Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Mini-Review Article

Caveolin-1: A Promising Therapeutic Target for Diverse Diseases

Author(s): Shivani Gokani and Lokesh Kumar Bhatt*

Volume 15, Issue 5, 2022

Published on: 26 January, 2022

Article ID: e301121198439 Pages: 15

DOI: 10.2174/1874467214666211130155902

Price: $65

Open Access Journals Promotions 2
Abstract

The plasma membrane of eukaryotic cells contains small flask-shaped invaginations known as caveolae that are involved in the regulation of cellular signaling. Caveolin-1 is a 21-24k- Da protein localized in the caveolar membrane. Caveolin-1 (Cav-1) has been considered as a master regulator among the various signaling molecules. It has been emerging as a chief protein regulating cellular events associated with homeostasis, caveolae formation, and caveolae trafficking. In addition to the physiological role of cav-1, it has a complex role in the progression of various diseases. Caveolin-1 has been identified as a prognosticator in patients with cancer and has a dual role in tumorigenesis. The expression of Cav-1 in hippocampal neurons and synapses is related to neurodegeneration, cognitive decline, and aging. Despite the ubiquitous association of caveolin-1 in various pathological processes, the mechanisms associated with these events are still unclear. Caveolin- 1 has a significant role in various events of the viral cycle, such as viral entry. This review will summarize the role of cav-1 in the development of cancer, neurodegeneration, glaucoma, cardiovascular diseases, and infectious diseases. The therapeutic perspectives involving clinical applications of Caveolin-1 have also been discussed. The understanding of the involvement of caveolin-1 in various diseased states provides insights into how it can be explored as a novel therapeutic target.

Keywords: Caveolae, caveolin-1, cancer, neurodegeneration, diabetes Mellitus, atherosclerosis.

Graphical Abstract
[1]
Lisanti, M.P.; Scherer, P.E.; Tang, Z.; Sargiacomo, M. Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol., 1994, 4(7), 231-235.
[http://dx.doi.org/10.1016/0962-8924(94)90114-7] [PMID: 14731661]
[2]
Couet, J.; Li, S.; Okamoto, T.; Ikezu, T.; Lisanti, M.P. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J. Biol. Chem., 1997, 272(10), 6525-6533.
[http://dx.doi.org/10.1074/jbc.272.10.6525] [PMID: 9045678]
[3]
Fridolfsson, H.N.; Roth, D.M.; Insel, P.A.; Patel, H.H. Regulation of intracellular signaling and function by caveolin. FASEB J., 2014, 28(9), 3823-3831.
[http://dx.doi.org/10.1096/fj.14-252320] [PMID: 24858278]
[4]
Aoki, M.N.; Amarante, M.K.; Oda, J.M.M.; Watanabe, M.A.E. Caveolin involvement and modulation in breast cancer. Mini-Rev Med Chem., 2011, (55), 1143-1152.
[5]
Boscher, C.; Nabi, I.R. Caveolin-1: role in cell signaling. Adv. Exp. Med. Biol., 2012, 729, 29-50.
[http://dx.doi.org/10.1007/978-1-4614-1222-9_3] [PMID: 22411312]
[6]
Frank, P.G.; Lisanti, M.P. Caveolin-1 and caveolae in atherosclerosis: differential roles in fatty streak formation and neointimal hyperplasia. Curr. Opin. Lipidol., 2004, 15(5), 523-529.
[http://dx.doi.org/10.1097/00041433-200410000-00005] [PMID: 15361787]
[7]
Ni, K.; Wang, C.; Carnino, J.M.; Jin, Y. The evolving role of caveolin-1: a critical regulator of extracellular vesicles. Med. Sci. (Basel), 2020, 8(4), 46.
[http://dx.doi.org/10.3390/medsci8040046] [PMID: 33158117]
[8]
Simón, L.; Campos, A.; Leyton, L.; Quest, A.F.G. Caveolin-1 function at the plasma membrane and in intracellular compartments in cancer. Cancer Metastasis Rev., 2020, 39(2), 435-453.
[http://dx.doi.org/10.1007/s10555-020-09890-x] [PMID: 32458269]
[9]
Cohen, A.W.; Razani, B.; Schubert, W.; Williams, T.M.; Wang, X.B.; Iyengar, P.; Brasaemle, D.L.; Scherer, P.E.; Lisanti, M.P. Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes, 2004, 53(5), 1261-1270.
[http://dx.doi.org/10.2337/diabetes.53.5.1261] [PMID: 15111495]
[10]
Spisni, E.; Tomasi, V.; Cestaro, A.; Tosatto, S.C.E. Structural insights into the function of human caveolin 1. Biochem. Biophys. Res. Commun., 2005, 338(3), 1383-1390.
[http://dx.doi.org/10.1016/j.bbrc.2005.10.099] [PMID: 16263077]
[11]
Fujimoto, T.; Kogo, H.; Nomura, R.; Une, T. Isoforms of caveolin-1 and caveolar structure. J. Cell Sci., 2000, 113(Pt 19), 3509-3517.
[http://dx.doi.org/10.1242/jcs.113.19.3509] [PMID: 10984441]
[12]
Liu, P.; Rudick, M.; Anderson, R.G.W. Multiple functions of caveolin-1. J. Biol. Chem., 2002, 277(44), 41295-41298.
[http://dx.doi.org/10.1074/jbc.R200020200] [PMID: 12189159]
[13]
Minshall, R.D.; Sessa, W.C.; Stan, R.V.; Anderson, R.G.W.; Malik, A.B. Caveolin regulation of endothelial function. Am. J. Physiol. Lung Cell Mol. Physiol., 2003, 1179-1183.
[http://dx.doi.org/10.1152/ajplung.00242.2003]
[14]
Cohen, A.W.; Combs, T.P.; Scherer, P.E.; Lisanti, M.P. Role of caveolin and caveolae in insulin signaling and diabetes. Am. J. Physiol. Endocrinol. Metab., 2003, 285(6), E1151-E1160.
[http://dx.doi.org/10.1152/ajpendo.00324.2003] [PMID: 14607781]
[15]
Razani, B.; Lisanti, M.P. Two distinct caveolin-1 domains mediate the functional interaction of caveolin-1 with protein kinase A. Am. J. Physiol. Cell Physiol., 2001, 281(4), C1241-C1250.
[http://dx.doi.org/10.1152/ajpcell.2001.281.4.C1241] [PMID: 11546661]
[16]
Lee, H.; Volonte, D.; Galbiati, F.; Iyengar, P.; Lublin, D.M.; Bregman, D.B.; Wilson, M.T.; Campos-Gonzalez, R.; Bouzahzah, B.; Pestell, R.G.; Scherer, P.E.; Lisanti, M.P. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol. Endocrinol., 2000, 14(11), 1750-1775.
[http://dx.doi.org/10.1210/mend.14.11.0553] [PMID: 11075810]
[17]
Michel, T. Targeting and translocation of endothelial nitric oxide synthase. Braz. J. Med. Biol. Res., 1999, 32(11), 1361-1366.
[http://dx.doi.org/10.1590/S0100-879X1999001100006] [PMID: 10559837]
[18]
García-Cardeña, G.; Martasek, P.; Masters, B.S.S.; Skidd, P.M.; Couet, J.; Li, S.; Lisanti, M.P.; Sessa, W.C. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J. Biol. Chem., 1997, 272(41), 25437-25440.
[http://dx.doi.org/10.1074/jbc.272.41.25437] [PMID: 9325253]
[19]
Widlansky, M.E.; Gokce, N.; Keaney, J.F., Jr; Vita, J.A. The clinical implications of endothelial dysfunction. J. Am. Coll. Cardiol., 2003, 42(7), 1149-1160.
[http://dx.doi.org/10.1016/S0735-1097(03)00994-X] [PMID: 14522472]
[20]
Gu, X.; Reagan, A.M.; McClellan, M.E.; Elliott, M.H. Caveolins and caveolae in ocular physiology and pathophysiology. Prog. Retin. Eye Res., 2017, 56, 84-106.
[http://dx.doi.org/10.1016/j.preteyeres.2016.09.005] [PMID: 27664379]
[21]
Chen, H.S.; Chen, X.; Li, W.T.; Shen, J.G. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery. Acta Pharmacol. Sin., 2018, 39(5), 669-682.
[http://dx.doi.org/10.1038/aps.2018.27] [PMID: 29595191]
[22]
Chow, B.W.; Nuñez, V.; Kaplan, L.; Granger, A.J.; Bistrong, K.; Zucker, H.L.; Kumar, P.; Sabatini, B.L.; Gu, C. Caveolae in CNS arterioles mediate neurovascular coupling. Nature, 2020, 579(7797), 106-110.
[http://dx.doi.org/10.1038/s41586-020-2026-1] [PMID: 32076269]
[23]
Kurzchalia, T.V.; Dupree, P.; Parton, R.G.; Kellner, R.; Virta, H.; Lehnert, M.; Simons, K. VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J. Cell Biol., 1992, 118(5), 1003-1014.
[http://dx.doi.org/10.1083/jcb.118.5.1003] [PMID: 1512286]
[24]
Shiroto, T.; Romero, N.; Sugiyama, T.; Sartoretto, J.L.; Kalwa, H.; Yan, Z. Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium. PLoS One, 2014, 9(2), e87871.
[25]
Hou, K.; Li, S.; Zhang, M.; Qin, X. Caveolin-1 in autophagy: A potential therapeutic target in atherosclerosis. Clin. Chim. Acta, 2021, 513, 25-33.
[http://dx.doi.org/10.1016/j.cca.2020.11.020] [PMID: 33279502]
[26]
Zhang, X.; Ramírez, C.M.; Aryal, B.; Madrigal-Matute, J.; Liu, X.; Diaz, A.; Torrecilla-Parra, M.; Suárez, Y.; Cuervo, A.M.; Sessa, W.C.; Fernández-Hernando, C. Cav-1 (caveolin-1) deficiency increases autophagy in the endothelium and attenuates vascular inflammation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2020, 40(6), 1510-1522.
[http://dx.doi.org/10.1161/ATVBAHA.120.314291] [PMID: 32349535]
[27]
Mastick, C.C.; Brady, M.J.; Saltiel, A.R. Insulin stimulates the tyrosine phosphorylation of caveolin. J. Cell Biol., 1995, 129(6), 1523-1531.
[http://dx.doi.org/10.1083/jcb.129.6.1523] [PMID: 7540611]
[28]
Van Krieken, R.; Krepinsky, J.C. Caveolin-1 in the pathogenesis of diabetic nephropathy: potential therapeutic target? Curr. Diab. Rep., 2017, 17(3), 19.
[http://dx.doi.org/10.1007/s11892-017-0844-9] [PMID: 28283950]
[29]
Kizhatil, K.; Ryan, M.; Marchant, J.K.; Henrich, S.; John, S.W.M. Schlemm’s canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process. PLoS Biol., 2014, 12(7), e1001912-e1001912.
[http://dx.doi.org/10.1371/journal.pbio.1001912] [PMID: 25051267]
[30]
Parton, R.G. Caveolae: structure, function, and relationship to disease. Annu. Rev. Cell Dev. Biol., 2018, 34(1), 111-136.
[http://dx.doi.org/10.1146/annurev-cellbio-100617-062737] [PMID: 30296391]
[31]
Sotgia, F.; Martinez-Outschoorn, U.E.; Lisanti, M.P. Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention? BMC Med., 2011, 9, 62.
[http://dx.doi.org/10.1186/1741-7015-9-62] [PMID: 21605374]
[32]
Engelman, J.A.; Zhang, X.L.; Lisanti, M.P. Genes encoding human caveolin-1 and -2 are co-localized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers. FEBS Lett., 1998, 436(3), 403-410.
[http://dx.doi.org/10.1016/S0014-5793(98)01134-X] [PMID: 9801158]
[33]
Topçul, M.; Çetin, İ. A digital herbarium book-i on medicinal and aromatic plants. OMICS Int., 2015, 1-20.
[34]
Mercier, I.; Lisanti, M.P. Caveolin-1 and breast cancer: a new clinical perspective. Adv. Exp. Med. Biol., 2012, 729, 83-94.
[http://dx.doi.org/10.1007/978-1-4614-1222-9_6] [PMID: 22411315]
[35]
Wang, S.; Wang, N.; Zheng, Y.; Zhang, J.; Zhang, F.; Wang, Z. Caveolin-1: an oxidative stress-related target for cancer prevention. Oxid. Med. Cell. Longev., 2017, 2017, 7454031.
[http://dx.doi.org/10.1155/2017/7454031] [PMID: 28546853]
[36]
Mougeolle, A.; Poussard, S.; Decossas, M.; Lamaze, C.; Lambert, O.; Dargelos, E. Oxidative stress induces Caveolin 1 degradation and impairs Caveolae functions in skeletal muscle cells. PLoS One, 2015, 10(3), e0122654.
[http://dx.doi.org/10.1371/journal.pone.0122654]
[37]
Capozza, F.; Williams, T.M.; Schubert, W.; McClain, S.; Bouzahzah, B.; Sotgia, F.; Lisanti, M.P. Absence of caveolin-1 sensitizes mouse skin to carcinogen-induced epidermal hyperplasia and tumor formation. Am. J. Pathol., 2003, 162(6), 2029-2039.
[http://dx.doi.org/10.1016/S0002-9440(10)64335-0] [PMID: 12759258]
[38]
Shihata, W.A.; Putra, M.R.A.; Chin-Dusting, J.P.F. Is there a potential therapeutic role for caveolin-1 in fibrosis? Front. Pharmacol., 2017, 8, 567.
[http://dx.doi.org/10.3389/fphar.2017.00567] [PMID: 28970796]
[39]
Shatz, M; Liscovitch, M. Caveolin-1 : A tumor-promoting role in human cancer. 2008, 84(3), 177-189.
[40]
Williams, T.M.; Lisanti, M.P.; Williams, T.M.; Lisanti, M.P. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am. J. Physiol. Cell Physiol., 2005, 288(3), C494-C506.
[http://dx.doi.org/10.1152/ajpcell.00458.2004] [PMID: 15692148]
[41]
Patani, N.; Martin, L.A.; Reis-Filho, J.S.; Dowsett, M. The role of caveolin-1 in human breast cancer. Breast Cancer Res. Treat., 2012, 131(1), 1-15.
[http://dx.doi.org/10.1007/s10549-011-1751-4] [PMID: 21901387]
[42]
Wiechen, K.; Sers, C.; Agoulnik, A.; Arlt, K.; Dietel, M.; Schlag, P.M.; Schneider, U. Down-regulation of caveolin-1, a candidate tumor suppressor gene, in sarcomas. Am. J. Pathol., 2001, 158(3), 833-839.
[http://dx.doi.org/10.1016/S0002-9440(10)64031-X] [PMID: 11238032]
[43]
Qian, N.; Ueno, T.; Kawaguchi-Sakita, N.; Kawashima, M.; Yoshida, N.; Mikami, Y.; Wakasa, T.; Shintaku, M.; Tsuyuki, S.; Inamoto, T.; Toi, M. Prognostic significance of tumor/stromal caveolin-1 expression in breast cancer patients. Cancer Sci., 2011, 102(8), 1590-1596.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01985.x] [PMID: 21585620]
[44]
Fukumura, D.; Gohongi, T.; Kadambi, A.; Izumi, Y.; Ang, J.; Yun, C.O.; Buerk, D.G.; Huang, P.L.; Jain, R.K. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc. Natl. Acad. Sci. USA, 2001, 98(5), 2604-2609.
[http://dx.doi.org/10.1073/pnas.041359198] [PMID: 11226286]
[45]
Shi, X.Y.U.; Xiong, L.X.; Xiao, L.; Meng, C.; Qi, G.Y.U.N.; Li, W.L. Downregulation of caveolin-1 upregulates the expression of growth factors and regulators in co-culture of fibroblasts with cancer cells. Mol. Med. Rep., 2016, 13(1), 744-752.
[http://dx.doi.org/10.3892/mmr.2015.4610] [PMID: 26647977]
[46]
Bouras, T.; Lisanti, M.P.; Pestell, R.G. Caveolin-1 in breast cancer. Cancer Biol. Ther., 2004, 3(10), 931-941.
[http://dx.doi.org/10.4161/cbt.3.10.1147] [PMID: 15539932]
[47]
Shan-Wei, W.; Kan-Lun, X.; Shu-Qin, R.; Li-Li, Z.; Li-Rong, C.; Chen, L. Overexpression of caveolin-1 in cancer-associated fibroblasts predicts good outcome in breast cancer. Breast Care (Basel), 2012, 7(6), 477-483.
[http://dx.doi.org/10.1159/000345464] [PMID: 24715830]
[48]
Quest, A.F.G.; Gutierrez-Pajares, J.L.; Torres, V.A. Caveolin-1: an ambiguous partner in cell signalling and cancer. J. Cell. Mol. Med., 2008, 12(4), 1130-1150.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00331.x] [PMID: 18400052]
[49]
Williams, T.; Medina, F.; Badano, I.; Hazan, R.; Hutchinson, J.; Muller, W. Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasivenes and matrix metalloproteinase (MMP-2/9) secretion. J. Biol. Chem., 2004, 279(49), 51630-51646.
[http://dx.doi.org/10.1074/jbc.M409214200] [PMID: 15355971]
[50]
Annabi, B.; Lachambre, M.; Bousquet-Gagnon, N.; Pagé, M.; Gingras, D.; Béliveau, R. Localization of membrane-type 1 matrix metalloproteinase in caveolae membrane domains. Biochem. J., 2001, 353(Pt 3), 547-553.
[http://dx.doi.org/10.1042/bj3530547] [PMID: 11171051]
[51]
Chiu, W.T.; Lee, H.T.; Huang, F.J.; Aldape, K.D.; Yao, J.; Steeg, P.S.; Chou, C.Y.; Lu, Z.; Xie, K.; Huang, S. Caveolin-1 upregulation mediates suppression of primary breast tumor growth and brain metastases by stat3 inhibition. Cancer Res., 2011, 71(14), 4932-4943.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4249] [PMID: 21622714]
[52]
Lu, Z.; Ghosh, S.; Wang, Z.; Hunter, T. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell, 2003, 4(6), 499-515.
[http://dx.doi.org/10.1016/S1535-6108(03)00304-0] [PMID: 14706341]
[53]
Kuo, S.R.; Tahir, S.A.; Park, S.; Thompson, T.C.; Coffield, S.; Frankel, A.E.; Liu, J.S. Anti-caveolin-1 antibodies as anti-prostate cancer therapeutics. Hybridoma (Larchmt.), 2012, 31(2), 77-86.
[http://dx.doi.org/10.1089/hyb.2011.0100] [PMID: 22509911]
[54]
Pramudji, C.; Shimura, S.; Ebara, S.; Yang, G.; Wang, J.; Ren, C.; Yuan, Y.; Tahir, S.A.; Timme, T.L.; Thompson, T.C. In situ prostate cancer gene therapy using a novel adenoviral vector regulated by the caveolin-1 promoter. Clin. Cancer Res., 2001, 7(12), 4272-4279.
[PMID: 11751529]
[55]
Haddad, D.; Al Madhoun, A.; Nizam, R.; Al-Mulla, F. Role of caveolin-1 in diabetes and its complications. Oxid. Med. Cell. Longev., 2020, 2020, 9761539.
[http://dx.doi.org/10.1155/2020/9761539] [PMID: 32082483]
[56]
Scherer, P.E.; Lisanti, M.P.; Baldini, G.; Sargiacomo, M.; Mastick, C.C.; Lodish, H.F. Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. J. Cell Biol., 1994, 127(5), 1233-1243.
[http://dx.doi.org/10.1083/jcb.127.5.1233] [PMID: 7962086]
[57]
Sharma, A.; Sellers, S.; Stefanovic, N.; Leung, C.; Tan, S.M.; Huet, O.; Granville, D.J.; Cooper, M.E.; de Haan, J.B.; Bernatchez, P. Direct endothelial nitric oxide synthase activation provides atheroprotection in diabetes-accelerated atherosclerosis. Diabetes, 2015, 64(11), 3937-3950.
[http://dx.doi.org/10.2337/db15-0472] [PMID: 26116699]
[58]
Ding, T.; Wang, S.; Zhang, X.; Zai, W.; Fan, J.; Chen, W.; Bian, Q.; Luan, J.; Shen, Y.; Zhang, Y.; Ju, D.; Mei, X. Kidney protection effects of dihydroquercetin on diabetic nephropathy through suppressing ROS and NLRP3 inflammasome. Phytomedicine, 2018, 41, 45-53.
[http://dx.doi.org/10.1016/j.phymed.2018.01.026] [PMID: 29519318]
[59]
Zhao, Y.; Wei, X.; Song, J.; Zhang, M.; Huang, T.; Qin, J. Peroxisome proliferator-activated receptor γ agonist rosiglitazone protects blood-brain barrier integrity following diffuse axonal injury by decreasing the levels of inflammatory mediators through a caveolin-1-dependent pathway. Inflammation, 2019, 42(3), 841-856.
[http://dx.doi.org/10.1007/s10753-018-0940-2] [PMID: 30488141]
[60]
Selkoe, D.; Mandelkow, E.; Holtzman, D. Deciphering Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(1), a011460.
[http://dx.doi.org/10.1101/cshperspect.a011460] [PMID: 22315723]
[61]
Head, B.P.; Peart, J.N.; Panneerselvam, M.; Yokoyama, T.; Pearn, M.L.; Niesman, I.R.; Bonds, J.A.; Schilling, J.M.; Miyanohara, A.; Headrick, J.; Ali, S.S.; Roth, D.M.; Patel, P.M.; Patel, H.H. Loss of caveolin-1 accelerates neurodegeneration and aging. PLoS One, 2010, 5(12), e15697.
[http://dx.doi.org/10.1371/journal.pone.0015697] [PMID: 21203469]
[62]
Stadtman, ER Role of oxidant species in aging. Curr Med Chem, 2004, 11(9), 1105-1112.
[http://dx.doi.org/10.2174/0929867043365341]
[63]
Yang, W.; Geng, C.; Yang, Z.; Xu, B.; Shi, W.; Yang, Y.; Tian, Y. Deciphering the roles of caveolin in neurodegenerative diseases: The good, the bad and the importance of context. Ageing Res. Rev., 2020, 62, 101116.
[http://dx.doi.org/10.1016/j.arr.2020.101116] [PMID: 32554058]
[64]
Trushina, E.; Du Charme, J.; Parisi, J.; McMurray, C.T. Neurological abnormalities in caveolin-1 knock out mice. Behav. Brain Res., 2006, 172(1), 24-32.
[http://dx.doi.org/10.1016/j.bbr.2006.04.024] [PMID: 16750274]
[65]
Savelieff, M.G.; Nam, G.; Kang, J.; Lee, H.J.; Lee, M.; Lim, M.H. Development of multifunctional molecules as potential therapeutic candidates for alzheimer’s disease, parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem. Rev., 2019, 119(2), 1221-1322.
[http://dx.doi.org/10.1021/acs.chemrev.8b00138] [PMID: 30095897]
[66]
Cha, S-H.; Choi, Y.R.; Heo, C-H.; Kang, S-J.; Joe, E-H.; Jou, I.; Kim, H.M.; Park, S.M. Loss of parkin promotes lipid rafts-dependent endocytosis through accumulating caveolin-1: implications for Parkinson’s disease. Mol. Neurodegener., 2015, 10, 63.
[http://dx.doi.org/10.1186/s13024-015-0060-5] [PMID: 26627850]
[67]
Cameron, P.L.; Ruffin, J.W.; Bollag, R.; Rasmussen, H.; Cameron, R.S. Identification of caveolin and caveolin-related proteins in the brain. J. Neurosci., 1997, 17(24), 9520-9535.
[http://dx.doi.org/10.1523/JNEUROSCI.17-24-09520.1997] [PMID: 9391007]
[68]
Surguchov, A. Caveolin: A new link between diabetes and AD. Cell. Mol. Neurobiol., 2020, 40(7), 1059-1066.
[http://dx.doi.org/10.1007/s10571-020-00796-4] [PMID: 31974905]
[69]
Gioiosa, L.; Raggi, C.; Ricceri, L.; Jasmin, J-F.; Frank, P.G.; Capozza, F.; Lisanti, M.P.; Alleva, E.; Sargiacomo, M.; Laviola, G. Altered emotionality, spatial memory and cholinergic function in caveolin-1 knock-out mice. Behav. Brain Res., 2008, 188(2), 255-262.
[http://dx.doi.org/10.1016/j.bbr.2007.11.002] [PMID: 18083242]
[70]
Tang, M.; Taghibiglou, C. The mechanisms of action of curcumin in Alzheimer’s disease. J. Alzheimers Dis., 2017, 58(4), 1003-1016.
[http://dx.doi.org/10.3233/JAD-170188] [PMID: 28527218]
[71]
Marquet-de Rougé, P.; Clamagirand, C.; Facchinetti, P.; Rose, C.; Sargueil, F.; Guihenneuc-Jouyaux, C.; Cynober, L.; Moinard, C.; Allinquant, B. Citrulline diet supplementation improves specific age-related raft changes in wild-type rodent hippocampus. Age (Dordr.), 2013, 35(5), 1589-1606.
[PMID: 22918749]
[72]
Nakaso, K.; Tajima, N.; Horikoshi, Y.; Nakasone, M.; Hanaki, T.; Kamizaki, K.; Matsura, T. The estrogen receptor β-PI3K/Akt pathway mediates the cytoprotective effects of tocotrienol in a cellular Parkinson’s disease model. Biochim. Biophys. Acta, 2014, 1842(9), 1303-1312.
[http://dx.doi.org/10.1016/j.bbadis.2014.04.008] [PMID: 24768803]
[73]
Lu, X.; Li, Y.; Wang, W.; Chen, S.; Liu, T.; Jia, D.; Quan, X.; Sun, D.; Chang, A.K.; Gao, B. 3 β-hydroxysteroid-Δ 24 reductase (DHCR24) protects neuronal cells from apoptotic cell death induced by endoplasmic reticulum (ER) stress. PLoS One, 2014, 9(1), e86753.
[http://dx.doi.org/10.1371/journal.pone.0086753] [PMID: 24489783]
[74]
Beserra-Filho, J.I.A.; de Macêdo, A.M.; Leão, A.H.F.F.; Bispo, J.M.M.; Santos, J.R.; de Oliveira-Melo, A.J.; Menezes, P.D.P.; Duarte, M.C.; de Souza Araújo, A.A.; Silva, R.H.; Quintans-Júnior, L.J.; Ribeiro, A.M. Eplingiella fruticosa leaf essential oil complexed with β-cyclodextrin produces a superior neuroprotective and behavioral profile in a mice model of Parkinson’s disease. Food Chem. Toxicol., 2019, 124, 17-29.
[http://dx.doi.org/10.1016/j.fct.2018.11.056] [PMID: 30481574]
[75]
Kassan, A.; Egawa, J.; Zhang, Z.; Almenar-Queralt, A.; Nguyen, Q.M.; Lajevardi, Y.; Kim, K.; Posadas, E.; Jeste, D.V.; Roth, D.M.; Patel, P.M.; Patel, H.H.; Head, B.P. Caveolin-1 regulation of disrupted-in-schizophrenia-1 as a potential therapeutic target for schizophrenia. J. Neurophysiol., 2017, 117(1), 436-444.
[http://dx.doi.org/10.1152/jn.00481.2016] [PMID: 27832597]
[76]
Talib, N. ku zaifah N, Musa R, Abdullah K, Azizi W, Tariq A. Disrupted-in-Schizophrenia-1(DISC1) gene as genetic markers of schizophrenia susceptibility. Asian Pac. J. Trop. Dis., 2014, 4(3), 236.
[http://dx.doi.org/10.1016/S2222-1808(14)60537-5]
[77]
Head, B.P.; Patel, H.H.; Tsutsumi, Y.M.; Hu, Y.; Mejia, T.; Mora, R.C.; Insel, P.A.; Roth, D.M.; Drummond, J.C.; Patel, P.M. Caveolin-1 expression is essential for N-methyl-D-aspartate receptor mediated Src and extracellular signal-regulated kinase 1/2 activation and protection of primary neurons from ischemic cell death. FASEB J., 2008, 22(3), 828-840.
[http://dx.doi.org/10.1096/fj.07-9299com] [PMID: 17905724]
[78]
Callicott, J.H.; Straub, R.E.; Pezawas, L.; Egan, M.F.; Mattay, V.S.; Hariri, A.R.; Verchinski, B.A.; Meyer-Lindenberg, A.; Balkissoon, R.; Kolachana, B.; Goldberg, T.E.; Weinberger, D.R. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc. Natl. Acad. Sci. USA, 2005, 102(24), 8627-8632.
[http://dx.doi.org/10.1073/pnas.0500515102] [PMID: 15939883]
[79]
Navarro, G.; Borroto-Escuela, D.O.; Fuxe, K.; Franco, R. Potential of caveolae in the therapy of cardiovascular and neurological diseases. Front. Physiol., 2014, 5, 370.
[http://dx.doi.org/10.3389/fphys.2014.00370] [PMID: 25324780]
[80]
Elliott, M.H.; Ashpole, N.E.; Gu, X.; Herrnberger, L.; McClellan, M.E.; Griffith, G.L.; Reagan, A.M.; Boyce, T.M.; Tanito, M.; Tamm, E.R.; Stamer, W.D. Caveolin-1 modulates intraocular pressure: implications for caveolae mechanoprotection in glaucoma. Sci. Rep., 2016, 6(1), 37127.
[http://dx.doi.org/10.1038/srep37127] [PMID: 27841369]
[81]
Wiggs, J.L.; Kang, J.H.; Yaspan, B.L.; Mirel, D.B.; Laurie, C.; Crenshaw, A.; Brodeur, W.; Gogarten, S.; Olson, L.M.; Abdrabou, W.; DelBono, E.; Loomis, S.; Haines, J.L.; Pasquale, L.R. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. Hum. Mol. Genet., 2011, 20(23), 4707-4713.
[http://dx.doi.org/10.1093/hmg/ddr382] [PMID: 21873608]
[82]
Hysi, P.G.; Cheng, C-Y.; Springelkamp, H.; Macgregor, S.; Bailey, J.N.C.; Wojciechowski, R.; Vitart, V.; Nag, A.; Hewitt, A.W.; Höhn, R.; Venturini, C.; Mirshahi, A.; Ramdas, W.D.; Thorleifsson, G.; Vithana, E.; Khor, C.C.; Stefansson, A.B.; Liao, J.; Haines, J.L.; Amin, N.; Wang, Y.X.; Wild, P.S.; Ozel, A.B.; Li, J.Z.; Fleck, B.W.; Zeller, T.; Staffieri, S.E.; Teo, Y.Y.; Cuellar- Partida, G.; Luo, X.; Allingham, R.R.; Richards, J.E.; Senft, A.; Karssen, L.C.; Zheng, Y.; Bellenguez, C.; Xu, L.; Iglesias, A.I.; Wilson, J.F.; Kang, J.H.; van Leeuwen, E.M.; Jonsson, V.; Thorsteinsdottir, U.; Despriet, D.D.G.; Ennis, S.; Moroi, S.E.; Martin, N.G.; Jansonius, N.M.; Yazar, S.; Tai, E.S.; Amouyel, P.; Kirwan, J.; van Koolwijk, L.M.E.; Hauser, M.A.; Jonasson, F.; Leo, P.; Loomis, S.J.; Fogarty, R.; Rivadeneira, F.; Kearns, L.; Lackner, K.J.; de Jong, P.T.V.M.; Simpson, C.L.; Pennell, C.E.; Oostra, B.A.; Uitterlinden, A.G.; Saw, S.M.; Lotery, A.J.; Bailey-Wilson, J.E.; Hofman, A.; Vingerling, J.R.; Maubaret, C.; Pfeiffer, N.; Wolfs, R.C.W.; Lemij, H.G.; Young, T.L.; Pasquale, L.R.; Delcourt, C.; Spector, T.D.; Klaver, C.C.W.; Small, K.S.; Burdon, K.P.; Stefansson, K.; Wong, T.Y.; Viswanathan, A.; Mackey, D.A.; Craig, J.E.; Wiggs, J.L.; van Duijn, C.M.; Hammond, C.J.; Aung, T. Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma. Nat. Genet., 2014, 46(10), 1126-1130.
[http://dx.doi.org/10.1038/ng.3087] [PMID: 25173106]
[83]
Overby, D.R.; Zhou, E.H.; Vargas-Pinto, R.; Pedrigi, R.M.; Fuchshofer, R.; Braakman, S.T.; Gupta, R.; Perkumas, K.M.; Sherwood, J.M.; Vahabikashi, A.; Dang, Q.; Kim, J.H.; Ethier, C.R.; Stamer, W.D.; Fredberg, J.J.; Johnson, M. Altered mechanobiology of Schlemm’s canal endothelial cells in glaucoma. Proc. Natl. Acad. Sci. USA, 2014, 111(38), 13876-13881.
[http://dx.doi.org/10.1073/pnas.1410602111] [PMID: 25201985]
[84]
Li, X.; Gu, X.; Boyce, T.M.; Zheng, M.; Reagan, A.M.; Qi, H.; Mandal, N.; Cohen, A.W.; Callegan, M.C.; Carr, D.J.; Elliott, M.H. Caveolin-1 increases proinflammatory chemoattractants and blood-retinal barrier breakdown but decreases leukocyte recruitment in inflammation. Invest. Ophthalmol. Vis. Sci., 2014, 55(10), 6224-6234.
[http://dx.doi.org/10.1167/iovs.14-14613] [PMID: 25159208]
[85]
Gratton, J-P.; Lin, M.I.; Yu, J.; Weiss, E.D.; Jiang, Z.L.; Fairchild, T.A.; Iwakiri, Y.; Groszmann, R.; Claffey, K.P.; Cheng, Y.C.; Sessa, W.C. Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell, 2003, 4(1), 31-39.
[http://dx.doi.org/10.1016/S1535-6108(03)00168-5] [PMID: 12892711]
[86]
Higuchi, A.; Ohashi, K.; Shibata, R.; Sono-Romanelli, S.; Walsh, K.; Ouchi, N. Thiazolidinediones reduce pathological neovascularization in ischemic retina via an adiponectin-dependent mechanism. Arterioscler. Thromb. Vasc. Biol., 2010, 30(1), 46-53.
[http://dx.doi.org/10.1161/ATVBAHA.109.198465] [PMID: 19910632]
[87]
Pavlides, S.; Gutierrez-Pajares, J.L.; Iturrieta, J.; Lisanti, M.P.; Frank, P.G. Endothelial caveolin-1 plays a major role in the development of atherosclerosis. Cell Tissue Res., 2014, 356(1), 147-157.
[http://dx.doi.org/10.1007/s00441-013-1767-7] [PMID: 24390341]
[88]
Fernández-Hernando, C.; Yu, J.; Dávalos, A.; Prendergast, J.; Sessa, W.C. Endothelial-specific overexpression of caveolin-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Am. J. Pathol., 2010, 177(2), 998-1003.
[http://dx.doi.org/10.2353/ajpath.2010.091287] [PMID: 20581061]
[89]
Pavlides, S.; Gutierrez-Pajares, J.L.; Danilo, C.; Lisanti, M.P.; Frank, P.G. Atherosclerosis, caveolae and caveolin-1. Adv. Exp. Med. Biol., 2012, 729, 127-144.
[http://dx.doi.org/10.1007/978-1-4614-1222-9_9] [PMID: 22411318]
[90]
Wunderlich, C.; Schober, K.; Kasper, M.; Heerwagen, C.; Marquetant, R.; Ebner, B.; Forkmann, M.; Schoen, S.; Braun-Dullaeus, R.C.; Schmeisser, A.; Strasser, R.H. Nitric oxide synthases are crucially involved in the development of the severe cardiomyopathy of caveolin-1 knockout mice. Biochem. Biophys. Res. Commun., 2008, 377(3), 769-774.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.068] [PMID: 18951881]
[91]
Sellers, S.L.; Trane, A.E.; Bernatchez, P.N. Caveolin as a potential drug target for cardiovascular protection. Front. Physiol., 2012, 3, 280.
[http://dx.doi.org/10.3389/fphys.2012.00280] [PMID: 22934034]
[92]
Xing, Y.; Wen, Z.; Gao, W.; Lin, Z.; Zhong, J.; Jiu, Y. Multifaceted functions of host cell caveolae/caveolin-1 in virus infections. Vol. 12. Viruses, 2020, 12(5), 487.
[http://dx.doi.org/10.3390/v12050487] [PMID: 32357558]
[93]
Nabi, I.R.; Le, P.U. Caveolae/raft-dependent endocytosis. J. Cell Biol., 2003, 161(4), 673-677.
[http://dx.doi.org/10.1083/jcb.200302028] [PMID: 12771123]
[94]
Xu, Q.; Cao, M.; Song, H.; Chen, S.; Qian, X.; Zhao, P.; Ren, H.; Tang, H.; Wang, Y.; Wei, Y.; Zhu, Y.; Qi, Z. Caveolin-1-mediated Japanese encephalitis virus entry requires a two-step regulation of actin reorganization. Future Microbiol., 2016, 11, 1227-1248.
[http://dx.doi.org/10.2217/fmb-2016-0002] [PMID: 26986451]
[95]
Khasa, R.; Vaidya, A.; Vrati, S.; Kalia, M. Membrane trafficking RNA interference screen identifies a crucial role of the clathrin endocytic pathway and ARP2/3 complex for Japanese encephalitis virus infection in HeLa cells. J. Gen. Virol., 2019, 100(2), 176-186.
[http://dx.doi.org/10.1099/jgv.0.001182] [PMID: 30489239]
[96]
Wang, J.; Li, Y.; Wang, S.; Liu, F. Dynamics of transmissible gastroenteritis virus internalization unraveled by single-virus tracking in live cells. FASEB J., 2020, 34(3), 4653-4669.
[http://dx.doi.org/10.1096/fj.201902455R] [PMID: 32017270]
[97]
Yang, B.; Qi, X.; Guo, H.; Jia, P.; Chen, S.; Chen, Z.; Wang, T.; Wang, J.; Xue, Q. Peste des petits ruminants virus enters caprine endometrial epithelial cells via the caveolae-mediated endocytosis pathway. Front. Microbiol., 2018, 9, 210.
[http://dx.doi.org/10.3389/fmicb.2018.00210] [PMID: 29497407]
[98]
Owczarek, K.; Szczepański, A.; Milewska, A.; Baster, Z.; Rajfur, Z.; Sarna, M.; Pyrc, K. Early events during human coronavirus OC43 entry to the cell. Sci. Rep., 2018, 8(1), 7124.
[http://dx.doi.org/10.1038/s41598-018-25640-0] [PMID: 29740099]
[99]
Mergia, A. The role of caveolin 1 in HIV infection and pathogenesis. Vol. 9. Viruses, 2017, 9(6), 129.
[http://dx.doi.org/10.3390/v9060129] [PMID: 28587148]
[100]
Burgermeister, E.; Tencer, L.; Liscovitch, M. Peroxisome proliferator-activated receptor-γ upregulates caveolin-1 and caveolin-2 expression in human carcinoma cells. Oncogene, 2003, 22(25), 3888-3900.
[http://dx.doi.org/10.1038/sj.onc.1206625] [PMID: 12813462]
[101]
Li, Z.; Yu, Y.; Li, Y.; Ma, F.; Fang, Y.; Ni, C.; Wu, K.; Pan, P.; Ge, R.S. Taxifolin attenuates the developmental testicular toxicity induced by di-n-butyl phthalate in fetal male rats. Food Chem. Toxicol., 2020, 142, 111482.
[http://dx.doi.org/10.1016/j.fct.2020.111482] [PMID: 32525071]
[102]
Salheen, S.M.; Panchapakesan, U.; Pollock, C.A.; Woodman, O.L. The dipeptidyl peptidase-4 inhibitor linagliptin preserves endothelial function in mesenteric arteries from type 1 diabetic rats without decreasing plasma glucose. PLoS One, 2015, 10(11), e0143941.
[http://dx.doi.org/10.1371/journal.pone.0143941] [PMID: 26618855]
[103]
Vellecco, V.; Mitidieri, E.; Gargiulo, A.; Brancaleone, V.; Matassa, D.; Klein, T.; Esposito, F.; Cirino, G.; Bucci, M. Vascular effects of linagliptin in non-obese diabetic mice are glucose-independent and involve positive modulation of the endothelial nitric oxide synthase (eNOS)/caveolin-1 (CAV-1) pathway. Diabetes Obes. Metab., 2016, 18(12), 1236-1243.
[http://dx.doi.org/10.1111/dom.12750] [PMID: 27460695]
[104]
Müller, G.; Schulz, A.; Wied, S.; Frick, W. Regulation of lipid raft proteins by glimepiride- and insulin-induced glycosylphosphatidylinositol-specific phospholipase C in rat adipocytes. Biochem. Pharmacol., 2005, 69(5), 761-780.
[http://dx.doi.org/10.1016/j.bcp.2004.11.014] [PMID: 15710354]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy