Review Article

Gene Therapy for Chronic Traumatic Brain Injury: Challenges in Resolving Long-term Consequences of Brain Damage

Author(s): Vipin V. Dhote*, Prem Samundre, Aman B. Upaganlawar and Aditya Ganeshpurkar

Volume 23, Issue 1, 2023

Published on: 03 January, 2022

Page: [3 - 19] Pages: 17

DOI: 10.2174/1566523221666211123101441

Price: $65

Open Access Journals Promotions 2
Abstract

The gene therapy is alluring not only for CNS disorders but also for other pathological conditions. Gene therapy employs the insertion of a healthy gene into the identified genome to replace or replenish genes responsible for pathological disorder or damage due to trauma. The last decade has seen a drastic change in the understanding of vital aspects of gene therapy. Despite the complexity of traumatic brain injury (TBI), the advent of gene therapy in various neurodegenerative disorders has reinforced the ongoing efforts of alleviating TBI-related outcomes with gene therapy. The review highlights the genes modulated in response to TBI and evaluates their impact on the severity and duration of the injury. We have reviewed strategies that pinpointed the most relevant gene targets to restrict debilitating events of brain trauma and utilize vector of choice to deliver the gene of interest at the appropriate site. We have made an attempt to summarize the long-term neurobehavioral consequences of TBI due to numerous pathometabolic perturbations associated with a plethora of genes. Herein, we shed light on the basic pathological mechanisms of brain injury, genetic polymorphism in individuals susceptible to severe outcomes, modulation of gene expression due to TBI, and identification of genes for their possible use in gene therapy. The review also provides insights on the use of vectors and challenges in translations of this gene therapy to clinical practices.

Keywords: TBI, cognitive decline, apoptosis, gene therapy, polymorphism, vectors, translation.

[1]
Crane PK, Gibbons LE, Dams-O’Connor K, et al. Association of traumatic brain injury with late-life neurodegenerative conditions and neuropathologic findings. JAMA Neurol 2016; 73(9): 1062-9.
[http://dx.doi.org/10.1001/jamaneurol.2016.1948] [PMID: 27400367]
[2]
McKee AC, Stern RA, Nowinski CJ, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain 2013; 136(Pt 1): 43-64.
[http://dx.doi.org/10.1093/brain/aws307] [PMID: 23208308]
[3]
Pan J, Connolly ID, Dangelmajer S, Kintzing J, Ho AL, Grant G. Sports-related brain injuries: connecting pathology to diagnosis. Neurosurg Focus 2016; 40(4): E14.
[http://dx.doi.org/10.3171/2016.1.FOCUS15607] [PMID: 27032917]
[4]
Gardner AJ, Zafonte R. Neuroepidemiology of traumatic brain injury. Handb Clin Neurol 2016; 138: 207-23.
[http://dx.doi.org/10.1016/B978-0-12-802973-2.00012-4] [PMID: 27637960]
[5]
Omalu B, Bailes J, Hamilton RL, et al. Emerging histomorphologic phenotypes of chronic traumatic encephalopathy in American athletes. Neurosurgery 2011; 69(1): 173-83.
[http://dx.doi.org/10.1227/NEU.0b013e318212bc7b] [PMID: 21358359]
[6]
Wilson L, Stewart W, Dams-O’Connor K, et al. The chronic and evolving neurological consequences of traumatic brain injury. Lancet Neurol 2017; 16(10): 813-25.
[http://dx.doi.org/10.1016/S1474-4422(17)30279-X] [PMID: 28920887]
[7]
Lu J, Ng KC, Ling G, et al. Effect of blast exposure on the brain structure and cognition in Macaca fascicularis. J Neurotrauma 2012; 29(7): 1434-54.
[http://dx.doi.org/10.1089/neu.2010.1591] [PMID: 21639720]
[8]
Gardner RC, Yaffe K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol Cell Neurosci 2015; 66(Pt B): 75-80.
[http://dx.doi.org/10.1016/j.mcn.2015.03.001]
[9]
Cassidy JD, Carroll LJ, Peloso PM, et al. Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO collaborating centre task force on mild traumatic brain injury. J Rehabil Med 2004; (43 Suppl.): 28-60.
[http://dx.doi.org/10.1080/16501960410023732] [PMID: 15083870]
[10]
Faul M, Xu L, Wlad MM, Coronado VG. Traumatic brain injury in the United States; emergency department visits, hospitalizations, and deaths 2002-2006. Centre for Disease control and Prevention 2010.
[11]
Thurman DJ, Branche CM, Sniezek JE. The epidemiology of sports-related traumatic brain injuries in the United States: recent developments. J Head Trauma Rehabil 1998; 13(2): 1-8.
[http://dx.doi.org/10.1097/00001199-199804000-00003] [PMID: 9575252]
[12]
Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery 2014; 75(4 Suppl. 4): S24-33.
[http://dx.doi.org/10.1227/NEU.0000000000000505] [PMID: 25232881]
[13]
Zaloshnja E, Miller T, Langlois JA, Selassie AW. Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005. J Head Trauma Rehabil 2008; 23(6): 394-400.
[http://dx.doi.org/10.1097/01.HTR.0000341435.52004.ac] [PMID: 19033832]
[14]
Adams SM, Conley YP, Wagner AK, et al. The pharmacogenomics of severe traumatic brain injury. Pharmacogenomics 2017; 18(15): 1413-25.
[http://dx.doi.org/10.2217/pgs-2017-0073] [PMID: 28975867]
[15]
Julien J, Joubert S, Ferland MC, et al. Association of traumatic brain injury and Alzheimer disease onset: A systematic review. Ann Phys Rehabil Med 2017; 60(5): 347-56.
[http://dx.doi.org/10.1016/j.rehab.2017.03.009] [PMID: 28506441]
[16]
Syed AT, Lone NA, Wani MA, Bhat AS. Clinical management of patients with minor head injuries. Int J Health Sci (Qassim) 2007; 1(1): 131-40.
[PMID: 21475463]
[17]
Goldstein LE, Fisher AM, Tagge CA, et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med 2012; 4(134): 134ra60.
[http://dx.doi.org/10.1126/scitranslmed.3003716] [PMID: 22593173]
[18]
McCrea M, Guskiewicz KM, Marshall SW, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA Concussion Study. JAMA 2003; 290(19): 2556-63.
[http://dx.doi.org/10.1001/jama.290.19.2556] [PMID: 14625332]
[19]
Bleiberg J, Cernich AN, Cameron K, et al. Duration of cognitive impairment after sports concussion. Neurosurgery 2004; 54(5): 1073-8.
[http://dx.doi.org/10.1227/01.NEU.0000118820.33396.6A] [PMID: 15113460]
[20]
Bowman KB, Blau A. Psychotic states following head and brain injury in adults and children. In: Brock S, Ed. Injuries of the skull, brain and spinal cord: Neuro-psychiatric, surgical, and medico-legal aspects. Williams & Wilkins Co. 1940; pp. 309-60.
[http://dx.doi.org/10.1037/11479-013]
[21]
Mawdsley C, Ferguson FR. Neurological disease in boxers. Lancet 1963; 2(7312): 795-801.
[http://dx.doi.org/10.1016/S0140-6736(63)90498-7] [PMID: 14052038]
[22]
Miller H. Mental after-effects of head injury. Proc R Soc Med 1966; 59(3): 257-61.
[http://dx.doi.org/10.1177/003591576605900327] [PMID: 5909768]
[23]
Omalu BI, DeKosky ST, Minster RL, Kamboh MI, Hamilton RL, Wecht CH. Chronic traumatic encephalopathy in a National Football League player. Neurosurgery 2005; 57(1): 128-34.
[http://dx.doi.org/10.1227/01.NEU.0000163407.92769.ED] [PMID: 15987548]
[24]
McKee AC, Gavett BE, Stern RA, et al. TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J Neuropathol Exp Neurol 2010; 69(9): 918-29.
[http://dx.doi.org/10.1097/NEN.0b013e3181ee7d85] [PMID: 20720505]
[25]
McKee AC, Daneshvar DH, Alvarez VE, Stein TD. The neuropathology of sport. Acta Neuropathol 2014; 127(1): 29-51.
[http://dx.doi.org/10.1007/s00401-013-1230-6] [PMID: 24366527]
[26]
McClain R. Concussion and trauma in young athletes: prevention, treatment, and return-to-play. Prim Care 2015; 42(1): 77-83.
[http://dx.doi.org/10.1016/j.pop.2014.09.005] [PMID: 25634706]
[27]
Kochanek PM, Dixon CE, Mondello S, et al. Multi-Center Pre-clinical Consortia to enhance translation of therapies and biomarkers for traumatic brain injury: Operation brain trauma therapy and beyond. Front Neurol 2018; 9: 640.
[http://dx.doi.org/10.3389/fneur.2018.00640] [PMID: 30131759]
[28]
Marin JR, Weaver MD, Mannix RC. Burden of USA hospital charges for traumatic brain injury. Brain Inj 2017; 31(1): 24-31.
[http://dx.doi.org/10.1080/02699052.2016.1217351] [PMID: 27830939]
[29]
Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deaths - United States, 2007 and 2013. MMWR Surveill Summ 2017; 66(9): 1-16.
[http://dx.doi.org/10.15585/mmwr.ss6609a1] [PMID: 28301451]
[30]
Iverson GL. Suicide and chronic traumatic encephalopathy. J Neuropsychiatry Clin Neurosci 2016; 28(1): 9-16.
[http://dx.doi.org/10.1176/appi.neuropsych.15070172] [PMID: 26449269]
[31]
Webner D, Iverson GL. Suicide in professional American football players in the past 95 years. Brain Inj 2016; 30(13-14): 1718-21.
[http://dx.doi.org/10.1080/02699052.2016.1202451] [PMID: 27996330]
[32]
Omalu BI, Hamilton RL, Kamboh MI, DeKosky ST, Bailes J. Chronic traumatic encephalopathy (CTE) in a national football league player: Case report and emerging medicolegal practice questions. J Forensic Nurs 2010; 6(1): 40-6.
[http://dx.doi.org/10.1111/j.1939-3938.2009.01064.x] [PMID: 20201914]
[33]
Ling H, Morris HR, Neal JW, et al. Mixed pathologies including chronic traumatic encephalopathy account for dementia in retired association football (soccer) players. Acta Neuropathol 2017; 133(3): 337-52.
[http://dx.doi.org/10.1007/s00401-017-1680-3] [PMID: 28205009]
[34]
Sawyer Q, Vesci B, McLeod TC. Physical activity and intermittent postconcussion symptoms after a period of symptom-limited physical and cognitive rest. J Athl Train 2016; 51(9): 739-42.
[http://dx.doi.org/10.4085/1062-6050-51.12.01] [PMID: 27813685]
[35]
Rutland-Brown W, Langlois JA, Thomas KE, Xi YL. Incidence of traumatic brain injury in the United States, 2003. J Head Trauma Rehabil 2006; 21(6): 544-8.
[http://dx.doi.org/10.1097/00001199-200611000-00009] [PMID: 17122685]
[36]
Silver JM, Kramer R, Greenwald S, Weissman M. The association between head injuries and psychiatric disorders: findings from the New Haven NIMH epidemiologic catchment area study. Brain Inj 2001; 15(11): 935-45.
[http://dx.doi.org/10.1080/02699050110065295] [PMID: 11689092]
[37]
Dashnaw ML, Petraglia AL, Bailes JE. An overview of the basic science of concussion and subconcussion: where we are and where we are going. Neurosurg. Focus 2012; 33(6): 1-9.
[PMID: 23199428] [http://dx.doi.org/10.3171/2012.10.FOCUS12284]
[38]
Harmon KG, Drezner JA, Gammons M, et al. American medical society for sports medicine position statement: concussion in sport. Br J Sports Med 2013; 47(1): 15-26.
[http://dx.doi.org/10.1136/bjsports-2012-091941] [PMID: 23243113]
[39]
McCrory P, Meeuwisse W, Johnston K, et al. Consensus statement on concussion in sport: the 3rd international conference on concussion in sport held in Zurich, November 2008. Br J Sports Med 2009; 43 (Suppl. 1): i76-90.
[http://dx.doi.org/10.1136/bjsm.2009.058248] [PMID: 19433429]
[40]
Israelsson C, Bengtsson H, Kylberg A, et al. Distinct cellular patterns of upregulated chemokine expression supporting a prominent inflammatory role in traumatic brain injury. J Neurotrauma 2008; 25(8): 959-74.
[http://dx.doi.org/10.1089/neu.2008.0562] [PMID: 18665806]
[41]
Kelley BJ, Lifshitz J, Povlishock JT. Neuroinflammatory responses after experimental diffuse traumatic brain injury. J Neuropathol Exp Neurol 2007; 66(11): 989-1001.
[http://dx.doi.org/10.1097/NEN.0b013e3181588245] [PMID: 17984681]
[42]
Henry LC, Tremblay J, Tremblay S, et al. Acute and chronic changes in diffusivity measures after sports concussion. J Neurotrauma 2011; 28(10): 2049-59.
[http://dx.doi.org/10.1089/neu.2011.1836] [PMID: 21864134]
[43]
Vagnozzi R, Signoretti S, Cristofori L, et al. Assessment of metabolic brain damage and recovery following mild traumatic brain injury: A multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain 2010; 133(11): 3232-42.
[http://dx.doi.org/10.1093/brain/awq200] [PMID: 20736189]
[44]
Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol 2013; 246: 35-43.
[http://dx.doi.org/10.1016/j.expneurol.2012.01.013] [PMID: 22285252]
[45]
Prins ML, Hales A, Reger M, Giza CC, Hovda DA. Repeat traumatic brain injury in the juvenile rat is associated with increased axonal injury and cognitive impairments. Dev Neurosci 2010; 32(5-6): 510-8.
[http://dx.doi.org/10.1159/000316800] [PMID: 20829578]
[46]
Van Kampen DA, Lovell MR, Pardini JE, Collins MW, Fu FH. The “value added” of neurocognitive testing after sports-related concussion. Am J Sports Med 2006; 34(10): 1630-5.
[http://dx.doi.org/10.1177/0363546506288677] [PMID: 16816151]
[47]
Eckner JT, Kutcher JS, Broglio SP, Richardson JK. Effect of sport-related concussion on clinically measured simple reaction time. Br J Sports Med 2014; 48(2): 112-8.
[http://dx.doi.org/10.1136/bjsports-2012-091579] [PMID: 23314889]
[48]
Büki A, Povlishock JT. All roads lead to disconnection?--Traumatic axonal injury revisited. Acta Neurochir (Wien) 2006; 148(2): 181-93.
[http://dx.doi.org/10.1007/s00701-005-0674-4] [PMID: 16362181]
[49]
Pettus EH, Povlishock JT. Characterization of a distinct set of intra-axonal ultrastructural changes associated with traumatically induced alteration in axolemmal permeability. Brain Res 1996; 722(1-2): 1-11.
[http://dx.doi.org/10.1016/0006-8993(96)00113-8] [PMID: 8813344]
[50]
Smith DH, Johnson VE, Stewart W. Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat Rev Neurol 2013; 9(4): 211-21.
[http://dx.doi.org/10.1038/nrneurol.2013.29] [PMID: 23458973]
[51]
Lipton ML, Gellella E, Lo C, et al. Multifocal white matter ultrastructural abnormalities in mild traumatic brain injury with cognitive disability: A voxel-wise analysis of diffusion tensor imaging. J Neurotrauma 2008; 25(11): 1335-42.
[http://dx.doi.org/10.1089/neu.2008.0547] [PMID: 19061376]
[52]
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol 2010; 119(1): 7-35.
[http://dx.doi.org/10.1007/s00401-009-0619-8] [PMID: 20012068]
[53]
Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV. Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 2006; 129(Pt 10): 2761-72.
[http://dx.doi.org/10.1093/brain/awl165] [PMID: 16825202]
[54]
Cortez SC, McIntosh TK, Noble LJ. Experimental fluid percussion brain injury: vascular disruption and neuronal and glial alterations. Brain Res 1989; 482(2): 271-82.
[http://dx.doi.org/10.1016/0006-8993(89)91190-6] [PMID: 2706487]
[55]
Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005; 8(6): 752-8.
[http://dx.doi.org/10.1038/nn1472] [PMID: 15895084]
[56]
Ziebell JM, Morganti-Kossmann MC. Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 2010; 7(1): 22-30.
[http://dx.doi.org/10.1016/j.nurt.2009.10.016] [PMID: 20129494]
[57]
Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T. Inflammatory response in acute traumatic brain injury: A double-edged sword. Curr Opin Crit Care 2002; 8(2): 101-5.
[http://dx.doi.org/10.1097/00075198-200204000-00002] [PMID: 12386508]
[58]
Brody DL, Benetatos J, Bennett RE, Klemenhagen KC, Mac Donald CL. The pathophysiology of repetitive concussive traumatic brain injury in experimental models; new developments and open questions. Mol Cell Neurosci 2015; 66(Pt B): 91-8.
[http://dx.doi.org/10.1016/j.mcn.2015.02.005] [PMID: 25684677]
[59]
Len TK, Neary JP. Cerebrovascular pathophysiology following mild traumatic brain injury. Clin Physiol Funct Imaging 2011; 31(2): 85-93.
[http://dx.doi.org/10.1111/j.1475-097X.2010.00990.x] [PMID: 21078064]
[60]
Stern RA, Riley DO, Daneshvar DH, Nowinski CJ, Cantu RC, McKee AC. Long-term consequences of repetitive brain trauma: chronic traumatic encephalopathy. PM R 2011; 3(10 Suppl. 2): S460-7.
[http://dx.doi.org/10.1016/j.pmrj.2011.08.008] [PMID: 22035690]
[61]
Li HH, Lee SM, Cai Y, Sutton RL, Hovda DA. Differential gene expression in hippocampus following experimental brain trauma reveals distinct features of moderate and severe injuries. J Neurotrauma 2004; 21(9): 1141-53.
[http://dx.doi.org/10.1089/0897715041953777] [PMID: 15453985]
[62]
Long Y, Zou L, Liu H, et al. Altered expression of randomly selected genes in mouse hippocampus after traumatic brain injury. J Neurosci Res 2003; 71(5): 710-20.
[http://dx.doi.org/10.1002/jnr.10524] [PMID: 12584729]
[63]
Kubota M, Nakamura T, Sunami K, et al. Changes of local cerebral glucose utilization, DC potential and extracellular potassium concentration in experimental head injury of varying severity. Neurosurg Rev 1989; 12 (Suppl. 1): 393-9.
[http://dx.doi.org/10.1007/BF01790681] [PMID: 2812405]
[64]
Yoshino A, Hovda DA, Kawamata T, Katayama Y, Becker DP. Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: evidence of a hyper- and subsequent hypometabolic state. Brain Res 1991; 561(1): 106-19.
[http://dx.doi.org/10.1016/0006-8993(91)90755-K] [PMID: 1797338]
[65]
Zetterberg H, Smith DH, Blennow K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat Rev Neurol 2013; 9(4): 201-10.
[http://dx.doi.org/10.1038/nrneurol.2013.9] [PMID: 23399646]
[66]
Lichtman SW, Seliger G, Tycko B, Marder K. Apolipoprotein E and functional recovery from brain injury following postacute rehabilitation. Neurology 2000; 55(10): 1536-9.
[http://dx.doi.org/10.1212/WNL.55.10.1536] [PMID: 11094110]
[67]
Mahley RW, Huang Y. Apolipoprotein e sets the stage: response to injury triggers neuropathology. Neuron 2012; 76(5): 871-85.
[http://dx.doi.org/10.1016/j.neuron.2012.11.020] [PMID: 23217737]
[68]
McKee AC, Cairns NJ, Dickson DW, et al. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol 2016; 131(1): 75-86.
[http://dx.doi.org/10.1007/s00401-015-1515-z] [PMID: 26667418]
[69]
Jordan BD. Genetic influences on outcome following traumatic brain injury. Neurochem Res 2007; 32(4-5): 905-15.
[http://dx.doi.org/10.1007/s11064-006-9251-3] [PMID: 17342413]
[70]
Oyesiku NM, Evans CO, Houston S, et al. Regional changes in the expression of neurotrophic factors and their receptors following acute traumatic brain injury in the adult rat brain. Brain Res 1999; 833(2): 161-72.
[http://dx.doi.org/10.1016/S0006-8993(99)01501-2] [PMID: 10375691]
[71]
Philips MF, Mattiasson G, Wieloch T, et al. Neuroprotective and behavioral efficacy of nerve growth factor-transfected hippocampal progenitor cell transplants after experimental traumatic brain injury. J Neurosurg 2001; 94(5): 765-74.
[http://dx.doi.org/10.3171/jns.2001.94.5.0765] [PMID: 11354408]
[72]
Diaz-Asper CM, Weinberger DR, Goldberg TE. Catechol-O-methyltransferase polymorphisms and some implications for cognitive therapeutics. NeuroRx 2006; 3(1): 97-105.
[http://dx.doi.org/10.1016/j.nurx.2005.12.010] [PMID: 16490416]
[73]
Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D. A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 2002; 159(4): 652-4.
[http://dx.doi.org/10.1176/appi.ajp.159.4.652] [PMID: 11925305]
[74]
Lipsky RH, Sparling MB, Ryan LM, et al. Association of COMT Val158Met genotype with executive functioning following traumatic brain injury. J Neuropsychiatry Clin Neurosci 2005; 17(4): 465-71.
[http://dx.doi.org/10.1176/jnp.17.4.465] [PMID: 16387984]
[75]
Flashman LA, Saykin AJ, Rhodes CH, Burke R. Effect of COMT Val/Met genotype on frontal lobe functioning in traumatic brain injury. J Neuropsychiatry Clin Neurosci 2004; 16: 238-9.
[76]
Ritchie T, Noble EP. Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics. Neurochem Res 2003; 28(1): 73-82.
[http://dx.doi.org/10.1023/A:1021648128758] [PMID: 12587665]
[77]
McAllister TW, Rhodes CH, Flashman LA, McDonald BC, Belloni D, Saykin AJ. Effect of the dopamine D2 receptor T allele on response latency after mild traumatic brain injury. Am J Psychiatry 2005; 162(9): 1749-51.
[http://dx.doi.org/10.1176/appi.ajp.162.9.1749] [PMID: 16135640]
[78]
Torrente D, Cabezas R, Avila MF, García-Segura LM, Barreto GE, Guedes RCA. Cortical spreading depression in traumatic brain injuries: is there a role for astrocytes? Neurosci Lett 2014; 565: 2-6.
[http://dx.doi.org/10.1016/j.neulet.2013.12.058] [PMID: 24394907]
[79]
Vitarbo EA, Chatzipanteli K, Kinoshita K, Truettner JS, Alonso OF, Dietrich WD. Tumor necrosis factor alpha expression and protein levels after fluid percussion injury in rats: The effect of injury severity and brain temperature. Neurosurgery 2004; 55(2): 416-24.
[http://dx.doi.org/10.1227/01.NEU.0000130036.52521.2C] [PMID: 15271250]
[80]
Teasdale GM, Nicoll JAR, Murray G, Fiddes M. Association of apolipoprotein E polymorphism with outcome after head injury. Lancet 1997; 350(9084): 1069-71.
[http://dx.doi.org/10.1016/S0140-6736(97)04318-3] [PMID: 10213549]
[81]
Zhou W, Xu D, Peng X, Zhang Q, Jia J, Crutcher KA. Meta-analysis of APOE4 allele and outcome after traumatic brain injury. J Neurotrauma 2008; 25(4): 279-90.
[http://dx.doi.org/10.1089/neu.2007.0489] [PMID: 18373478]
[82]
Pruthi N, Chandramouli BA, Kuttappa TB, et al. Apolipoprotein E polymorphism and outcome after mild to moderate traumatic brain injury: A study of patient population in India. Neurol India 2010; 58(2): 264-9.
[http://dx.doi.org/10.4103/0028-3886.63810] [PMID: 20508347]
[83]
Shadli RM, Pieter MS, Yaacob MJ, Rashid FA. APOE genotype and neuropsychological outcome in mild-to-moderate traumatic brain injury: A pilot study. Brain Inj 2011; 25(6): 596-603.
[http://dx.doi.org/10.3109/02699052.2011.572947] [PMID: 21534737]
[84]
Friedman G, Froom P, Sazbon L, et al. Apolipoprotein E-epsilon4 genotype predicts a poor outcome in survivors of traumatic brain injury. Neurology 1999; 52(2): 244-8.
[http://dx.doi.org/10.1212/WNL.52.2.244] [PMID: 9932938]
[85]
Chamelian L, Reis M, Feinstein A. Six-month recovery from mild to moderate traumatic brain injury: The role of APOE-ε4 allele. Brain 2004; 127(Pt 12): 2621-8.
[http://dx.doi.org/10.1093/brain/awh296] [PMID: 15496436]
[86]
Chiang MF, Chang JG, Hu CJ. Association between apolipoprotein E genotype and outcome of traumatic brain injury. Acta Neurochir (Wien) 2003; 145(8): 649-53.
[http://dx.doi.org/10.1007/s00701-003-0069-3] [PMID: 14520543]
[87]
Alexander S, Kerr ME, Kim Y, Kamboh MI, Beers SR, Conley YP. Apolipoprotein E4 allele presence and functional outcome after severe traumatic brain injury. J Neurotrauma 2007; 24(5): 790-7.
[http://dx.doi.org/10.1089/neu.2006.0133] [PMID: 17518534]
[88]
Davidson J, Cusimano MD, Bendena WG. Post-traumatic brain injury: Genetic susceptibility to outcome. Neuroscientist 2015; 21(4): 424-41.
[http://dx.doi.org/10.1177/1073858414543150] [PMID: 25059577]
[89]
Winkler EA, Yue JK, McAllister TW, et al. COMT Val 158 Met polymorphism is associated with nonverbal cognition following mild traumatic brain injury. Neurogenetics 2016; 17(1): 31-41.
[http://dx.doi.org/10.1007/s10048-015-0467-8] [PMID: 26576546]
[90]
McAllister TW, Flashman LA, Harker Rhodes C, et al. Single nucleotide polymorphisms in ANKK1 and the dopamine D2 receptor gene affect cognitive outcome shortly after traumatic brain injury: A replication and extension study. Brain Inj 2008; 22(9): 705-14.
[http://dx.doi.org/10.1080/02699050802263019] [PMID: 18698520]
[91]
Neville MJ, Johnstone EC, Walton RT. Identification and characterization of ANKK1: A novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum Mutat 2004; 23(6): 540-5.
[http://dx.doi.org/10.1002/humu.20039] [PMID: 15146457]
[92]
Failla MD, Myrga JM, Ricker JH, Dixon CE, Conley YP, Wagner AK. Posttraumatic brain injury cognitive performance is moderated by variation within ANKK1 and DRD2 genes. J Head Trauma Rehabil 2015; 30(6): E54-66.
[http://dx.doi.org/10.1097/HTR.0000000000000118] [PMID: 25931179]
[93]
Markos SM, Failla MD, Ritter AC, et al. Genetic variation in the vesicular monoamine transporter: Preliminary associations with cognitive outcomes after severe traumatic brain injury. J Head Trauma Rehabil 2017; 32(2): E24-34.
[http://dx.doi.org/10.1097/HTR.0000000000000224] [PMID: 26828714]
[94]
Uzan M, Tanriverdi T, Baykara O, et al. Association between interleukin-1 beta (IL-1beta) gene polymorphism and outcome after head injury: An early report. Acta Neurochir (Wien) 2005; 147(7): 715-20.
[http://dx.doi.org/10.1007/s00701-005-0529-z] [PMID: 15891809]
[95]
Pociot F, Mølvig J, Wogensen L, Worsaae H, Nerup J. A TaqI polymorphism in the human interleukin-1 beta (IL-1 beta) gene correlates with IL-1 beta secretion in vitro. Eur J Clin Invest 1992; 22(6): 396-402.
[http://dx.doi.org/10.1111/j.1365-2362.1992.tb01480.x] [PMID: 1353022]
[96]
Nicklin MJ, Weith A, Duff GW. A physical map of the region encompassing the human interleukin-1 alpha, interleukin-1 beta, and interleukin-1 receptor antagonist genes. Genomics 1994; 19(2): 382-4.
[http://dx.doi.org/10.1006/geno.1994.1076] [PMID: 8188271]
[97]
Hadjigeorgiou GM, Paterakis K, Dardiotis E, et al. IL-1RN and IL-1B gene polymorphisms and cerebral hemorrhagic events after traumatic brain injury. Neurology 2005; 65(7): 1077-82.
[http://dx.doi.org/10.1212/01.wnl.0000178890.93795.0e] [PMID: 16217062]
[98]
Dewberry RM, Crossman DC, Francis SE. Interleukin-1 receptor antagonist (IL-1RN) genotype modulates the replicative capacity of human endothelial cells. Circ Res 2003; 92(12): 1285-7.
[http://dx.doi.org/10.1161/01.RES.0000078172.52740.9B] [PMID: 12764021]
[99]
Arend WP. The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev 2002; 13(4-5): 323-40.
[http://dx.doi.org/10.1016/S1359-6101(02)00020-5] [PMID: 12220547]
[100]
Santtila S, Savinainen K, Hurme M. Presence of the IL-1RA allele 2 (IL1RN*2) is associated with enhanced IL-1beta production in vitro. Scand J Immunol 1998; 47(3): 195-8.
[http://dx.doi.org/10.1046/j.1365-3083.1998.00300.x] [PMID: 9519856]
[101]
Fan L, Young PR, Barone FC, Feuerstein GZ, Smith DH, McIntosh TK. Experimental brain injury induces differential expression of tumor necrosis factor-alpha mRNA in the CNS. Brain Res Mol Brain Res 1996; 36(2): 287-91.
[http://dx.doi.org/10.1016/0169-328X(95)00274-V] [PMID: 8965649]
[102]
Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004; 4(7): 499-511.
[http://dx.doi.org/10.1038/nri1391] [PMID: 15229469]
[103]
Yuan P, Liu Z, Liu M, Huang J, Li X, Zhou X. Up-regulated tumor necrosis factor-associated factor 6 level is correlated with apoptosis in the rat cerebral ischemia and reperfusion. Neurol Sci 2013; 34(7): 1133-8.
[http://dx.doi.org/10.1007/s10072-012-1199-2] [PMID: 23001490]
[104]
Su L, Chen Z, Yan Y, et al. Association between TRAF6 gene polymorphisms and susceptibility of ischemic stroke in Southern Chinese Han population. J Mol Neurosci 2015; 57(3): 386-92.
[http://dx.doi.org/10.1007/s12031-015-0580-z] [PMID: 25999280]
[105]
Vajtr D, Springer D, Staněk L, et al. Pathomorphology of inflammatory response following traumatic brain injury, serum values of interleukins, and gene polymorphisms. Soud Lek 2014; 59(4): 40-7.
[PMID: 25417641]
[106]
Sheline CT, Wei L. Free radical-mediated neurotoxicity may be caused by inhibition of mitochondrial dehydrogenases in vitro and in vivo. Neuroscience 2006; 140(1): 235-46.
[http://dx.doi.org/10.1016/j.neuroscience.2006.02.019] [PMID: 16563643]
[107]
Signoretti S, Marmarou A, Tavazzi B, et al. The protective effect of cyclosporin A upon N-acetylaspartate and mitochondrial dysfunction following experimental diffuse traumatic brain injury. J Neurotrauma 2004; 21(9): 1154-67.
[http://dx.doi.org/10.1089/neu.2004.21.1154] [PMID: 15453986]
[108]
Fisher DE. The p53 tumor suppressor: critical regulator of life & death in cancer. Apoptosis 2001; 6(1-2): 7-15.
[http://dx.doi.org/10.1023/A:1009659708549] [PMID: 11321044]
[109]
Dumont P, Leu JI, Della Pietra AC III, George DL, Murphy M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 2003; 33(3): 357-65.
[http://dx.doi.org/10.1038/ng1093] [PMID: 12567188]
[110]
Martínez-Lucas P, Moreno-Cuesta J, García-Olmo DC, et al. Relationship between the Arg72Pro polymorphism of p53 and outcome for patients with traumatic brain injury. Intensive Care Med 2005; 31(9): 1168-73.
[http://dx.doi.org/10.1007/s00134-005-2715-0] [PMID: 16007417]
[111]
Meng Q, Zhuang Y, Ying Z, Agrawal R, Yang X, Gomez-Pinilla F. Traumatic brain injury induces genome-wide transcriptomic, methylomic, and network perturbations in brain and blood predicting neurological disorders. EBioMedicine 2017; 16: 184-94.
[http://dx.doi.org/10.1016/j.ebiom.2017.01.046] [PMID: 28174132]
[112]
Hovda DA, Villablanca JR, Chugani HT, Phelps ME. Cerebral metabolism following neonatal or adult hemineodecortication in cats: I. Effects on glucose metabolism using [14C]2-deoxy-D-glucose autoradiography. J Cereb Blood Flow Metab 1996; 16(1): 134-46.
[http://dx.doi.org/10.1097/00004647-199601000-00016] [PMID: 8530546]
[113]
Pearn ML, Niesman IR, Egawa J, et al. Pathophysiology associated with traumatic brain injury: current treatments and potential novel therapeutics. Cell Mol Neurobiol 2017; 37(4): 571-85.
[http://dx.doi.org/10.1007/s10571-016-0400-1] [PMID: 27383839]
[114]
Royo NC, Shimizu S, Saatman KE, Mcintosh TK. Alterations in nerve growth factor (NGF) and neurotrophin-4/5 (NT-4/5) after traumatic brain injury in rats. J Neurotrauma 2002; 19: 1362.
[115]
Longhi L, Watson DJ, Saatman KE, et al. Ex vivo gene therapy using targeted engraftment of NGF-expressing human NT2N neurons attenuates cognitive deficits following traumatic brain injury in mice. J Neurotrauma 2004; 21(12): 1723-36.
[http://dx.doi.org/10.1089/neu.2004.21.1723] [PMID: 15684764]
[116]
Longhi L, Saatman KE, Fujimoto S, et al. Temporal window of vulnerability to repetitive experimental concussive brain injury. Neurosurgery 2005; 56(2): 364-74.
[http://dx.doi.org/10.1227/01.NEU.0000149008.73513.44] [PMID: 15670384]
[117]
Sondell M, Sundler F, Kanje M. Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci 2000; 12(12): 4243-54.
[http://dx.doi.org/10.1046/j.0953-816X.2000.01326.x] [PMID: 11122336]
[118]
Siddiq I, Park E, Liu E, et al. Treatment of traumatic brain injury using zinc-finger protein gene therapy targeting VEGF-A. J Neurotrauma 2012; 29(17): 2647-59.
[http://dx.doi.org/10.1089/neu.2012.2444] [PMID: 23016562]
[119]
Minagawa H, Gong JS, Jung CG, et al. Mechanism underlying apolipoprotein E (ApoE) isoform-dependent lipid efflux from neural cells in culture. J Neurosci Res 2009; 87(11): 2498-508.
[http://dx.doi.org/10.1002/jnr.22073] [PMID: 19326444]
[120]
Gong JS, Morita SY, Kobayashi M, et al. Novel action of apolipoprotein E (ApoE): ApoE isoform specifically inhibits lipid-particle-mediated cholesterol release from neurons. Mol Neurodegener 2007; 2: 9.
[http://dx.doi.org/10.1186/1750-1326-2-9] [PMID: 17504523]
[121]
McDougall M, Choi J, Magnusson K, Truong L, Tanguay R, Traber MG. Chronic vitamin E deficiency impairs cognitive function in adult zebrafish via dysregulation of brain lipids and energy metabolism. Free Radic Biol Med 2017; 112: 308-17.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.08.002] [PMID: 28790013]
[122]
Lauderback CM, Kanski J, Hackett JM, Maeda N, Kindy MS, Butterfield DA. Apolipoprotein E modulates Alzheimer’s Abeta(1-42)-induced oxidative damage to synaptosomes in an allele-specific manner. Brain Res 2002; 924(1): 90-7.
[http://dx.doi.org/10.1016/S0006-8993(01)03228-0] [PMID: 11743999]
[123]
Muñoz SS, Li H, Ruberu K, et al. The serine protease HtrA1 contributes to the formation of an extracellular 25-kDa apolipoprotein E fragment that stimulates neuritogenesis. J Biol Chem 2018; 293(11): 4071-84.
[http://dx.doi.org/10.1074/jbc.RA117.001278] [PMID: 29414786]
[124]
Pedachenko EG, Biloshytsky VV, Mikhal’sky SA, Gridina NY, Kvitnitskaya-Ryzhova TY. The effect of gene therapy with the APOE3 Gene on structural and functional manifestations of secondary hippocampal damages in experimental traumatic brain injury. Vopr Neirokhir 2015; 79(2): 21-32.
[http://dx.doi.org/10.17116/neiro201579221-32] [PMID: 26146041]
[125]
Lanfranco MF, Ng CA, Rebeck GW, Apo E. ApoE lipidation as a therapeutic target in Alzheimer’s disease. Int J Mol Sci 2020; 21(17): 6336.
[http://dx.doi.org/10.3390/ijms21176336] [PMID: 32882843]
[126]
Zhang X, Chen Y, Jenkins LW, Kochanek PM, Clark RS. Bench-to-bedside review: Apoptosis/programmed cell death triggered by traumatic brain injury. Crit Care 2005; 9(1): 66-75.
[http://dx.doi.org/10.1186/cc2950] [PMID: 15693986]
[127]
Chen M, Kochanek PM, Watkins SC, et al. Detection of single- and double-strand DNA breaks after traumatic brain injury in rats: comparison of in situ labeling techniques using DNA polymerase I, the Klenow fragment of DNA polymerase I, and terminal deoxynucleotidyl transferase. J Neurotrauma 2001; 18(7): 675-89.
[http://dx.doi.org/10.1089/089771501750357627] [PMID: 11497094]
[128]
Graham SH, Chen J, Clark RS. Bcl-2 family gene products in cerebral ischemia and traumatic brain injury. J Neurotrauma 2000; 17(10): 831-41.
[http://dx.doi.org/10.1089/neu.2000.17.831] [PMID: 11063051]
[129]
Harris MH, Thompson CB. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ 2000; 7(12): 1182-91.
[http://dx.doi.org/10.1038/sj.cdd.4400781] [PMID: 11175255]
[130]
Rossé T, Olivier R, Monney L, et al. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 1998; 391(6666): 496-9.
[http://dx.doi.org/10.1038/35160] [PMID: 9461218]
[131]
Antonsson B, Conti F, Ciavatta A, et al. Inhibition of Bax channel-forming activity by Bcl-2. Science 1997; 277(5324): 370-2.
[http://dx.doi.org/10.1126/science.277.5324.370] [PMID: 9219694]
[132]
Clark RSB, Chen J, Watkins SC, et al. Apoptosis-suppressor gene bcl-2 expression after traumatic brain injury in rats. J Neurosci 1997; 17(23): 9172-82.
[http://dx.doi.org/10.1523/JNEUROSCI.17-23-09172.1997] [PMID: 9364064]
[133]
Yang XF, Zheng XS, Liu WG, Feng JF. Bcl-2 gene therapy for apoptosis following traumatic brain injury. Chin J Traumatol 2006; 9(5): 276-81.
[PMID: 17026859]
[134]
Effects of Intranasal Nerve Growth Factor for Traumatic Brain Injury, Ceregene. Clinicaltrailgov identifier NCT01212679, 2017. Available from: https://clinicaltrials.gov/ct2/show/NCT01212679?cond=NCT01212679&draw=2&rank=1.
[135]
Recombinant Human Growth Hormone During Rehabilitation from Traumatic Brain Injury University of Pennsylvania Clinicaltrail.gov identifier NCT00766038, 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT00766038?cond=NCT00766038&draw=2&rank=1.
[136]
Anterior Pituitary Hormone Replacement in Traumatic Brain Injury. The University of Texas Medical Branch, Galveston Clinicaltrail.gov identifier NCT00957671, 2018. Available from: https://clinicaltrials.gov/ct2/results?cond=NCT00957671&term=&cntry=&state=&city=&dist=.
[137]
Effect of Recombinant Erythropoietin on Numbers of Circulating Endothelial Progenitor Cells in People with Persistent Symptoms During the Subacute Period After Traumatic Brain Injury. National Institute of Neurological Disorders and Stroke (NINDS) Clinicaltrail.gov identifier NCT02226848, 2018. Available from: https://clinicaltrials.gov/ct2/show/NCT02226848?cond=NCT02226848&draw=2&rank=1.
[138]
Gene Therapy for APOE4 Homozygote of Alzheimer's Disease. Lexeo Therapeutics Clinicaltrail.gov identifier NCT03634007, 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT03634007?cond=NCT03634007&draw=2&rank=1.
[139]
Randomized, Controlled Study Evaluating CERE-110 in Subjects With Mild to Moderate Alzheimer's Disease. Sangamo Therapeutics Clinicaltrail.gov identifier NCT00876863, 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT00876863?cond=NCT00876863&draw=2&rank=1.
[140]
CERE-110 in Subjects with Mild to Moderate Alzheimer's Disease. Ceregene Clinicaltrail.gov identifier NCT00087789, 2016. Available from: https://clinicaltrials.gov/ct2/show/NCT00087789?cond=NCT00087789&draw=2&rank=1.
[141]
Gene Therapy for Alzheimer's Disease Clinical Trial. The Shiley Family Trust ClinicalTrials.gov Identifier: NCT00017940, 2009. Available from: https://clinicaltrials.gov/ct2/show/NCT00017940?cond=NCT00017940&draw=2&rank=1.
[142]
Evaluation of Safety and Tolerability of Libella Gene Therapy for Alzheimer's Disease: AAV- hTERT. Libella Gene Therapeutics ClinicalTrials.gov Identifier: NCT04133454, 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT04133454?cond=NCT04133454&draw=2&rank=1.
[143]
Evaluation of Safety and Tolerability of Libella Gene Therapy for the Treatment of Aging: AAV- hTERT. Libella Gene Therapeutics ClinicalTrials.gov Identifier: NCT04133649, 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT04133649?cond=NCT04133649&draw=2&rank=1.
[144]
GDNF Gene Therapy for Parkinson's Disease. Brain Neurotherapy Bio, Inc ClinicalTrials.gov Identifier: NCT04167540, 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04167540?cond=NCT04167540&draw=2&rank=1.
[145]
Study of AAV-GAD Gene Transfer into the Subthalamic Nucleus for Parkinson's Disease. Neurologix ClinicalTrials.gov Identifier: NCT00643890, 2012. Available from: https://clinicaltrials.gov/ct2/show/NCT00643890?cond=NCT00643890&draw=2&rank=1.
[146]
Intrathecal Administration of scAAV9/JeT-GAN for the Treatment of Giant Axonal Neuropathy. National Institute of Neurological Disorders and Stroke ClinicalTrials.gov Identifier: NCT02362438, 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT02362438?cond=NCT02362438&draw=2&rank=1.
[147]
Misra S. Human gene therapy: A brief overview of the genetic revolution. J Assoc Physicians India 2013; 61(2): 127-33.
[PMID: 24471251]
[148]
Gardlík R, Pálffy R, Hodosy J, Lukács J, Turna J, Celec P. Vectors and delivery systems in gene therapy. Med Sci Monit 2005; 11(4): RA110-21.
[PMID: 15795707]
[149]
Linden R. Gene therapy: what it is, what it is not and what it will be. Estud Av 2010; 24(70): 31-69.
[http://dx.doi.org/10.1590/S0103-40142010000300004]
[150]
Naldini L. Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet 2011; 12(5): 301-15.
[http://dx.doi.org/10.1038/nrg2985] [PMID: 21445084]
[151]
Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 2011; 12(5): 341-55.
[http://dx.doi.org/10.1038/nrg2988] [PMID: 21499295]
[152]
Murlidharan G, Samulski RJ, Asokan A. Biology of adeno-associated viral vectors in the central nervous system. Front Mol Neurosci 2014; 7: 76.
[http://dx.doi.org/10.3389/fnmol.2014.00076] [PMID: 25285067]
[153]
Vandenberghe LH, Wilson JM, Gao G. Tailoring the AAV vector capsid for gene therapy. Gene Ther 2009; 16(3): 311-9.
[http://dx.doi.org/10.1038/gt.2008.170] [PMID: 19052631]
[154]
Barcia C, Jimenez-Dalmaroni M, Kroeger KM, et al. One-year expression from high-capacity adenoviral vectors in the brains of animals with pre-existing anti-adenoviral immunity: clinical implications. Mol Ther 2007; 15(12): 2154-63.
[http://dx.doi.org/10.1038/sj.mt.6300305] [PMID: 17895861]
[155]
Dubensky TW Jr. (Re-)Engineering tumor cell-selective replicating adenoviruses: A step in the right direction toward systemic therapy for metastatic disease. Cancer Cell 2002; 1(4): 307-9.
[http://dx.doi.org/10.1016/S1535-6108(02)00062-4] [PMID: 12086842]
[156]
Rehman H, Silk AW, Kane MP, Kaufman HL. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer 2016; 4: 53.
[http://dx.doi.org/10.1186/s40425-016-0158-5] [PMID: 27660707]
[157]
Bearer EL, Wu C. Herpes Simplex Virus, Alzheimer’s disease and a possible role for Rab GTPases. Front Cell Dev Biol 2019; 7: 134.
[http://dx.doi.org/10.3389/fcell.2019.00134] [PMID: 31448273]
[158]
Sena-Esteves M, Saeki Y, Fraefel C, Breakefield XO. HSV-1 amplicon vectors-simplicity and versatility. Mol Ther 2000; 2(1): 9-15.
[http://dx.doi.org/10.1006/mthe.2000.0096] [PMID: 10899823]
[159]
Spaete RR, Frenkel N. The herpes simplex virus amplicon: A new eucaryotic defective-virus cloning-amplifying vector. Cell 1982; 30(1): 295-304.
[http://dx.doi.org/10.1016/0092-8674(82)90035-6] [PMID: 6290080]
[160]
Cattoglio C, Facchini G, Sartori D, et al. Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood 2007; 110(6): 1770-8.
[http://dx.doi.org/10.1182/blood-2007-01-068759] [PMID: 17507662]
[161]
Cetin A, Komai S, Eliava M, Seeburg PH, Osten P. Stereotaxic gene delivery in the rodent brain. Nat Protoc 2006; 1(6): 3166-73.
[http://dx.doi.org/10.1038/nprot.2006.450] [PMID: 17406580]
[162]
Osten P, Dittgen T, Licznerski P. Lentivirus-based genetic manipulations in neurons in vivo. In: Moss S, Kittler J, Eds. The Dynamic Synapse: Molecular Methods in Ionotropic Receptor Biology. Boca Raton, FL.: CRC Press/Taylor & Francis 2006; pp. 249-59.
[163]
Biffi A, Montini E, Lorioli L, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013; 341(6148): 1233158.
[http://dx.doi.org/10.1126/science.1233158] [PMID: 23845948]
[164]
Wilson JT, Wilson LB, deRiel JK, et al. Insertion of synthetic copies of human globin genes into bacterial plasmids. Nucleic Acids Res 1978; 5(2): 563-81.
[http://dx.doi.org/10.1093/nar/5.2.563] [PMID: 345245]
[165]
Lu J, Zhang F, Kay MA. A mini-intronic plasmid (MIP): A novel robust transgene expression vector in vivo and in vitro. Mol Ther 2013; 21(5): 954-63.
[http://dx.doi.org/10.1038/mt.2013.33] [PMID: 23459514]
[166]
Munye MM, Tagalakis AD, Barnes JL, et al. Minicircle DNA Provides enhanced and prolonged transgene expression following airway gene transfer. Sci Rep 2016; 6: 23125.
[http://dx.doi.org/10.1038/srep23125] [PMID: 26975732]
[167]
Capecchi MR. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 1980; 22(2 Pt 2): 479-88.
[http://dx.doi.org/10.1016/0092-8674(80)90358-X] [PMID: 6256082]
[168]
Klein TM, Wolf ED, Wu R, Sanford JC. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 1987; 327(6117): 70-3.
[http://dx.doi.org/10.1038/327070a0]
[169]
Budker V, Zhang G, Danko I, Williams P, Wolff J. The efficient expression of intravascularly delivered DNA in rat muscle. Gene Ther 1998; 5(2): 272-6.
[http://dx.doi.org/10.1038/sj.gt.3300572] [PMID: 9578848]
[170]
Kulkarni VI, Shenoy VS, Dodiya SS, Rajyaguru TH, Murthy RR. Role of calcium in gene delivery. Expert Opin Drug Deliv 2006; 3(2): 235-45.
[http://dx.doi.org/10.1517/17425247.3.2.235] [PMID: 16506950]
[171]
Gao X, Huang L. Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry 1996; 35(3): 1027-36.
[http://dx.doi.org/10.1021/bi952436a] [PMID: 8547238]
[172]
Nathwani AC, Reiss UM, Tuddenham EG, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 2014; 371(21): 1994-2004.
[http://dx.doi.org/10.1056/NEJMoa1407309] [PMID: 25409372]
[173]
Colhoun HM, McKeigue PM, Davey Smith G. Problems of reporting genetic associations with complex outcomes. Lancet 2003; 361(9360): 865-72.
[http://dx.doi.org/10.1016/S0140-6736(03)12715-8] [PMID: 12642066]
[174]
Ioannidis JPA, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. Nat Genet 2001; 29(3): 306-9.
[http://dx.doi.org/10.1038/ng749] [PMID: 11600885]
[175]
Wilson JM. Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol Genet Metab 2009; 96(4): 151-7.
[http://dx.doi.org/10.1016/j.ymgme.2008.12.016] [PMID: 19211285]
[176]
Ciesielska A, Hadaczek P, Mittermeyer G, et al. Cerebral infusion of AAV9 vector-encoding non-self proteins can elicit cell-mediated immune responses. Mol Ther 2013; 21(1): 158-66.
[http://dx.doi.org/10.1038/mt.2012.167] [PMID: 22929660]
[177]
Samaranch L, Sebastian WS, Kells AP, et al. AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction. Mol Ther 2014; 22(2): 329-37.
[http://dx.doi.org/10.1038/mt.2013.266] [PMID: 24419081]
[178]
Breakefield XO, Sena-Esteves M. Healing genes in the nervous system. Neuron 2010; 68(2): 178-81.
[http://dx.doi.org/10.1016/j.neuron.2010.10.005] [PMID: 20955923]
[179]
Anguela XM, High KA. Entering the modern era of gene therapy. Annu Rev Med 2019; 70: 273-88.
[http://dx.doi.org/10.1146/annurev-med-012017-043332] [PMID: 30477394]
[180]
Gaudet D, Méthot J, Déry S, et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: An open-label trial. Gene Ther 2013; 20(4): 361-9.
[http://dx.doi.org/10.1038/gt.2012.43] [PMID: 22717743]
[181]
Pardridge WM. Re-engineering biopharmaceuticals for delivery to brain with molecular trojan horses. Bioconjug Chem 2008; 19(7): 1327-38.
[http://dx.doi.org/10.1021/bc800148t] [PMID: 18547095]
[182]
Shahror RA, Wu CC, Chiang YH, Chen KY. Genetically modified mesenchymal stem cells: The next generation of stem cell-based therapy for TBI. Int J Mol Sci 2020; 21(11): 4051.
[http://dx.doi.org/10.3390/ijms21114051] [PMID: 32516998]
[183]
Salahuddin TS, Johansson BB, Kalimo H, Olsson Y. Structural changes in the rat brain after carotid infusions of hyperosmolar solutions. An electron microscopic study. Acta Neuropathol 1988; 77(1): 5-13.
[http://dx.doi.org/10.1007/BF00688236] [PMID: 3149121]
[184]
Dhuria SV, Hanson LR, Frey WH II. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 2010; 99(4): 1654-73.
[http://dx.doi.org/10.1002/jps.21924] [PMID: 19877171]
[185]
Gennai S, Monsel A, Hao Q, et al. Cell-based therapy for traumatic brain injury. Br J Anaesth 2015; 115(2): 203-12.
[http://dx.doi.org/10.1093/bja/aev229] [PMID: 26170348]
[186]
Montivero AJ, Ghersi MS, Silvero C MJ, et al. Early IGF-1 Gene therapy prevented oxidative stress and cognitive deficits induced by traumatic brain injury. Front Pharmacol 2021; 12: 672392.
[http://dx.doi.org/10.3389/fphar.2021.672392] [PMID: 34234671]
[187]
Kawabori M, Weintraub AH, Imai H, et al. Cell therapy for chronic TBI: Interim analysis of the randomized controlled STEMTRA trial. Neurology 2021; 96(8): e1202-14.
[http://dx.doi.org/10.1212/WNL.0000000000011450] [PMID: 33397772]
[188]
Craig AJ, Housley GD. Evaluation of Gene Therapy as an intervention strategy to treat brain injury from stroke. Front Mol Neurosci 2016; 9: 34.
[http://dx.doi.org/10.3389/fnmol.2016.00034] [PMID: 27252622]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy