezzo JC, et al. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care 2005; 28(4): 956-62.
[http://dx.doi.org/10.2337/diacare.28.4.956] [PMID: 15793206]
[5]
Tesfaye S, Boulton AJ, Dyck PJ, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010; 33(10): 2285-93.
[http://dx.doi.org/10.2337/dc10-1303] [PMID: 20876709]
[6]
Dyck PJ, Albers JW, Andersen H, et al. Diabetic polyneuropathies: update on research definition, diagnostic criteria and estimation of severity. Diabetes Metab Res Rev 2011; 27(7): 620-8.
[http://dx.doi.org/10.1002/dmrr.1226] [PMID: 21695763]
[7]
Gregg EW, Gu Q, Williams D, et al. Prevalence of lower extremity diseases associated with normal glucose levels, impaired fasting glucose, and diabetes among U.S. adults aged 40 or older. Diabetes Res Clin Pract 2007; 77(3): 485-8.
[http://dx.doi.org/10.1016/j.diabres.2007.01.005] [PMID: 17306411]
[8]
Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet 2010; 376(9739): 419-30.
[http://dx.doi.org/10.1016/S0140-6736(10)60576-4] [PMID: 20594588]
[9]
Vincent AM, Callaghan BC, Smith AL, Feldman EL. Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol 2011; 7(10): 573-83.
[http://dx.doi.org/10.1038/nrneurol.2011.137] [PMID: 21912405]
[10]
Tesfaye S, Chaturvedi N, Eaton SE, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med 2005; 352(4): 341-50.
[http://dx.doi.org/10.1056/NEJMoa032782] [PMID: 15673800]
[11]
Smith AG, Singleton JR. Obesity and hyperlipidemia are risk factors for early diabetic neuropathy. J Diabetes Complications 2013; 27(5): 436-42.
[http://dx.doi.org/10.1016/j.jdiacomp.2013.04.003] [PMID: 23731827]
[12]
Costa LA, Canani LH, Lisbôa HR, Tres GS, Gross JL. Aggregation of features of the metabolic syndrome is associated with increased prevalence of chronic complications in Type 2 diabetes. Diabet Med 2004; 21(3): 252-5.
[http://dx.doi.org/10.1111/j.1464-5491.2004.01124.x] [PMID: 15008835]
[13]
Leinninger GM, Vincent AM, Feldman EL. The role of growth factors in diabetic peripheral neuropathy. J Peripher Nerv Syst 2004; 9(1): 26-53.
[http://dx.doi.org/10.1111/j.1085-9489.2004.09105.x] [PMID: 14871451]
[14]
Guo G, Kan M, Martinez JA, Zochodne DW. Local insulin and the rapid regrowth of diabetic epidermal axons. Neurobiol Dis 2011; 43(2): 414-21.
[http://dx.doi.org/10.1016/j.nbd.2011.04.012] [PMID: 21530660]
[15]
Boulton AJ. Diabetic neuropathy and foot complications. Handb Clin Neurol 2014; 126: 97-107.
[http://dx.doi.org/10.1016/B978-0-444-53480-4.00008-4] [PMID: 25410217]
[16]
Tesfaye S, Vileikyte L, Rayman G, et al. Painful diabetic peripheral neuropathy: consensus recommendations on diagnosis, assessment and management. Diabetes Metab Res Rev 2011; 27(7): 629-38.
[http://dx.doi.org/10.1002/dmrr.1225] [PMID: 21695762]
[17]
Bowling FL, Rashid ST, Boulton AJ. Preventing and treating foot complications associated with diabetes mellitus. Nat Rev Endocrinol 2015; 11(10): 606-16.
[http://dx.doi.org/10.1038/nrendo.2015.130] [PMID: 26284447]
[18]
Jensen TS, Finnerup NB. Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol 2014; 13(9): 924-35.
[http://dx.doi.org/10.1016/S1474-4422(14)70102-4] [PMID: 25142459]
[19]
Terkelsen AJ, Karlsson P, Lauria G, Freeman R, Finnerup NB, Jensen TS. The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol 2017; 16(11): 934-44.
[http://dx.doi.org/10.1016/S1474-4422(17)30329-0] [PMID: 29029847]
[20]
Dahlhamer J, Lucas J, Zelaya C, et al. Prevalence of chronic pain and high-impact chronic pain among adults - United States, 2016. MMWR Morb Mortal Wkly Rep 2018; 67(36): 1001-6.
[http://dx.doi.org/10.15585/mmwr.mm6736a2] [PMID: 30212442]
[21]
Kennedy WR, Wendelschafer-Crabb G, Johnson T. Quantitation of epidermal nerves in diabetic neuropathy. Neurology 1996; 47(4): 1042-8.
[http://dx.doi.org/10.1212/WNL.47.4.1042] [PMID: 8857742]
[22]
Lauria G, McArthur JC, Hauer PE, Griffin JW, Cornblath DR. Neuropathological alterations in diabetic truncal neuropathy: evaluation by skin biopsy. J Neurol Neurosurg Psychiatry 1998; 65(5): 762-6.
[http://dx.doi.org/10.1136/jnnp.65.5.762] [PMID: 9810952]
[23]
Rowbotham MC, Yosipovitch G, Connolly MK, Finlay D, Forde G, Fields HL. Cutaneous innervation density in the allodynic form of postherpetic neuralgia. Neurobiol Dis 1996; 3(3): 205-14.
[http://dx.doi.org/10.1006/nbdi.1996.0021] [PMID: 8980021]
[24]
Oaklander AL. The density of remaining nerve endings in human skin with and without postherpetic neuralgia after shingles. Pain 2001; 92(1-2): 139-45.
[http://dx.doi.org/10.1016/S0304-3959(00)00481-4] [PMID: 11323135]
[25]
Petersen KL, Rice FL, Farhadi M, Reda H, Rowbotham MC. Natural history of cutaneous innervation following herpes zoster. Pain 2010; 150(1): 75-82.
[http://dx.doi.org/10.1016/j.pain.2010.04.002] [PMID: 20457490]
[26]
Polydefkis M, Yiannoutsos CT, Cohen BA, et al. Reduced intraepidermal nerve fiber density in HIV-associated sensory neuropathy. Neurology 2002; 58(1): 115-9.
[http://dx.doi.org/10.1212/WNL.58.1.115] [PMID: 11781415]
[27]
Oaklander AL, Rissmiller JG, Gelman LB, Zheng L, Chang Y, Gott R. Evidence of focal small-fiber axonal degeneration in complex regional pain syndrome-I (reflex sympathetic dystrophy). Pain 2006; 120(3): 235-43.
[http://dx.doi.org/10.1016/j.pain.2005.09.036] [PMID: 16427737]
[28]
Pittenger GL, Mehrabyan A, Simmons K, et al. Small fiber neuropathy is associated with the metabolic syndrome. Metab Syndr Relat Disord 2005; 3(2): 113-21.
[http://dx.doi.org/10.1089/met.2005.3.113] [PMID: 18370718]
[29]
Ziegler D, Rathmann W, Dickhaus T, Meisinger C, Mielck A. Neuropathic pain in diabetes, prediabetes and normal glucose tolerance: the MONICA/KORA Augsburg Surveys S2 and S3. Pain Med 2009; 10(2): 393-400.
[http://dx.doi.org/10.1111/j.1526-4637.2008.00555.x] [PMID: 19207236]
[30]
Scott LJ, Griffin JW, Luciano C, et al. Quantitative analysis of epidermal innervation in Fabry disease. Neurology 1999; 52(6): 1249-54.
[http://dx.doi.org/10.1212/WNL.52.6.1249] [PMID: 10214752]
[31]
Kim JH, Dougherty PM, Abdi S. Basic science and clinical management of painful and non-painful chemotherapy-related neuropathy. Gynecol Oncol 2015; 136(3): 453-9.
[http://dx.doi.org/10.1016/j.ygyno.2015.01.524] [PMID: 25584767]
[32]
Orstavik K, Jørum E. Microneurographic findings of relevance to pain in patients with erythromelalgia and patients with diabetic neuropathy. Neurosci Lett 2010; 470(3): 180-4.
[http://dx.doi.org/10.1016/j.neulet.2009.05.061] [PMID: 19481586]
[33]
Ørstavik K, Namer B, Schmidt R, et al. Abnormal function of C- fibers in patients with diabetic neuropathy. J Neurosci 2006; 26(44): 11287-94.
[http://dx.doi.org/10.1523/JNEUROSCI.2659-06.2006] [PMID: 17079656]
[34]
Watkins LR, Maier SF. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev 2002; 82(4): 981-1011.
[http://dx.doi.org/10.1152/physrev.00011.2002] [PMID: 12270950]
[35]
Dyck PJ, Kratz KM, Karnes JL, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology 1993; 43(4): 817-24.
[http://dx.doi.org/10.1212/WNL.43.4.817] [PMID: 8469345]
[36]
Young MJ, Boulton AJ, MacLeod AF, Williams DR, Sonksen PH. A multicentre study of the prevalence of diabetic peripheral neuropathy in the United Kingdom hospital clinic population. Diabetologia 1993; 36(2): 150-4.
[http://dx.doi.org/10.1007/BF00400697] [PMID: 8458529]
[37]
Attal N, Bouhassira D, Baron R. Diagnosis and assessment of neuropathic pain through questionnaires. Lancet Neurol 2018; 17(5): 456-66.
[http://dx.doi.org/10.1016/S1474-4422(18)30071-1] [PMID: 29598922]
[38]
Niv D, Devor M. Refractory neuropathic pain: the nature and extent of the problem. Pain Pract 2006; 6(1): 3-9.
[http://dx.doi.org/10.1111/j.1533-2500.2006.00052.x]
[39]
Jonas R, Namer B, Stockinger L, et al. Tuning in C-nociceptors to reveal mechanisms in chronic neuropathic pain. Ann Neurol 2018; 83(5): 945-57.
[http://dx.doi.org/10.1002/ana.25231] [PMID: 29659054]
[40]
Veves A, Backonja M, Malik RA. Painful diabetic neuropathy: epidemiology, natural history, early diagnosis, and treatment options. Pain Med 2008; 9(6): 660-74.
[http://dx.doi.org/10.1111/j.1526-4637.2007.00347.x] [PMID: 18828198]
[41]
Alleman CJ, Westerhout KY, Hensen M, et al. Humanistic and economic burden of painful diabetic peripheral neuropathy in Europe: A review of the literature. Diabetes Res Clin Pract 2015; 109(2): 215-25.
[http://dx.doi.org/10.1016/j.diabres.2015.04.031] [PMID: 26008721]
[42]
Bril V, England J, Franklin GM, et al. Evidence-based guideline: Treatment of painful diabetic neuropathy: report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology 2011; 76(20): 1758-65.
[http://dx.doi.org/10.1212/WNL.0b013e3182166ebe] [PMID: 21482920]
[43]
Abbott CA, Malik RA, van Ross ER, Kulkarni J, Boulton AJ. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care 2011; 34(10): 2220-4.
[http://dx.doi.org/10.2337/dc11-1108] [PMID: 21852677]
[44]
Obreja O, Ringkamp M, Namer B, et al. Patterns of activity-dependent conduction velocity changes differentiate classes of unmyelinated mechano-insensitive afferents including cold nociceptors, in pig and in human. Pain 2010; 148(1): 59-69.
[http://dx.doi.org/10.1016/j.pain.2009.10.006] [PMID: 19913997]
[45]
Truini A, Spallone V, Morganti R, et al. A cross-sectional study investigating frequency and features of definitely diagnosed diabetic painful polyneuropathy. Pain 2018; 159(12): 2658-66.
[http://dx.doi.org/10.1097/j.pain.0000000000001378] [PMID: 30161042]
[46]
Spallone V, Greco C. Painful and painless diabetic neuropathy: one disease or two? Curr Diab Rep 2013; 13(4): 533-49.
[http://dx.doi.org/10.1007/s11892-013-0387-7] [PMID: 23677582]
[47]
Hébert HL, Veluchamy A, Torrance N, Smith BH. Risk factors for neuropathic pain in diabetes mellitus. Pain 2017; 158(4): 560-8.
[http://dx.doi.org/10.1097/j.pain.0000000000000785] [PMID: 27941499]
[48]
Themistocleous AC, Ramirez JD, Shillo PR, et al. The Pain in Neuropathy Study (PiNS): a cross-sectional observational study determining the somatosensory phenotype of painful and painless diabetic neuropathy. Pain 2016; 157(5): 1132-45.
[http://dx.doi.org/10.1097/j.pain.0000000000000491] [PMID: 27088890]
[49]
Raputova J, Srotova I, Vlckova E, et al. Sensory phenotype and risk factors for painful diabetic neuropathy: a cross-sectional observational study. Pain 2017; 158(12): 2340-53.
[http://dx.doi.org/10.1097/j.pain.0000000000001034] [PMID: 28858986]
[50]
Feldman EL, Stevens MJ, Thomas PK, Brown MB, Canal N, Greene DA. A practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy. Diabetes Care 1994; 17(11): 1281-9.
[http://dx.doi.org/10.2337/diacare.17.11.1281] [PMID: 7821168]
[51]
Meijer JW, Smit AJ, Sonderen EV, Groothoff JW, Eisma WH, Links TP. Symptom scoring systems to diagnose distal polyneuropathy in diabetes: the diabetic neuropathy symptom score. Diabet Med 2002; 19(11): 962-5.
[http://dx.doi.org/10.1046/j.1464-5491.2002.00819.x] [PMID: 12421436]
[52]
Vinik EJ, Hayes RP, Oglesby A, et al. The development and validation of the Norfolk QOL-DN, a new measure of patients’ perception of the effects of diabetes and diabetic neuropathy. Diabetes Technol Ther 2005; 7(3): 497-508.
[http://dx.doi.org/10.1089/dia.2005.7.497] [PMID: 15929681]
[53]
Thomas PK. Classification, differential diagnosis, and staging of diabetic peripheral neuropathy. Diabetes 1997; 46(Suppl. 2): S54-7.
[http://dx.doi.org/10.2337/diab.46.2.S54] [PMID: 9285500]
[54]
Singleton JR, Bixby B, Russell JW, et al. The utah early neuropathy scale: a sensitive clinical scale for early sensory predominant neuropathy. J Peripher Nerv Syst 2008; 13(3): 218-27.
[http://dx.doi.org/10.1111/j.1529-8027.2008.00180.x] [PMID: 18844788]
[55]
Bril V, Perkins BA. Validation of the toronto clinical scoring system for diabetic polyneuropathy. Diabetes Care 2002; 25(11): 2048-52.
[http://dx.doi.org/10.2337/diacare.25.11.2048] [PMID: 12401755]
[56]
Baron R, Maier C, Attal N, et al. Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles. Pain 2017; 158(2): 261-72.
[http://dx.doi.org/10.1097/j.pain.0000000000000753] [PMID: 27893485]
[57]
Bennett M. The LANSS Pain Scale: the Leeds assessment of neuropathic symptoms and signs. Pain 2001; 92(1-2): 147-57.
[http://dx.doi.org/10.1016/S0304-3959(00)00482-6] [PMID: 11323136]
[58]
Bouhassira D, Attal N, Alchaar H, et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 2005; 114(1-2): 29-36.
[http://dx.doi.org/10.1016/j.pain.2004.12.010] [PMID: 15733628]
[59]
Bouhassira D, Attal N, Fermanian J, et al. Development and validation of the neuropathic pain symptom inventory. Pain 2004; 108(3): 248-57.
[http://dx.doi.org/10.1016/j.pain.2003.12.024] [PMID: 15030944]
[60]
Schmidt R, Schmelz M, Weidner C, Handwerker HO, Torebjörk HE. Innervation territories of mechano-insensitive C nociceptors in human skin. J Neurophysiol 2002; 88(4): 1859-66.
[http://dx.doi.org/10.1152/jn.2002.88.4.1859] [PMID: 12364512]
[61]
Kleggetveit IP, Namer B, Schmidt R, et al. High spontaneous activity of C-nociceptors in painful polyneuropathy. Pain 2012; 153(10): 2040-7.
[http://dx.doi.org/10.1016/j.pain.2012.05.017] [PMID: 22986070]
[62]
Jørum E, Schmelz M. Chapter 29 Microneurography in the assessment of neuropathic pain. Handb Clin Neurol 2006; 81: 427-38.
[http://dx.doi.org/10.1016/S0072-9752(06)80033-3] [PMID: 18808851]
[63]
Schmelz M, Petersen LJ. Neurogenic inflammation in human and rodent skin. News Physiol Sci 2001; 16: 33-7.
[http://dx.doi.org/10.1152/physiologyonline.2001.16.1.33]
[64]
Weidner C, Schmelz M, Schmidt R, Hansson B, Handwerker HO, Torebjörk HE. Functional attributes discriminating mechano-insensitive and mechano-responsive C nociceptors in human skin. J Neurosci 1999; 19(22): 10184-90.
[http://dx.doi.org/10.1523/JNEUROSCI.19-22-10184.1999] [PMID: 10559426]
[65]
Campero M, Serra J, Marchettini P, Ochoa JL. Ectopic impulse generation and autoexcitation in single myelinated afferent fibers in patients with peripheral neuropathy and positive sensory symptoms. Muscle Nerve 1998; 21(12): 1661-7.
[http://dx.doi.org/10.1002/(SICI)1097-4598(199812)21:12<1661::AID-MUS6>3.0.CO;2-N] [PMID: 9843066]
[66]
Ochoa JL, Campero M, Serra J, Bostock H. Hyperexcitable polymodal and insensitive nociceptors in painful human neuropathy. Muscle Nerve 2005; 32(4): 459-72.
[http://dx.doi.org/10.1002/mus.20367] [PMID: 15973653]
[67]
Serra J, Campero M, Bostock H, Ochoa J. Two types of C nociceptors in human skin and their behavior in areas of capsaicin-induced secondary hyperalgesia. J Neurophysiol 2004; 91(6): 2770-81.
[http://dx.doi.org/10.1152/jn.00565.2003] [PMID: 14762154]
[68]
Schaible HG, Schmidt RF. Time course of mechanosensitivity changes in articular afferents during a developing experimental arthritis. J Neurophysiol 1988; 60(6): 2180-95.
[http://dx.doi.org/10.1152/jn.1988.60.6.2180] [PMID: 3236065]
[69]
Gebhart GF. Peripheral contributions to visceral hyperalgesia. Can J Gastroenterol 1999; 13(Suppl A): 37-41.
[http://dx.doi.org/10.1155/1999/730765]
[70]
Feng B, Gebhart GF. Characterization of silent afferents in the pelvic and splanchnic innervations of the mouse colorectum. Am J Physiol Gastrointest Liver Physiol 2011; 300(1): G170-80.
[http://dx.doi.org/10.1152/ajpgi.00406.2010] [PMID: 21071510]
[71]
Häbler HJ, Jänig W, Koltzenburg M. Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. J Physiol 1990; 425: 545-62.
[http://dx.doi.org/10.1113/jphysiol.1990.sp018117] [PMID: 2213588]
[72]
Loewenstein WR, Mendelson M. Components of receptor adaptation in a Pacinian corpuscle. J Physiol 1965; 177(3): 377-97.
[http://dx.doi.org/10.1113/jphysiol.1965.sp007598] [PMID: 14321486]
[73]
Loewenstein WR, Skalak R. Mechanical transmission in a Pacinian corpuscle. An analysis and a theory. J Physiol 1966; 182(2): 346-78.
[http://dx.doi.org/10.1113/jphysiol.1966.sp007827] [PMID: 5942033]
[74]
Iggo A, Muir AR. The structure and function of a slowly adapting touch corpuscle in hairy skin. J Physiol 1969; 200(3): 763-96.
[http://dx.doi.org/10.1113/jphysiol.1969.sp008721] [PMID: 4974746]
[75]
Ikeda R, Cha M, Ling J, Jia Z, Coyle D, Gu JG. Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses. Cell 2014; 157(3): 664-75.
[http://dx.doi.org/10.1016/j.cell.2014.02.026] [PMID: 24746027]
[76]
Maksimovic S, Nakatani M, Baba Y, et al. Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 2014; 509(7502): 617-21.
[http://dx.doi.org/10.1038/nature13250] [PMID: 24717432]
[77]
Wetzel C, Hu J, Riethmacher D, et al. A stomatin-domain protein essential for touch sensation in the mouse. Nature 2007; 445(7124): 206-9.
[http://dx.doi.org/10.1038/nature05394] [PMID: 17167420]
[78]
Woo SH, Ranade S, Weyer AD, et al. Piezo2 is required for Merkel-cell mechanotransduction. Nature 2014; 509(7502): 622-6.
[http://dx.doi.org/10.1038/nature13251] [PMID: 24717433]
[79]
Katta S, Krieg M, Goodman MB. Feeling force: physical and physiological principles enabling sensory mechanotransduction. Annu Rev Cell Dev Biol 2015; 31: 347-71.
[http://dx.doi.org/10.1146/annurev-cellbio-100913-013426] [PMID: 26566115]
[80]
Hu J, Lewin GR. Mechanosensitive currents in the neurites of cultured mouse sensory neurones. J Physiol 2006; 577(Pt 3): 815-28.
[http://dx.doi.org/10.1113/jphysiol.2006.117648] [PMID: 17038434]
[81]
Schmidt R, Schmelz M, Forster C, Ringkamp M, Torebjörk E, Handwerker H. Novel classes of responsive and unresponsive C nociceptors in human skin. J Neurosci 1995; 15(1 Pt 1): 333-41.
[http://dx.doi.org/10.1523/JNEUROSCI.15-01-00333.1995] [PMID: 7823139]
[82]
Meyer RA, Davis KD, Cohen RH, Treede RD, Campbell JN. Mechanically Insensitive Afferents (MIAs) in cutaneous nerves of monkey. Brain Res 1991; 561(2): 252-61.
[http://dx.doi.org/10.1016/0006-8993(91)91601-V] [PMID: 1802341]
[83]
Sauerstein K, Liebelt J, Namer B, Schmidt R, Rukwied R, Schmelz M. Low-frequency stimulation of silent nociceptors induces secondary mechanical hyperalgesia in human skin. Neuroscience 2018; 387: 4-12.
[http://dx.doi.org/10.1016/j.neuroscience.2018.03.006] [PMID: 29551562]
[84]
Ruehle BS, Handwerker HO, Lennerz JK, Ringler R, Forster C. Brain activation during input from mechanoinsensitive versus polymodal C-nociceptors. J Neurosci 2006; 26(20): 5492-9.
[http://dx.doi.org/10.1523/JNEUROSCI.2059-05.2006] [PMID: 16707801]
[85]
Veldhuijzen DS, Nemenov MI, Keaser M, Zhuo J, Gullapalli RP, Greenspan JD. Differential brain activation associated with laser-evoked burning and pricking pain: An event-related fMRI study. Pain 2009; 141(1-2): 104-13.
[http://dx.doi.org/10.1016/j.pain.2008.10.027] [PMID: 19058914]
[86]
Boland EG, Selvarajah D, Hunter M, et al. Central pain processing in chronic chemotherapy-induced peripheral neuropathy: a functional magnetic resonance imaging study. PLoS One 2014; 9(5): e96474.
[http://dx.doi.org/10.1371/journal.pone.0096474] [PMID: 24821182]
[87]
Selvarajah D, Wilkinson ID, Gandhi R, Griffiths PD, Tesfaye S. Microvascular perfusion abnormalities of the Thalamus in painful but not painless diabetic polyneuropathy: a clue to the pathogenesis of pain in type 1 diabetes. Diabetes Care 2011; 34(3): 718-20.
[http://dx.doi.org/10.2337/dc10-1550] [PMID: 21282344]
[88]
Shillo P, Sloan G, Greig M, et al. Painful and painless diabetic neuropathies: what is the difference? Curr Diab Rep 2019; 19(6): 32.
[http://dx.doi.org/10.1007/s11892-019-1150-5] [PMID: 31065863]
[89]
Schmelz M. Does spontaneous activity in C-nociceptors provide a readout to quantify neuropathic pain? Pain 2012; 153(1): 5-6.
[http://dx.doi.org/10.1016/j.pain.2011.09.027] [PMID: 22014531]
[90]
Namer B, Barta B, Ørstavik K, et al. Microneurographic assessment of C-fibre function in aged healthy subjects. J Physiol 2009; 587(2): 419-28.
[http://dx.doi.org/10.1113/jphysiol.2008.162941] [PMID: 19064617]
[91]
Tillman DB, Treede RD, Meyer RA, Campbell JN. Response of C fibre nociceptors in the anaesthetized monkey to heat stimuli: correlation with pain threshold in humans. J Physiol 1995; 485(3): 767-74.
[http://dx.doi.org/10.1113/jphysiol.1995.sp020767]
[92]
Schmelz M, Schmid R, Handwerker HO, Torebjörk HE. Encoding of burning pain from capsaicin-treated human skin in two categories of unmyelinated nerve fibres. Brain 2000; 123(Pt 3): 560-71.
[http://dx.doi.org/10.1093/brain/123.3.560] [PMID: 10686178]
[93]
Schmelz M, Michael K, Weidner C, Schmidt R, Torebjörk HE, Handwerker HO. Which nerve fibers mediate the axon reflex flare in human skin? Neuroreport 2000; 11(3): 645-8.
[http://dx.doi.org/10.1097/00001756-200002280-00041] [PMID: 10718329]
[94]
Krämer HH, Rolke R, Bickel A, Birklein F. Thermal thresholds predict painfulness of diabetic neuropathies. Diabetes Care 2004; 27(10): 2386-91.
[http://dx.doi.org/10.2337/diacare.27.10.2386] [PMID: 15451905]
[95]
Serra J, Bostock H, Solà R, et al. Microneurographic identification of spontaneous activity in C-nociceptors in neuropathic pain states in humans and rats. Pain 2012; 153(1): 42-55.
[http://dx.doi.org/10.1016/j.pain.2011.08.015] [PMID: 21993185]
[96]
Schmelz M, Forster C, Schmidt R, Ringkamp M, Handwerker HO, Torebjörk HE. Delayed responses to electrical stimuli reflect C-fiber responsiveness in human microneurography. Exp Brain Res 1995; 104(2): 331-6.
[http://dx.doi.org/10.1007/BF00242018] [PMID: 7672025]
[97]
Kankel J, Obreja O, Kleggetveit IP, et al. Differential effects of low dose lidocaine on C-fiber classes in humans. J Pain 2012; 13(12): 1232-41.
[http://dx.doi.org/10.1016/j.jpain.2012.09.008] [PMID: 23182228]
[98]
Koppert W, Ostermeier N, Sittl R, Weidner C, Schmelz M. Low- dose lidocaine reduces secondary hyperalgesia by a central mode of action. Pain 2000; 85(1-2): 217-24.
[http://dx.doi.org/10.1016/S0304-3959(99)00268-7] [PMID: 10692621]
[99]
Mitchell K, Lebovitz EE, Keller JM, Mannes AJ, Nemenov MI, Iadarola MJ. Nociception and inflammatory hyperalgesia evaluated in rodents using infrared laser stimulation after Trpv1 gene knockout or resiniferatoxin lesion. Pain 2014; 155(4): 733-45.
[http://dx.doi.org/10.1016/j.pain.2014.01.007] [PMID: 24434730]
[100]
Cuellar JM, Manering NA, Klukinov M, Nemenov MI, Yeomans DC. Thermal nociceptive properties of trigeminal afferent neurons in rats. Mol Pain 2010; 6: 39.
[http://dx.doi.org/10.1186/1744-8069-6-39] [PMID: 20609212]
[101]
Tzabazis AZ, Klukinov M, Crottaz-Herbette S, Nemenov MI, Angst MS, Yeomans DC. Selective nociceptor activation in volunteers by infrared diode laser. Mol Pain 2011; 7: 18.
[http://dx.doi.org/10.1186/1744-8069-7-18] [PMID: 21426575]
[102]
Moeller-Bertram T, Schilling JM, Bačkonja MM, Nemenov MI. Sensory small fiber function differentially assessed with Diode Laser (DL) Quantitative Sensory Testing (QST) in Painful Neuropathy (PN). Pain Med 2013; 14(3): 417-21.
[http://dx.doi.org/10.1111/pme.12049] [PMID: 23433028]
[103]
Chizh BA, Greenspan JD, Casey KL, Nemenov MI, Treede RD. Identifying biological markers of activity in human nociceptive pathways to facilitate analgesic drug development. Pain 2008; 140(2): 249-53.
[http://dx.doi.org/10.1016/j.pain.2008.09.024] [PMID: 18950938]
[104]
Tzabazis A, Klyukinov M, Manering N, Nemenov MI, Shafer SL, Yeomans DC. Differential activation of trigeminal C or Adelta nociceptors by infrared diode laser in rats: behavioral evidence. Brain Res 2005; 1037(1-2): 148-56.
[http://dx.doi.org/10.1016/j.brainres.2005.01.019] [PMID: 15777763]
[105]
Brown JD, Saeed M, Do L, et al. CT-guided injection of a TRPV1 agonist around dorsal root ganglia decreases pain transmission in swine. Sci Transl Med 2015; 7(305): 305ra145.
[http://dx.doi.org/10.1126/scitranslmed.aac6589] [PMID: 26378245]
[106]
Mitchell K, Bates BD, Keller JM, et al. Ablation of rat TRPV1-expressing Adelta/C-fibers with resiniferatoxin: analysis of withdrawal behaviors, recovery of function and molecular correlates. Mol Pain 2010; 6: 94.
[http://dx.doi.org/10.1186/1744-8069-6-94] [PMID: 21167052]
[107]
Zhang J, Cavanaugh DJ, Nemenov MI, Basbaum AI. The modality-specific contribution of peptidergic and non-peptidergic nociceptors is manifest at the level of dorsal horn nociresponsive neurons. J Physiol 2013; 591(4): 1097-110.
[http://dx.doi.org/10.1113/jphysiol.2012.242115] [PMID: 23266932]
[108]
Jiang N, Cooper BY, Nemenov MI. Non-invasive diode laser activation of transient receptor potential proteins in nociceptors. Proc SPIE- Int Soc Optic Eng 2007; 6428: 642809
[109]
Nemenov MIKM, Ed. A non-invasive, quantitative tool for assessment of patients with peripheral neuropathies as well as for the development of treatments targeted at spontaneous neuropathic pain. 7th International Congress on Neuropathic Pain. London UK. 2019.
[110]
Nemenov M. Clinical trial identifier: NCT03687970, a new method for identifying sensory changes in painful chemotherapy-induced peripheral neuropathy (CIPN). Available from: https://clinicaltrials.gov/ct2/show/NCT03687970
[111]
Nemenov M, Haroutonian S, Eds. Biomarkers for painful vs painless peripheral neuropathy: diode laser fiber-selective stimulation (DLss) vs traditional quantitative sensory testing (QST). Chicago, USA: Society for Neuroscience 2019.
[112]
Corey DP, Hudspeth AJ. Response latency of vertebrate hair cells. Biophys J 1979; 26(3): 499-506.
[http://dx.doi.org/10.1016/S0006-3495(79)85267-4] [PMID: 318064]
[113]
Hamill OP, Martinac B. Molecular basis of mechanotransduction in living cells. Physiol Rev 2001; 81(2): 685-740.
[http://dx.doi.org/10.1152/physrev.2001.81.2.685] [PMID: 11274342]
[114]
McCarter GC, Reichling DB, Levine JD. Mechanical transduction by rat dorsal root ganglion neurons in vitro. Neurosci Lett 1999; 273(3): 179-82.
[http://dx.doi.org/10.1016/S0304-3940(99)00665-5] [PMID: 10515188]
[115]
Coste B, Mathur J, Schmidt M, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 2010; 330(6000): 55-60.
[http://dx.doi.org/10.1126/science.1193270] [PMID: 20813920]
[116]
Coste B, Xiao B, Santos JS, et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 2012; 483(7388): 176-81.
[http://dx.doi.org/10.1038/nature10812] [PMID: 22343900]
[117]
Hong GS, Lee B, Wee J, et al. Tentonin 3/TMEM150c confers distinct mechanosensitive currents in dorsal-root ganglion neurons with proprioceptive function. Neuron 2016; 91(3): 708-10.
[http://dx.doi.org/10.1016/j.neuron.2016.07.019] [PMID: 27497226]
[118]
Price MP, Lewin GR, McIlwrath SL, et al. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 2000; 407(6807): 1007-11.
[http://dx.doi.org/10.1038/35039512] [PMID: 11069180]
[119]
Price MP, McIlwrath SL, Xie J, et al. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 2001; 32(6): 1071-83.
[http://dx.doi.org/10.1016/S0896-6273(01)00547-5] [PMID: 11754838]
[120]
Drew LJ, Rohrer DK, Price MP, et al. Acid-sensing ion channels ASIC2 and ASIC3 do not contribute to mechanically activated currents in mammalian sensory neurones. J Physiol 2004; 556(Pt 3): 691-710.
[http://dx.doi.org/10.1113/jphysiol.2003.058693] [PMID: 14990679]
[121]
Dubin AE, Murthy S, Lewis AH, et al. Endogenous piezo1 can confound mechanically activated channel identification and characterization Neuron 2017; 94(2): 266-270.e3.
[http://dx.doi.org/10.1016/j.neuron.2017.03.039] [PMID: 28426961]
[122]
Ranade SS, Woo SH, Dubin AE, et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 2014; 516(7529): 121-5.
[http://dx.doi.org/10.1038/nature13980] [PMID: 25471886]
[123]
Beaulieu-Laroche L, Christin M, Donoghue A, et al. TACAN is an ion channel involved in sensing mechanical pain. Cell 2020; 180(5): 956-967.e17.
[http://dx.doi.org/10.1016/j.cell.2020.01.033] [PMID: 32084332]
[124]
Premkumar LS, Ahern GP. Induction of vanilloid receptor channel activity by protein kinase C. Nature 2000; 408(6815): 985-90.
[http://dx.doi.org/10.1038/35050121] [PMID: 11140687]
[125]
Premkumar LS, Raisinghani M, Pingle SC, Long C, Pimentel F. Downregulation of transient receptor potential melastatin 8 by protein kinase C-mediated dephosphorylation. J Neurosci 2005; 25(49): 11322-9.
[http://dx.doi.org/10.1523/JNEUROSCI.3006-05.2005] [PMID: 16339027]
[126]
Premkumar LS, Bishnoi M. Disease-related changes in TRPV1 expression and its implications for drug development. Curr Top Med Chem 2011; 11(17): 2192-209.
[http://dx.doi.org/10.2174/156802611796904834] [PMID: 21671875]
[127]
Cortright DN, Szallasi A. Biochemical pharmacology of the vanilloid receptor TRPV1. An update. Eur J Biochem 2004; 271(10): 1814-9.
[http://dx.doi.org/10.1111/j.1432-1033.2004.04082.x] [PMID: 15128291]
[128]
Tominaga M, Tominaga T. Structure and function of TRPV1. Pflugers Arch 2005; 451(1): 143-50.
[http://dx.doi.org/10.1007/s00424-005-1457-8] [PMID: 15971082]
[129]
Huang J, Zhang X, McNaughton PA. Modulation of temperature-sensitive TRP channels. Semin Cell Dev Biol 2006; 17(6): 638-45.
[http://dx.doi.org/10.1016/j.semcdb.2006.11.002] [PMID: 17185012]
[130]
Cavanaugh DJ, Lee H, Lo L, et al. Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci USA 2009; 106(22): 9075-80.
[http://dx.doi.org/10.1073/pnas.0901507106] [PMID: 19451647]
[131]
Griffin JW. The roles of growth factors in painful length dependent axonal neuropathies. In: Campbell JNBA, Dray A, Dubner R, Dworkin RH, Sang CN, Eds. Emerging Strategies for the Treatment of Neuropathic Pain. Seattle: IASP Press 2006; pp. 271-90.
[132]
Gold MS, Gebhart GF. Nociceptor sensitization in pain pathogenesis. Nat Med 2010; 16(11): 1248-57.
[http://dx.doi.org/10.1038/nm.2235] [PMID: 20948530]
[133]
Ali Z, Ringkamp M, Hartke TV, et al. Uninjured C-fiber nociceptors develop spontaneous activity and alpha-adrenergic sensitivity following L6 spinal nerve ligation in monkey. J Neurophysiol 1999; 81(2): 455-66.
[http://dx.doi.org/10.1152/jn.1999.81.2.455] [PMID: 10036297]
[134]
Wu C, Lai CF, Mobley WC. Nerve growth factor activates persistent Rap1 signaling in endosomes. J Neurosci 2001; 21(15): 5406-16.
[http://dx.doi.org/10.1523/JNEUROSCI.21-15-05406.2001] [PMID: 11466412]
[135]
Ringkamp M, Meyer RA. Injured versus uninjured afferents: Who is to blame for neuropathic pain? Anesthesiology 2005; 103(2): 221-3.
[http://dx.doi.org/10.1097/00000542-200508000-00002] [PMID: 16052101]
[136]
Hirth M, Rukwied R, Gromann A, et al. Nerve growth factor induces sensitization of nociceptors without evidence for increased intraepidermal nerve fiber density. Pain 2013; 154(11): 2500-11.
[http://dx.doi.org/10.1016/j.pain.2013.07.036] [PMID: 23891896]
[137]
Schaible HG, Schmidt RF. Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J Neurophysiol 1985; 54(5): 1109-22.
[http://dx.doi.org/10.1152/jn.1985.54.5.1109] [PMID: 4078610]
[138]
Michaelis M, Häbler HJ, Jäenig W. Silent afferents: a separate class of primary afferents? Clin Exp Pharmacol Physiol 1996; 23(2): 99-105.
[http://dx.doi.org/10.1111/j.1440-1681.1996.tb02579.x] [PMID: 8819636]
[139]
Christianson JA, Liang R, Ustinova EE, Davis BM, Fraser MO, Pezzone MA. Convergence of bladder and colon sensory innervation occurs at the primary afferent level. Pain 2007; 128(3): 235-43.
[http://dx.doi.org/10.1016/j.pain.2006.09.023] [PMID: 17070995]
[140]
Prato V, Taberner FJ, Hockley JRF, et al. Functional and molecular characterization of mechanoinsensitive “silent” nociceptors. Cell Rep 2017; 21(11): 3102-15.
[http://dx.doi.org/10.1016/j.celrep.2017.11.066] [PMID: 29241539]
[141]
Dyck PJ, Peroutka S, Rask C, et al. Intradermal recombinant human nerve growth factor induces pressure allodynia and lowered heat-pain threshold in humans. Neurology 1997; 48(2): 501-5.
[http://dx.doi.org/10.1212/WNL.48.2.501] [PMID: 9040746]
[142]
Lewin GR, Ritter AM, Mendell LM. Nerve growth factor-induced hyperalgesia in the neonatal and adult rat. J Neurosci 1993; 13(5): 2136-48.
[http://dx.doi.org/10.1523/JNEUROSCI.13-05-02136.1993] [PMID: 8478693]
[143]
Rukwied R, Mayer A, Kluschina O, Obreja O, Schley M, Schmelz M. NGF induces non-inflammatory localized and lasting mechanical and thermal hypersensitivity in human skin. Pain 2010; 148(3): 407-13.
[http://dx.doi.org/10.1016/j.pain.2009.11.022] [PMID: 20022698]
[144]
Denk F, Bennett DL, McMahon SB. Nerve growth factor and pain mechanisms. Annu Rev Neurosci 2017; 40: 307-25.
[http://dx.doi.org/10.1146/annurev-neuro-072116-031121] [PMID: 28441116]
[145]
Lewin GR, Lechner SG, Smith ES. Nerve growth factor and nociception: from experimental embryology to new analgesic therapy. Handb Exp Pharmacol 2014; 220: 251-82.
[http://dx.doi.org/10.1007/978-3-642-45106-5_10] [PMID: 24668476]
[146]
Chang DS, Hsu E, Hottinger DG, Cohen SP. Anti-nerve growth factor in pain management: current evidence. J Pain Res 2016; 9: 373-83.
[PMID: 27354823]
[147]
Pezet S, McMahon SB. Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 2006; 29: 507-38.
[http://dx.doi.org/10.1146/annurev.neuro.29.051605.112929] [PMID: 16776595]
[148]
Pincelli C. Nerve growth factor and keratinocytes: a role in psoriasis. Eur J Dermatol 2000; 10(2): 85-90.
[PMID: 10694304]
[149]
Mearow KM, Kril Y, Diamond J. Increased NGF mRNA expression in denervated rat skin. Neuroreport 1993; 4(4): 351-4.
[http://dx.doi.org/10.1097/00001756-199304000-00002] [PMID: 8499587]
[150]
Bonnington JK, McNaughton PA. Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor. J Physiol 2003; 551(Pt 2): 433-46.
[http://dx.doi.org/10.1113/jphysiol.2003.039990] [PMID: 12815188]
[151]
Dmitrieva N, McMahon SB. Sensitisation of visceral afferents by nerve growth factor in the adult rat. Pain 1996; 66(1): 87-97.
[http://dx.doi.org/10.1016/0304-3959(96)02993-4] [PMID: 8857635]
[152]
Bowles WR, Sabino M, Harding-Rose C, Hargreaves KM. Chronic nerve growth factor administration increases the peripheral exocytotic activity of capsaicin-sensitive cutaneous neurons. Neurosci Lett 2006; 403(3): 305-8.
[http://dx.doi.org/10.1016/j.neulet.2006.05.020] [PMID: 16777323]
[153]
Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 2002; 36(1): 57-68.
[http://dx.doi.org/10.1016/S0896-6273(02)00908-X] [PMID: 12367506]
[154]
Zhang YH, Nicol GD. NGF-mediated sensitization of the excitability of rat sensory neurons is prevented by a blocking antibody to the p75 neurotrophin receptor. Neurosci Lett 2004; 366(2): 187-92.
[http://dx.doi.org/10.1016/j.neulet.2004.05.042] [PMID: 15276244]
[155]
Cattaneo A. Tanezumab, a recombinant humanized mAb against nerve growth factor for the treatment of acute and chronic pain. Curr Opin Mol Ther 2010; 12(1): 94-106.
[PMID: 20140821]
[156]
Di Castro A, Drew LJ, Wood JN, Cesare P. Modulation of sensory neuron mechanotransduction by PKC- and nerve growth factor-dependent pathways. Proc Natl Acad Sci USA 2006; 103(12): 4699-704.
[http://dx.doi.org/10.1073/pnas.0508005103] [PMID: 16537426]
[157]
Lechner SG, Frenzel H, Wang R, Lewin GR. Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development. EMBO J 2009; 28(10): 1479-91.
[http://dx.doi.org/10.1038/emboj.2009.73] [PMID: 19322198]
[158]
Lee YJ, Zachrisson O, Tonge DA, McNaughton PA. Upregulation of bradykinin B2 receptor expression by neurotrophic factors and nerve injury in mouse sensory neurons. Mol Cell Neurosci 2002; 19(2): 186-200.
[http://dx.doi.org/10.1006/mcne.2001.1073] [PMID: 11860272]
[159]
Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 2001; 106(5): 619-32.
[http://dx.doi.org/10.1016/S0092-8674(01)00483-4] [PMID: 11551509]
[160]
Wooten M, Weng HJ, Hartke TV, et al. Three functionally distinct classes of C-fibre nociceptors in primates. Nat Commun 2014; 5: 4122.
[http://dx.doi.org/10.1038/ncomms5122] [PMID: 24947823]
[161]
Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron 2006; 52(1): 77-92.
[http://dx.doi.org/10.1016/j.neuron.2006.09.021] [PMID: 17015228]
[162]
von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 2012; 73(4): 638-52.
[http://dx.doi.org/10.1016/j.neuron.2012.02.008] [PMID: 22365541]
[163]
Watson CP. The treatment of neuropathic pain: antidepressants and opioids. Clin J Pain 2000; 16(2): S49-55.
[http://dx.doi.org/10.1097/00002508-200006001-00009] [PMID: 10870740]
[164]
Callaghan BC, Reynolds E, Banerjee M, Kerber KA, Skolarus LE, Burke JF. Longitudinal pattern of pain medication utilization in peripheral neuropathy patients. Pain 2019; 160(3): 592-9.
[http://dx.doi.org/10.1097/j.pain.0000000000001439] [PMID: 30418352]
[165]
Emery EC, Luiz AP, Wood JN. Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief. Expert Opin Ther Targets 2016; 20(8): 975-83.
[http://dx.doi.org/10.1517/14728222.2016.1162295] [PMID: 26941184]
[166]
Hameed S. Nav1.7 and Nav1.8: Role in the pathophysiology of pain. Mol Pain 2019; 15: 1744806919858801.
[http://dx.doi.org/10.1177/1744806919858801] [PMID: 31172839]
[167]
Snyder MJ, Gibbs LM, Lindsay TJ. Treating painful diabetic peripheral neuropathy: an update. Am Fam Physician 2016; 94(3): 227-34.
[PMID: 27479625]
[168]
Zin CS, Nissen LM, O’Callaghan JP, Duffull SB, Smith MT, Moore BJ. A randomized, controlled trial of oxycodone versus placebo in patients with postherpetic neuralgia and painful diabetic neuropathy treated with pregabalin. J Pain 2010; 11(5): 462-71.
[http://dx.doi.org/10.1016/j.jpain.2009.09.003] [PMID: 19962354]
[169]
Pop-Busui R, Boulton AJ, Feldman EL, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care 2017; 40(1): 136-54.
[http://dx.doi.org/10.2337/dc16-2042] [PMID: 27999003]
[170]
Surveillance report 2017-Neuropathic pain in adults: Pharmacological management in non-specialist settings (2013) NICE guideline CG173. London: National Institute for Health and Care Excellence (UK) 2017.
[171]
Kaur H, Hota D, Bhansali A, Dutta P, Bansal D, Chakrabarti A. A comparative evaluation of amitriptyline and duloxetine in painful diabetic neuropathy: a randomized, double-blind, cross-over clinical trial. Diabetes Care 2011; 34(4): 818-22.
[http://dx.doi.org/10.2337/dc10-1793] [PMID: 21355098]
[172]
Iqbal Z, Azmi S, Yadav R, et al. Diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy. Clin Ther 2018; 40(6): 828-49.
[http://dx.doi.org/10.1016/j.clinthera.2018.04.001] [PMID: 29709457]
[173]
Bril V, England J, Franklin GM, et al. Evidence-based guideline: Treatment of painful diabetic neuropathy: report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology 2011; 76(20): 1758-65.
[http://dx.doi.org/10.1212/WNL.0b013e3182166ebe] [PMID: 21482920]
[174]
van Nooten F, Treur M, Pantiri K, Stoker M, Charokopou M. Capsaicin 8 % patch versus oral neuropathic pain medications for the treatment of painful diabetic peripheral neuropathy: a systematic literature review and network meta-analysis. Clin Ther 2017; 39(4): 787-803.e18.
[http://dx.doi.org/10.1016/j.clinthera.2017.02.010] [PMID: 28365034]
[175]
Backonja M, Wallace MS, Blonsky ER, et al. NGX-4010, a high- concentration capsaicin patch, for the treatment of postherpetic neuralgia: a randomised, double-blind study. Lancet Neurol 2008; 7(12): 1106-12.
[http://dx.doi.org/10.1016/S1474-4422(08)70228-X] [PMID: 18977178]
[176]
Irving GA, Backonja MM, Dunteman E, et al. A multicenter, randomized, double-blind, controlled study of NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia. Pain Med 2011; 12(1): 99-109.
[http://dx.doi.org/10.1111/j.1526-4637.2010.01004.x] [PMID: 21087403]
[177]
Simpson DM, Brown S, Tobias J. Controlled trial of high-concentration capsaicin patch for treatment of painful HIV neuropathy. Neurology 2008; 70(24): 2305-13.
[http://dx.doi.org/10.1212/01.wnl.0000314647.35825.9c] [PMID: 18541884]
[178]
Haanpää M, Cruccu G, Nurmikko TJ, et al. Capsaicin 8 % patch versus oral pregabalin in patients with peripheral neuropathic pain. Eur J Pain 2016; 20(2): 316-28.
[http://dx.doi.org/10.1002/ejp.731] [PMID: 26581442]
[179]
The Capsaicin Study Group. Treatment of painful diabetic neuropathy with topical capsaicin. A multicenter, double-blind, vehicle- controlled study. Arch Intern Med 1991; 151(11): 2225-9.
[http://dx.doi.org/10.1001/archinte.1991.00400110079017] [PMID: 1953227]
[180]
Forst T, Pohlmann T, Kunt T, et al. The influence of local capsaicin treatment on small nerve fibre function and neurovascular control in symptomatic diabetic neuropathy. Acta Diabetol 2002; 39(1): 1-6.
[http://dx.doi.org/10.1007/s005920200005] [PMID: 12043933]
[181]
Gavva NR, Treanor JJ, Garami A, et al. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 2008; 136(1-2): 202-10.
[http://dx.doi.org/10.1016/j.pain.2008.01.024] [PMID: 18337008]
[182]
Gavva NR, Bannon AW, Surapaneni S, et al. The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. J Neurosci 2007; 27(13): 3366-74.
[http://dx.doi.org/10.1523/JNEUROSCI.4833-06.2007] [PMID: 17392452]
[183]
Pabbidi RM, Yu SQ, Peng S, Khardori R, Pauza ME, Premkumar LS. Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity. Mol Pain 2008; 4: 9.
[http://dx.doi.org/10.1186/1744-8069-4-9] [PMID: 18312687]
[184]
Raisinghani M, Pabbidi RM, Premkumar LS. Activation of transient receptor potential vanilloid 1 (TRPV1) by resiniferatoxin. J Physiol 2005; 567(Pt 3): 771-86.
[http://dx.doi.org/10.1113/jphysiol.2005.087874] [PMID: 16037081]
[185]
Bishnoi M, Bosgraaf CA, Premkumar LS. Preservation of acute pain and efferent functions following intrathecal resiniferatoxin-induced analgesia in rats. J Pain 2011; 12(9): 991-1003.
[http://dx.doi.org/10.1016/j.jpain.2011.03.005] [PMID: 21680254]
[186]
Bishnoi M, Bosgraaf CA, Abooj M, Zhong L, Premkumar LS. Streptozotocin-induced early thermal hyperalgesia is independent of glycemic state of rats: role of Transient Receptor Potential Vanilloid 1(TRPV1) and inflammatory mediators. Mol Pain 2011; 7: 52.
[http://dx.doi.org/10.1186/1744-8069-7-52] [PMID: 21794120]
[187]
Jeffry JA, Yu SQ, Sikand P, Parihar A, Evans MS, Premkumar LS. Selective targeting of TRPV1 expressing sensory nerve terminals in the spinal cord for long lasting analgesia. PLoS One 2009; 4(9): e7021.
[http://dx.doi.org/10.1371/journal.pone.0007021] [PMID: 19753113]
[188]
Pabbidi RM, Cao DS, Parihar A, Pauza ME, Premkumar LS. Direct role of streptozotocin in inducing thermal hyperalgesia by enhanced expression of transient receptor potential vanilloid 1 in sensory neurons. Mol Pharmacol 2008; 73(3): 995-1004.
[http://dx.doi.org/10.1124/mol.107.041707] [PMID: 18089839]
[189]
Salas MM, Clifford JL, Hayden JR, Iadarola MJ, Averitt DL. Local resiniferatoxin induces long-lasting analgesia in a rat model of full thickness thermal injury. Pain Med 2017; 18(12): 2453-65.
[PMID: 27794548]
[190]
Clinical Trials.gov Identifier: NCT00804154, Resiniferatoxin to Treat Severe Pain Associated With Advanced Cancer 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT00804154
[191]
Luchi M. ClinicalTrials.gov Identifier: NCT04044742, A Phase 3 Study to Evaluate the Efficacy and Safety of Resiniferatoxin for Pain Due to Osteoarthritis of the Knee 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT04044742

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy