Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Discovery of a Novel Small-molecule Interleukin-6 Inhibitor Through Virtual Screening Using Artificial Intelligence

Author(s): Yoshiaki Sato, Ikuo Kashiwakura*, Masaru Yamaguchi, Hironori Yoshino, Takeshi Tanaka, Ken Ikeda, Zhengmao Ye, Hirotsugu Komatsu, Takao Matsuzaki and Masato Hosoda

Volume 18, Issue 6, 2022

Published on: 11 January, 2022

Page: [694 - 700] Pages: 7

DOI: 10.2174/1573406418666211116144243

Price: $65

Abstract

Background: Interleukin-6 (IL-6) is a multifunctional cytokine involved in various cell functions and diseases. Thus far, several IL-6 inhibitors, such as humanized monoclonal antibody have been used to block excessive IL-6 signaling causing autoimmune and inflammatory diseases. However, anti-IL-6 and anti-IL-6 receptor monoclonal antibodies have some clinical disadvantages, such as a high cost, unfavorable injection route, and tendency to mask infectious diseases. While a small-molecule IL-6 inhibitor would help mitigate these issues, none are currently available.

Objective: The present study evaluated the biological activities of identified compounds on IL-6 stimulus.

Methods: We virtually screened potential IL-6 binders from a compound library using INTerprotein’s Engine for New Drug Design (INTENDD®) followed by the identification of more potent IL-6 binders with artificial intelligence (AI)-guided INTENDD®. The biological activities of the identified compounds were assessed with the IL-6-dependent cell line 7TD1.

Results: The compounds showed the suppression of IL-6-dependent cell growth in a dose-dependent manner. Furthermore, the identified compound inhibited expression of IL-6-induced phosphorylation of signal transducer and activator of transcription 3 in a dose-dependent manner.

Conclusion: Our screening compound demonstrated an inhibitory effect on IL-6 stimulus. These findings may serve as a basis for the further development of small-molecule IL-6 inhibitors.

Keywords: Artificial intelligence, virtual screening, small molecule inhibitor, interleukin-6, protein-protein interactions, signal transducer and activator of transcription 3.

Graphical Abstract
[1]
Hirano, T.; Yasukawa, K.; Harada, H.; Taga, T.; Watanabe, Y.; Matsuda, T.; Kashiwamura, S.; Nakajima, K.; Koyama, K.; Iwamatsu, A. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature, 1986, 324(6092), 73-76.
[http://dx.doi.org/10.1038/324073a0] [PMID: 3491322]
[2]
Dienz, O.; Eaton, S.M.; Bond, J.P.; Neveu, W.; Moquin, D.; Noubade, R.; Briso, E.M.; Charland, C.; Leonard, W.J.; Ciliberto, G.; Teuscher, C.; Haynes, L.; Rincon, M. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J. Exp. Med., 2009, 206(1), 69-78.
[http://dx.doi.org/10.1084/jem.20081571] [PMID: 19139170]
[3]
Senchenkova, E.Y.; Komoto, S.; Russell, J.; Almeida-Paula, L.D.; Yan, L-S.; Zhang, S.; Granger, D.N. Interleukin-6 mediates the platelet abnormalities and thrombogenesis associated with experimental colitis. Am. J. Pathol., 2013, 183(1), 173-181.
[http://dx.doi.org/10.1016/j.ajpath.2013.03.014] [PMID: 23673000]
[4]
Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 2014, 6(10)a016295
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[5]
Waldner, M.J.; Foersch, S.; Neurath, M.F. Interleukin-6--a key regulator of colorectal cancer development. Int. J. Biol. Sci., 2012, 8(9), 1248-1253.
[http://dx.doi.org/10.7150/ijbs.4614] [PMID: 23136553]
[6]
Yoshida, Y.; Tanaka, T. Interleukin 6 and rheumatoid arthritis. BioMed Res. Int., 2014, 2014698313
[http://dx.doi.org/10.1155/2014/698313] [PMID: 24524085]
[7]
Yao, X.; Huang, J.; Zhong, H.; Shen, N.; Faggioni, R.; Fung, M.; Yao, Y. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol. Ther., 2014, 141(2), 125-139.
[http://dx.doi.org/10.1016/j.pharmthera.2013.09.004] [PMID: 24076269]
[8]
Garbers, C.; Heink, S.; Korn, T.; Rose-John, S. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat. Rev. Drug Discov., 2018, 17(6), 395-412.
[http://dx.doi.org/10.1038/nrd.2018.45] [PMID: 29725131]
[9]
Kishimoto, T. IL-6: From arthritis to CAR-T-cell therapy and COVID-19. Int. Immunol., 2021, dxab011
[http://dx.doi.org/10.1093/intimm/dxab011]
[10]
Kang, L.; Tang, X.; Zhang, J.; Li, M.; Xu, N.; Qi, W.; Tan, J.; Lou, X.; Yu, Z.; Sun, J.; Wang, Z.; Dai, H.; Chen, J.; Lin, G.; Wu, D.; Yu, L. Interleukin-6-knockdown of chimeric antigen receptor-modified T cells significantly reduces IL-6 release from monocytes. Exp. Hematol. Oncol., 2020, 9, 11.
[http://dx.doi.org/10.1186/s40164-020-00166-2] [PMID: 32523801]
[11]
Mintz, C.S.; Crea, R. Protein scaffolds the next generation of protein therapeutics? Bioprocess Int., 2013, 11, 40-48.
[12]
Hennigan, S.; Kavanaugh, A. Interleukin-6 inhibitors in the treatment of rheumatoid arthritis. Ther. Clin. Risk Manag., 2008, 4(4), 767-775.
[http://dx.doi.org/10.2147/TCRM.S3470] [PMID: 19209259]
[13]
Lang, V.R.; Englbrecht, M.; Rech, J.; Nüsslein, H.; Manger, K.; Schuch, F.; Tony, H-P.; Fleck, M.; Manger, B.; Schett, G.; Zwerina, J. Risk of infections in rheumatoid arthritis patients treated with tocilizumab. Rheumatology (Oxford), 2012, 51(5), 852-857.
[http://dx.doi.org/10.1093/rheumatology/ker223] [PMID: 21865281]
[14]
Chalaris, A.; Schmidt-Arras, D.; Yamamoto, K.; Rose-John, S. Interleukin-6 trans-signaling and colonic cancer associated with inflammatory bowel disease. Dig. Dis., 2012, 30(5), 492-499.
[http://dx.doi.org/10.1159/000341698] [PMID: 23108305]
[15]
Heinrich, P.C.; Behrmann, I.; Müller-Newen, G.; Schaper, F.; Graeve, L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J., 1998, 334(Pt 2), 297-314.
[http://dx.doi.org/10.1042/bj3340297] [PMID: 9716487]
[16]
Hodge, D.R.; Hurt, E.M.; Farrar, W.L. The role of IL-6 and STAT3 in inflammation and cancer. Eur. J. Cancer, 2005, 41(16), 2502-2512.
[http://dx.doi.org/10.1016/j.ejca.2005.08.016] [PMID: 16199153]
[17]
Sansone, P.; Bromberg, J. Targeting the interleukin-6/Jak/stat pathway in human malignancies. J. Clin. Oncol., 2012, 30(9), 1005-1014.
[http://dx.doi.org/10.1200/JCO.2010.31.8907] [PMID: 22355058]
[18]
Lauria, A.; Tutone, M.; Ippolito, M.; Pantano, L.; Almerico, A.M. Molecular modeling approaches in the discovery of new drugs for anti-cancer therapy: The investigation of p53-MDM2 interaction and its inhibition by small molecules. Curr. Med. Chem., 2010, 17(28), 3142-3154.
[http://dx.doi.org/10.2174/092986710792232021] [PMID: 20666726]
[19]
Azmi, A.S.; Mohammad, R.M. Non-peptidic small molecule inhibitors against Bcl-2 for cancer therapy. J. Cell. Physiol., 2009, 218(1), 13-21.
[http://dx.doi.org/10.1002/jcp.21567] [PMID: 18767026]
[20]
Mak, K-K.; Pichika, M.R. Artificial intelligence in drug development: Present status and future prospects. Drug Discov. Today, 2019, 24(3), 773-780.
[http://dx.doi.org/10.1016/j.drudis.2018.11.014] [PMID: 30472429]
[21]
Schneider, P.; Walters, W.P.; Plowright, A.T.; Sieroka, N.; Listgarten, J.; Goodnow, R.A., Jr; Fisher, J.; Jansen, J.M.; Duca, J.S.; Rush, T.S.; Zentgraf, M.; Hill, J.E.; Krutoholow, E.; Kohler, M.; Blaney, J.; Funatsu, K.; Luebkemann, C.; Schneider, G. Rethinking drug design in the artificial intelligence era. Nat. Rev. Drug Discov., 2020, 19(5), 353-364.
[http://dx.doi.org/10.1038/s41573-019-0050-3] [PMID: 31801986]
[22]
Stebbing, J.; Krishnan, V.; de Bono, S.; Ottaviani, S.; Casalini, G.; Richardson, P.J.; Monteil, V.; Lauschke, V.M.; Mirazimi, A.; Youhanna, S.; Tan, Y-J.; Baldanti, F.; Sarasini, A.; Terres, J.A.R.; Nickoloff, B.J.; Higgs, R.E.; Rocha, G.; Byers, N.L.; Schlichting, D.E.; Nirula, A.; Cardoso, A.; Corbellino, M. Mechanism of baricitinib supports artificial intelligence-predicted testing in COVID-19 patients. EMBO Mol. Med., 2020, 12(8)e12697
[http://dx.doi.org/10.15252/emmm.202012697] [PMID: 32473600]
[23]
Bakkar, N.; Kovalik, T.; Lorenzini, I.; Spangler, S.; Lacoste, A.; Sponaugle, K.; Ferrante, P.; Argentinis, E.; Sattler, R.; Bowser, R. Artificial intelligence in neurodegenerative disease research: Use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. Acta Neuropathol., 2018, 135(2), 227-247.
[http://dx.doi.org/10.1007/s00401-017-1785-8] [PMID: 29134320]
[24]
Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.; Kuznetsov, M.D.; Asadulaev, A.; Volkov, Y.; Zholus, A.; Shayakhmetov, R.R.; Zhebrak, A.; Minaeva, L.I.; Zagribelnyy, B.A.; Lee, L.H.; Soll, R.; Madge, D.; Xing, L.; Guo, T.; Aspuru-Guzik, A. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol., 2019, 37(9), 1038-1040.
[http://dx.doi.org/10.1038/s41587-019-0224-x] [PMID: 31477924]
[25]
Komatsu, H.; Ikeda, K.; Tanaka, T.; Matsuzaki, T. Development of Practical Artificial Intelligence System for Drug Discovery and Its Application to Activity Prediction of Small Molecule Protein-Protein Interaction Modulators. J Biol Macromol, 2019, 19(1), 5-10.
[http://dx.doi.org/10.14533/jbm.19.5]
[26]
Kim, N-H.; Lee, M-Y.; Park, S-J.; Choi, J-S.; Oh, M-K.; Kim, I-S. Auranofin blocks interleukin-6 signalling by inhibiting phosphorylation of JAK1 and STAT3. Immunology, 2007, 122(4), 607-614.
[http://dx.doi.org/10.1111/j.1365-2567.2007.02679.x] [PMID: 17645497]
[27]
Nakaya, A.; Sagawa, M.; Muto, A.; Uchida, H.; Ikeda, Y.; Kizaki, M. The gold compound auranofin induces apoptosis of human multiple myeloma cells through both down-regulation of STAT3 and inhibition of NF-κB activity. Leuk. Res., 2011, 35(2), 243-249.
[http://dx.doi.org/10.1016/j.leukres.2010.05.011] [PMID: 20542334]
[28]
Mori, T.; Miyamoto, T.; Yoshida, H.; Asakawa, M.; Kawasumi, M.; Kobayashi, T.; Morioka, H.; Chiba, K.; Toyama, Y.; Yoshimura, A. IL-1β and TNFα-initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int. Immunol., 2011, 23(11), 701-712.
[http://dx.doi.org/10.1093/intimm/dxr077] [PMID: 21937456]
[29]
Carey, R.; Jurickova, I.; Ballard, E.; Bonkowski, E.; Han, X.; Xu, H.; Denson, L.A. Activation of an IL-6:STAT3-dependent transcriptome in pediatric-onset inflammatory bowel disease. Inflamm. Bowel Dis., 2008, 14(4), 446-457.
[http://dx.doi.org/10.1002/ibd.20342] [PMID: 18069684]
[30]
Zhang, H.; Neuhöfer, P.; Song, L.; Rabe, B.; Lesina, M.; Kurkowski, M.U.; Treiber, M.; Wartmann, T.; Regnér, S.; Thorlacius, H.; Saur, D.; Weirich, G.; Yoshimura, A.; Halangk, W.; Mizgerd, J.P.; Schmid, R.M.; Rose-John, S.; Algül, H. IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality. J. Clin. Invest., 2013, 123(3), 1019-1031.
[http://dx.doi.org/10.1172/JCI64931] [PMID: 23426178]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy