Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Cholesterol in Brain Development and Perinatal Brain Injury: More than a Building Block

Author(s): Fuxin Lu, Donna M. Ferriero and Xiangning Jiang*

Volume 20, Issue 7, 2022

Published on: 25 March, 2022

Page: [1400 - 1412] Pages: 13

DOI: 10.2174/1570159X19666211111122311

Price: $65

Open Access Journals Promotions 2
Abstract

The central nervous system (CNS) is enriched with important classes of lipids, in which cholesterol is known to make up a major portion of myelin sheaths, besides being a structural and functional unit of CNS cell membranes. Unlike in the adult brain, where the cholesterol pool is relatively stable, cholesterol is synthesized and accumulated at the highest rate in the developing brain to meet the needs of rapid brain growth at this stage, which is also a critical period for neuroplasticity. In addition to its biophysical role in membrane organization, cholesterol is crucial for brain development due to its involvement in brain patterning, myelination, neuronal differentiation, and synaptogenesis. Thus any injuries to the immature brain that affect cholesterol homeostasis may have long-term adverse neurological consequences. In this review, we describe the unique features of brain cholesterol biosynthesis and metabolism, cholesterol trafficking between different cell types, and highlight cholesterol-dependent biological processes during brain maturation. We also discuss the association of impaired cholesterol homeostasis with several forms of perinatal brain disorders in term and preterm newborns, including hypoxic-ischemic encephalopathy. Strategies targeting the cholesterol pathways may open new avenues for the diagnosis and treatment of developmental brain injury.

Keywords: Cholesterol, brain development, brain injury, CNS, encephalopathy, neuroplasticity.

Graphical Abstract
[1]
Woollett LA. Maternal cholesterol in fetal development: transport of cholesterol from the maternal to the fetal circulation. Am J Clin Nutr 2005; 82(6): 1155-61.
[http://dx.doi.org/10.1093/ajcn/82.6.1155] [PMID: 16332646]
[2]
Dietschy JM, Turley SD. Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early de-velopment and in the mature animal. J Lipid Res 2004; 45(8): 1375-97.
[http://dx.doi.org/10.1194/jlr.R400004-JLR200] [PMID: 15254070]
[3]
Chatuphonprasert W, Jarukamjorn K, Ellinger I. Physiology and pathophysiology of steroid biosynthesis, transport and metabolism in the human placenta. Front Pharmacol 2018; 9: 1027.
[http://dx.doi.org/10.3389/fphar.2018.01027] [PMID: 30258364]
[4]
Woollett LA. Review: Transport of maternal cholesterol to the fetal circulation. Placenta 2011; 32(Suppl. 2): S218-21.
[http://dx.doi.org/10.1016/j.placenta.2011.01.011] [PMID: 21300403]
[5]
Baardman ME, Kerstjens-Frederikse WS, Berger RMF, Bakker MK, Hofstra RMW, Plösch T. The role of maternal-fetal choles-terol transport in early fetal life: current insights. Biol Reprod 2013; 88(1): 24.
[http://dx.doi.org/10.1095/biolreprod.112.102442] [PMID: 23153566]
[6]
Tint GS, Yu H, Shang Q, Xu G, Patel SB. The use of the Dhcr7 knockout mouse to accurately determine the origin of fetal sterols. J Lipid Res 2006; 47(7): 1535-41.
[http://dx.doi.org/10.1194/jlr.M600141-JLR200] [PMID: 16651660]
[7]
Baardman ME, Erwich JJHM, Berger RMF, et al. The origin of fetal sterols in second-trimester amniotic fluid: endogenous synthesis or maternal-fetal transport? Am J Obstet Gynecol 2012; 207(3): 202.e19-25.
[http://dx.doi.org/10.1016/j.ajog.2012.06.003] [PMID: 22728028]
[8]
Napoli C, D’Armiento FP, Mancini FP, et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxi-dation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest 1997; 100(11): 2680-90.
[http://dx.doi.org/10.1172/JCI119813] [PMID: 9389731]
[9]
Pecks U, Bornemann V, Klein A, et al. Estimating fetal cholesterol synthesis rates by cord blood analysis in intrauterine growth restriction and normally grown fetuses. Lipids Health Dis 2019; 18(1): 185.
[http://dx.doi.org/10.1186/s12944-019-1117-1] [PMID: 31653257]
[10]
Quan G, Xie C, Dietschy JM, Turley SD. Ontogenesis and regulation of cholesterol metabolism in the central nervous system of the mouse. Brain Res Dev Brain Res 2003; 146(1-2): 87-98.
[http://dx.doi.org/10.1016/j.devbrainres.2003.09.015] [PMID: 14643015]
[11]
Muse ED, Jurevics H, Toews AD, Matsushima GK, Morell P. Parameters related to lipid metabolism as markers of myelination in mouse brain. J Neurochem 2001; 76(1): 77-86.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00015.x] [PMID: 11145980]
[12]
Jansen M, Wang W, Greco D, et al. What dictates the accumulation of desmosterol in the developing brain? FASEB J 2013; 27(3): 865-70.
[http://dx.doi.org/10.1096/fj.12-211235] [PMID: 23230282]
[13]
Allen LB, Genaro-Mattos TC, Porter NA, Mirnics K, Korade Z. Desmosterolosis and desmosterol homeostasis in the developing mouse brain. J Inherit Metab Dis 2019; 42(5): 934-43.
[http://dx.doi.org/10.1002/jimd.12088] [PMID: 30891795]
[14]
Paoletti R, Fumagalli R, Grossi E, Paoletti P. Studies on brain sterols in normal and pathological conditions. J Am Oil Chem Soc 1965; 42(5): 400-4.
[http://dx.doi.org/10.1007/BF02635575] [PMID: 14324329]
[15]
Hinse CH, Shah SN. The desmosterol reductase activity of rat brain during development. J Neurochem 1971; 18(10): 1989-98.
[http://dx.doi.org/10.1111/j.1471-4159.1971.tb09604.x] [PMID: 4399088]
[16]
Dennick RG, Dean PDG, Abramovich DA. Desmosterol levels in human foetal brain--a reassessment. J Neurochem 1973; 20(4): 1293-4.
[http://dx.doi.org/10.1111/j.1471-4159.1973.tb00102.x] [PMID: 4697890]
[17]
Lim L, Jackson-Lewis V, Wong LC, et al. Lanosterol induces mitochondrial uncoupling and protects dopaminergic neurons from cell death in a model for Parkinson’s disease. Cell Death Differ 2012; 19(3): 416-27.
[http://dx.doi.org/10.1038/cdd.2011.105] [PMID: 21818119]
[18]
Kamino D, Chau V, Studholme C, et al. Plasma cho-lesterol levels and brain development in preterm newborns. Pediatr Res 2019; 85(3): 299-304.
[http://dx.doi.org/10.1038/s41390-018-0260-0] [PMID: 30635642]
[19]
Kotti TJ, Ramirez DM, Pfeiffer BE, Huber KM, Russell DW. Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc Natl Acad Sci USA 2006; 103(10): 3869-74.
[http://dx.doi.org/10.1073/pnas.0600316103] [PMID: 16505352]
[20]
Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcrip-tion factor. Cell 1997; 89(3): 331-40.
[http://dx.doi.org/10.1016/S0092-8674(00)80213-5] [PMID: 9150132]
[21]
Horton JD, Goldstein JL, Brown MS. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109(9): 1125-31.
[http://dx.doi.org/10.1172/JCI0215593] [PMID: 11994399]
[22]
Sakakura Y, Shimano H, Sone H, et al. Sterol regulatory element-binding proteins induce an entire pathway of cholesterol synthesis. Biochem Biophys Res Commun 2001; 286(1): 176-83.
[http://dx.doi.org/10.1006/bbrc.2001.5375] [PMID: 11485325]
[23]
Fünfschilling U, Jockusch WJ, Sivakumar N, et al. Critical time window of neuronal cholesterol synthesis during neurite outgrowth. J Neurosci 2012; 32(22): 7632-45.
[http://dx.doi.org/10.1523/JNEUROSCI.1352-11.2012] [PMID: 22649242]
[24]
Fünfschilling U, Saher G, Xiao L, Möbius W, Nave KA. Survival of adult neurons lacking cholesterol synthesis in vivo. BMC Neurosci 2007; 8: 1.
[http://dx.doi.org/10.1186/1471-2202-8-1] [PMID: 17199885]
[25]
Genaro-Mattos TC, Anderson A, Allen LB, Korade Z, Mirnics K. Cholesterol Biosynthesis and Uptake in Developing Neurons. ACS Chem Neurosci 2019; 10(8): 3671-81.
[http://dx.doi.org/10.1021/acschemneuro.9b00248] [PMID: 31244054]
[26]
Dave AM, Peeples ES. Cholesterol metabolism and brain injury in neonatal encephalopathy. Pediatr Res 2021; 90(1): 37-44.
[http://dx.doi.org/10.1038/s41390-020-01218-3] [PMID: 33106607]
[27]
Saher G, Brügger B, Lappe-Siefke C, et al. High cholesterol level is essential for myelin membrane growth. Nat Neurosci 2005; 8(4): 468-75.
[http://dx.doi.org/10.1038/nn1426] [PMID: 15793579]
[28]
Camargo N, Goudriaan A, van Deijk AF, et al. Oligodendroglial myelination requires astrocyte-derived lipids. PLoS Biol 2017; 15(5), e1002605.
[http://dx.doi.org/10.1371/journal.pbio.1002605] [PMID: 28549068]
[29]
Björkhem I, Meaney S. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 2004; 24(5): 806-15.
[http://dx.doi.org/10.1161/01.ATV.0000120374.59826.1b] [PMID: 14764421]
[30]
Russell DW, Halford RW, Ramirez DM, Shah R, Kotti T. Cholesterol 24-hydroxylase: An enzyme of cholesterol turnover in the brain. Annu Rev Biochem 2009; 78: 1017-40.
[http://dx.doi.org/10.1146/annurev.biochem.78.072407.103859] [PMID: 19489738]
[31]
Moutinho M, Nunes MJ, Rodrigues E. Cholesterol 24-hydroxylase: Brain cholesterol metabolism and beyond. Biochim Biophys Acta 2016; 1861(12 Pt A): 1911-20.
[http://dx.doi.org/10.1016/j.bbalip.2016.09.011] [PMID: 27663182]
[32]
Lund EG, Xie C, Kotti T, Turley SD, Dietschy JM, Russell DW. Knockout of the cholesterol 24-hydroxylase gene in mice re-veals a brain-specific mechanism of cholesterol turnover. J Biol Chem 2003; 278(25): 22980-8.
[http://dx.doi.org/10.1074/jbc.M303415200] [PMID: 12686551]
[33]
Björkhem I, Lütjohann D, Diczfalusy U, Ståhle L, Ahlborg G, Wahren J. Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 1998; 39(8): 1594-600.
[http://dx.doi.org/10.1016/S0022-2275(20)32188-X] [PMID: 9717719]
[34]
Lütjohann D, von Bergmann K. 24S-hydroxycholesterol: A marker of brain cholesterol metabolism. Pharmacopsychiatry 2003; 36(Suppl. 2): S102-6.
[http://dx.doi.org/10.1055/s-2003-43053] [PMID: 14574622]
[35]
Lu F, Fan S, Romo AR, Xu D, Ferriero DM, Jiang X. Serum 24S-hydroxycholesterol predicts long-term brain structural and func-tional outcomes after hypoxia-ischemia in neonatal mice. J Cereb Blood Flow Metab 2021; 41(2): 312-23.
[http://dx.doi.org/10.1177/0271678X20911910] [PMID: 32169014]
[36]
Lund EG, Guileyardo JM, Russell DW. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci USA 1999; 96(13): 7238-43.
[http://dx.doi.org/10.1073/pnas.96.13.7238] [PMID: 10377398]
[37]
Lütjohann D, Breuer O, Ahlborg G, et al. Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci USA 1996; 93(18): 9799-804.
[http://dx.doi.org/10.1073/pnas.93.18.9799] [PMID: 8790411]
[38]
Ohyama Y, Meaney S, Heverin M, et al. Studies on the transcriptional regulation of cholesterol 24-hydroxylase (CYP46A1): marked insensitivity toward different regulatory axes. J Biol Chem 2006; 281(7): 3810-20.
[http://dx.doi.org/10.1074/jbc.M505179200] [PMID: 16321981]
[39]
Sasai N, Toriyama M, Kondo T. Hedgehog Signal and Genetic Disorders. Front Genet 2019; 10: 1103.
[http://dx.doi.org/10.3389/fgene.2019.01103] [PMID: 31781166]
[40]
Cooper MK, Wassif CA, Krakowiak PA, et al. A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nat Genet 2003; 33(4): 508-13.
[http://dx.doi.org/10.1038/ng1134] [PMID: 12652302]
[41]
Porter JA, Young KE, Beachy PA. Cholesterol modification of hedgehog signaling proteins in animal development. Science 1996; 274(5285): 255-9.
[http://dx.doi.org/10.1126/science.274.5285.255] [PMID: 8824192]
[42]
Radhakrishnan A, Rohatgi R, Siebold C. Cholesterol access in cellular membranes controls Hedgehog signaling. Nat Chem Biol 2020; 16(12): 1303-13.
[http://dx.doi.org/10.1038/s41589-020-00678-2] [PMID: 33199907]
[43]
Luchetti G, Sircar R, Kong JH, et al. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling. eLife 2016; 5: 5.
[http://dx.doi.org/10.7554/eLife.20304] [PMID: 27705744]
[44]
Myers BR, Neahring L, Zhang Y, Roberts KJ, Beachy PA. Rapid, direct activity assays for Smoothened reveal Hedgehog pathway regulation by membrane cholesterol and extracellular sodium. Proc Natl Acad Sci USA 2017; 114(52): E11141-50.
[http://dx.doi.org/10.1073/pnas.1717891115] [PMID: 29229834]
[45]
Xiao X, Tang JJ, Peng C, et al. Cholesterol Modification of Smoothened Is Required for Hedgehog Signaling. Mol Cell 2017; 66(1): 154-162.e10.
[http://dx.doi.org/10.1016/j.molcel.2017.02.015] [PMID: 28344083]
[46]
Dahmane N, Ruiz i Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 1999; 126(14): 3089-100.
[http://dx.doi.org/10.1242/dev.126.14.3089] [PMID: 10375501]
[47]
Huang X, Litingtung Y, Chiang C. Region-specific requirement for cholesterol modification of sonic hedgehog in patterning the telen-cephalon and spinal cord. Development 2007; 134(11): 2095-105.
[http://dx.doi.org/10.1242/dev.000729] [PMID: 17507410]
[48]
Roessler E, Belloni E, Gaudenz K, et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet 1996; 14(3): 357-60.
[http://dx.doi.org/10.1038/ng1196-357] [PMID: 8896572]
[49]
Odent S, Atti-Bitach T, Blayau M, Mathieu M, Aug J. Delezo de, A.L.; Gall, J.Y.; Le Marec, B.; Munnich, A.; David, V.; Vekemans, M. Expression of the Sonic hedgehog (SHH) gene during early human development and phenotypic expression of new mutations causing holoprosencephaly. Hum Mol Genet 1999; 8(9): 1683-9.
[http://dx.doi.org/10.1093/hmg/8.9.1683] [PMID: 10441331]
[50]
da Costa MC, Trentin AG, Calloni GW. FGF8 and Shh promote the survival and maintenance of multipotent neural crest progenitors. Mech Dev 2018; 154: 251-8.
[http://dx.doi.org/10.1016/j.mod.2018.07.012] [PMID: 30075227]
[51]
Testaz S, Jarov A, Williams KP, et al. Sonic hedgehog restricts adhesion and migration of neural crest cells independently of the Patched- Smoothened-Gli signaling pathway. Proc Natl Acad Sci USA 2001; 98(22): 12521-6.
[http://dx.doi.org/10.1073/pnas.221108698] [PMID: 11592978]
[52]
Alvarez JI, Dodelet-Devillers A, Kebir H, et al. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune qui-escence. Science 2011; 334(6063): 1727-31.
[http://dx.doi.org/10.1126/science.1206936] [PMID: 22144466]
[53]
Balordi F, Fishell G. Hedgehog signaling in the subventricular zone is required for both the maintenance of stem cells and the migration of newborn neurons. J Neurosci 2007; 27(22): 5936-47.
[http://dx.doi.org/10.1523/JNEUROSCI.1040-07.2007] [PMID: 17537964]
[54]
Mauch DH, Nägler K, Schumacher S, et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science 2001; 294(5545): 1354-7.
[http://dx.doi.org/10.1126/science.294.5545.1354] [PMID: 11701931]
[55]
Barres BA, Smith S. J. Neurobiology. Cholesterol--making or breaking the synapse. Science 2001; 294(5545): 1296-7.
[http://dx.doi.org/10.1126/science.1066724] [PMID: 11701918]
[56]
Goritz C, Mauch DH, Pfrieger FW. Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol Cell Neurosci 2005; 29(2): 190-201.
[http://dx.doi.org/10.1016/j.mcn.2005.02.006] [PMID: 15911344]
[57]
Hayashi H, Campenot RB, Vance DE, Vance JE. Glial lipoproteins stimulate axon growth of central nervous system neurons in compartmented cultures. J Biol Chem 2004; 279(14): 14009-15.
[http://dx.doi.org/10.1074/jbc.M313828200] [PMID: 14709547]
[58]
Fan QW, Yu W, Gong JS, et al. Cholesterol-dependent modulation of dendrite outgrowth and microtubule stability in cultured neurons. J Neurochem 2002; 80(1): 178-90.
[http://dx.doi.org/10.1046/j.0022-3042.2001.00686.x] [PMID: 11796756]
[59]
Fan QW, Yu W, Senda T, Yanagisawa K, Michikawa M. Cholesterol-dependent modulation of tau phosphorylation in cultured neu-rons. J Neurochem 2001; 76(2): 391-400.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00063.x] [PMID: 11208902]
[60]
Hering H, Lin CC, Sheng M. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci 2003; 23(8): 3262-71.
[http://dx.doi.org/10.1523/JNEUROSCI.23-08-03262.2003] [PMID: 12716933]
[61]
Pfrieger FW. Role of cholesterol in synapse formation and function. Biochim Biophys Acta 2003; 1610(2): 271-80.
[http://dx.doi.org/10.1016/S0005-2736(03)00024-5] [PMID: 12648780]
[62]
Koudinov AR, Koudinova NV. Cholesterol homeostasis failure as a unifying cause of synaptic degeneration. J Neurol Sci 2005; 229-230: 233-40.
[http://dx.doi.org/10.1016/j.jns.2004.11.036] [PMID: 15760645]
[63]
Korinek M, Gonzalez-Gonzalez IM, Smejkalova T, et al. Cholesterol modulates presynaptic and postsynaptic properties of excitatory synaptic transmission. Sci Rep 2020; 10(1): 12651.
[http://dx.doi.org/10.1038/s41598-020-69454-5] [PMID: 32724221]
[64]
Korinek M, Vyklicky V, Borovska J, et al. Cholesterol modulates open probability and desensitization of NMDA receptors. J Physiol 2015; 593(10): 2279-93.
[http://dx.doi.org/10.1113/jphysiol.2014.288209] [PMID: 25651798]
[65]
Moutinho M, Nunes MJ, Correia JC, et al. Neuronal cholesterol metabolism increases dendritic outgrowth and synaptic markers via a concerted action of GGTase-I and Trk. Sci Rep 2016; 6: 30928.
[http://dx.doi.org/10.1038/srep30928] [PMID: 27491694]
[66]
Saher G, Simons M. Cholesterol and myelin biogenesis. Subcell Biochem 2010; 51: 489-508.
[http://dx.doi.org/10.1007/978-90-481-8622-8_18] [PMID: 20213556]
[67]
Poitelon Y, Kopec AM, Belin S. Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells 2020; 9(4), E812.
[http://dx.doi.org/10.3390/cells9040812] [PMID: 32230947]
[68]
Jurevics H, Morell P. Cholesterol for synthesis of myelin is made locally, not imported into brain. J Neurochem 1995; 64(2): 895-901.
[http://dx.doi.org/10.1046/j.1471-4159.1995.64020895.x] [PMID: 7830084]
[69]
Mathews ES, Mawdsley DJ, Walker M, Hines JH, Pozzoli M, Appel B. Mutation of 3-hydroxy-3-methylglutaryl CoA synthase I reveals requirements for isoprenoid and cholesterol synthesis in oligodendrocyte migration arrest, axon wrapping, and myelin gene ex-pression. J Neurosci 2014; 34(9): 3402-12.
[http://dx.doi.org/10.1523/JNEUROSCI.4587-13.2014] [PMID: 24573296]
[70]
Mathews ES, Appel B. Cholesterol biosynthesis supports myelin gene expression and axon ensheathment through modulation of P13K/Akt/mTor signaling. J Neurosci 2016; 36(29): 7628-39.
[http://dx.doi.org/10.1523/JNEUROSCI.0726-16.2016] [PMID: 27445141]
[71]
Monnerie H, Romer M, Jensen BK, et al. Reduced sterol regulatory element-binding protein (SREBP) processing through site-1 protease (S1P) inhibition alters oligodendrocyte differentiation in vitro. J Neurochem 2017; 140(1): 53-67.
[http://dx.doi.org/10.1111/jnc.13721] [PMID: 27385127]
[72]
Klopfleisch S, Merkler D, Schmitz M, et al. Negative impact of statins on oligodendrocytes and myelin formation in vitro and in vivo. J Neurosci 2008; 28(50): 13609-14.
[http://dx.doi.org/10.1523/JNEUROSCI.2765-08.2008] [PMID: 19074034]
[73]
Platt FM, Wassif C, Colaco A, et al. Disorders of Cholesterol Metabolism and Their Unanticipated Convergent Mechanisms of Disease. Annu Rev Genomics Hum Genet 2014; 15: 173-94.
[74]
Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res 2011; 52(1): 6-34.
[http://dx.doi.org/10.1194/jlr.R009548] [PMID: 20929975]
[75]
Kanungo S, Soares N, He M, Steiner RD. Sterol metabolism disorders and neurodevelopment-an update. Dev Disabil Res Rev 2013; 17(3): 197-210.
[http://dx.doi.org/10.1002/ddrr.1114] [PMID: 23798009]
[76]
Douglas-Escobar M, Weiss MD. Hypoxic-ischemic encephalopathy: A review for the clinician. JAMA Pediatr 2015; 169(4): 397-403.
[http://dx.doi.org/10.1001/jamapediatrics.2014.3269] [PMID: 25685948]
[77]
Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challeng-es. Front Cell Neurosci 2017; 11: 78.
[http://dx.doi.org/10.3389/fncel.2017.00078] [PMID: 28533743]
[78]
Yu Z, Li S, Lv SH, et al. Hypoxia-ischemia brain damage dis-rupts brain cholesterol homeostasis in neonatal rats. Neuropediatrics 2009; 40(4): 179-85.
[http://dx.doi.org/10.1055/s-0029-1243175] [PMID: 20146174]
[79]
Ramirez MR, Muraro F, Zylbersztejn DS, et al. Neonatal hypoxia-ischemia reduces ganglioside, phospholipid and cholesterol contents in the rat hippocampus. Neurosci Res 2003; 46(3): 339-47.
[http://dx.doi.org/10.1016/S0168-0102(03)00100-7] [PMID: 12804795]
[80]
Lu F, Zhu J, Guo S, et al. Upregulation of cholesterol 24-hydroxylase following hypoxia-ischemia in neonatal mouse brain. Pediatr Res 2018; 83(6): 1218-27.
[http://dx.doi.org/10.1038/pr.2018.49] [PMID: 29718007]
[81]
Dupré N, Derambure C, Le Dieu-Lugon B, et al. Hypoxia-Ischemia induced age-dependent gene transcription effects at two development stages in the neonate mouse brain. Front Mol Neurosci 2020; 13, 587815.
[http://dx.doi.org/10.3389/fnmol.2020.587815] [PMID: 33343297]
[82]
Leoni V, Caccia C. 24S-hydroxycholesterol in plasma: A marker of cholesterol turnover in neurodegenerative diseases. Biochimie 2013; 95(3): 595-612.
[http://dx.doi.org/10.1016/j.biochi.2012.09.025] [PMID: 23041502]
[83]
Leoni V, Caccia C. Potential diagnostic applications of side chain oxysterols analysis in plasma and cerebrospinal fluid. Biochem Pharmacol 2013; 86(1): 26-36.
[http://dx.doi.org/10.1016/j.bcp.2013.03.015] [PMID: 23541982]
[84]
Grayaa S, Zerbinati C, Messedi M. HadjKacem, I.; Chtourou, M.; Ben Touhemi, D.; Naifar, M.; Ayadi, H.; Ayedi, F.; Iuliano, L. Plas-ma oxysterol profiling in children reveals 24-hydroxycholesterol as a potential marker for Autism Spectrum Disorders. Biochimie 2018; 153: 80-5.
[http://dx.doi.org/10.1016/j.biochi.2018.04.026] [PMID: 29730299]
[85]
Björkhem I, Starck L, Andersson U, et al. Oxysterols in the circulation of patients with the Smith-Lemli-Opitz syndrome: Abnormal levels of 24S- and 27-hydroxycholesterol. J Lipid Res 2001; 42(3): 366-71.
[http://dx.doi.org/10.1016/S0022-2275(20)31660-6] [PMID: 11254748]
[86]
Sodero AO, Weissmann C, Ledesma MD, Dotti CG. Cellular stress from excitatory neurotransmission contributes to cholesterol loss in hippocampal neurons aging in vitro. Neurobiol Aging 2011; 32(6): 1043-53.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.06.001] [PMID: 20663588]
[87]
Mast N, Anderson KW, Johnson KM, Phan TTN, Guengerich FP, Pikuleva IA. In vitro cytochrome P450 46A1 (CYP46A1) activation by neuroactive compounds. J Biol Chem 2017; 292(31): 12934-46.
[http://dx.doi.org/10.1074/jbc.M117.794909] [PMID: 28642370]
[88]
Linsenbardt AJ, Taylor A, Emnett CM, et al. Different oxysterols have opposing actions at N-methyl-D-aspartate receptors. Neuropharmacology 2014; 85: 232-42.
[http://dx.doi.org/10.1016/j.neuropharm.2014.05.027] [PMID: 24878244]
[89]
Paul SM, Doherty JJ, Robichaud AJ, et al. The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. J Neurosci 2013; 33(44): 17290-300.
[http://dx.doi.org/10.1523/JNEUROSCI.2619-13.2013] [PMID: 24174662]
[90]
Wei X, Nishi T, Kondou S, Kimura H, Mody I. Preferential enhancement of GluN2B-containing native NMDA receptors by the en-dogenous modulator 24S-hydroxycholesterol in hippocampal neurons. Neuropharmacology 2019; 148: 11-20.
[http://dx.doi.org/10.1016/j.neuropharm.2018.12.028] [PMID: 30594698]
[91]
Sun MY, Taylor A, Zorumski CF, Mennerick S. 24S-hydroxycholesterol and 25-hydroxycholesterol differentially impact hippo-campal neuronal survival following oxygen-glucose deprivation. PLoS One 2017; 12(3), e0174416.
[http://dx.doi.org/10.1371/journal.pone.0174416] [PMID: 28346482]
[92]
Taghibiglou C, Martin HG, Lai TW, et al. Role of NMDA receptor-dependent activation of SREBP1 in excitotoxic and ischemic neuronal in-juries. Nat Med 2009; 15(12): 1399-406.
[http://dx.doi.org/10.1038/nm.2064] [PMID: 19966780]
[93]
Sodero AO, Vriens J, Ghosh D, et al. Cholesterol loss during glutamate-mediated excitotoxicity. EMBO J 2012; 31(7): 1764-73.
[http://dx.doi.org/10.1038/emboj.2012.31] [PMID: 22343944]
[94]
Jiang S, Jiang J, Xu H, et al. Maternal dyslipidemia during pregnancy may increase the risk of preterm birth: A meta-analysis. Taiwan J Obstet Gynecol 2017; 56(1): 9-15.
[http://dx.doi.org/10.1016/j.tjog.2016.07.012] [PMID: 28254234]
[95]
Smith CJ, Baer RJ, Oltman SP, et al. Maternal dyslipidemia and risk for preterm birth. PLoS One 2018; 13(12), e0209579.
[http://dx.doi.org/10.1371/journal.pone.0209579] [PMID: 30576377]
[96]
Edison RJ, Berg K, Remaley A, et al. Adverse birth outcome among mothers with low serum cholesterol. Pediatrics 2007; 120(4): 723-33.
[http://dx.doi.org/10.1542/peds.2006-1939] [PMID: 17908758]
[97]
Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science 2010; 327(5961): 46-50.
[http://dx.doi.org/10.1126/science.1174621] [PMID: 20044567]
[98]
Sezgin E, Levental I, Mayor S, Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 2017; 18(6): 361-74.
[http://dx.doi.org/10.1038/nrm.2017.16] [PMID: 28356571]
[99]
Simons K, Sampaio JL. Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 2011; 3(10), a004697.
[http://dx.doi.org/10.1101/cshperspect.a004697] [PMID: 21628426]
[100]
Simons K, Ehehalt R. Cholesterol, lipid rafts, and disease. J Clin Invest 2002; 110(5): 597-603.
[http://dx.doi.org/10.1172/JCI0216390] [PMID: 12208858]
[101]
Tang N, Farah B, He M, et al. Ethanol causes the redistribution of L1 cell adhesion molecule in lipid rafts. J Neurochem 2011; 119(4): 859-67.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07467.x] [PMID: 21884525]
[102]
White KMR, Sabatino JA, He M, Davis N, Tang N, Bearer CF. Toluene disruption of the functions of L1 cell adhesion molecule at concentrations associated with occupational exposures. Pediatr Res 2016; 80(1): 145-50.
[http://dx.doi.org/10.1038/pr.2016.40] [PMID: 27027721]
[103]
Kitchen ST, Tang N, He M, Ly E, Mooney SM, Bearer CF. Bilirubin inhibits lipid raft dependent functions of L1 cell adhesion molecule in rat pup cerebellar granule neurons. Pediatr Res 2021; 89(6): 1389-95.
[http://dx.doi.org/10.1038/s41390-020-01156-0] [PMID: 32937649]
[104]
Wang H. Lipid rafts: A signaling platform linking cholesterol metabolism to synaptic deficits in autism spectrum disorders. Front Behav Neurosci 2014; 8: 104.
[http://dx.doi.org/10.3389/fnbeh.2014.00104] [PMID: 24723866]
[105]
Buchovecky CM, Turley SD, Brown HM, et al. A suppressor screen in Mecp2 mutant mice implicates cholesterol metabolism in Rett syndrome. Nat Genet 2013; 45(9): 1013-20.
[http://dx.doi.org/10.1038/ng.2714] [PMID: 23892605]
[106]
Cimino M, Gelosa P, Gianella A, Nobili E, Tremoli E, Sironi L. Statins: multiple mechanisms of action in the ischemic brain. Neuroscientist 2007; 13(3): 208-13.
[http://dx.doi.org/10.1177/1073858406297121] [PMID: 17519364]
[107]
Mason RP, Walter MF, Jacob RF. Effects of HMG-CoA reductase inhibitors on endothelial function: role of microdomains and oxi-dative stress. Circulation 2004; 109(21)(Suppl. 1): II34-41.
[http://dx.doi.org/10.1161/01.CIR.0000129503.62747.03] [PMID: 15173061]
[108]
Balduini W, De Angelis V, Mazzoni E, Cimino M. Simvastatin protects against long-lasting behavioral and morphological conse-quences of neonatal hypoxic/ischemic brain injury. Stroke 2001; 32(9): 2185-91.
[http://dx.doi.org/10.1161/hs0901.094287] [PMID: 11546915]
[109]
Carloni S, Girelli S, Buonocore G, Longini M, Balduini W. Simvastatin acutely reduces ischemic brain damage in the immature rat via Akt and CREB activation. Exp Neurol 2009; 220(1): 82-9.
[http://dx.doi.org/10.1016/j.expneurol.2009.07.026] [PMID: 19664625]
[110]
Balduini W, Mazzoni E, Carloni S, et al. Prophylactic but not delayed administration of simvastatin protects against long-lasting cognitive and morphological consequences of neonatal hypoxic-ischemic brain injury, reduces in-terleukin-1beta and tumor necrosis factor-alpha mRNA induction, and does not affect endothelial nitric oxide synthase expression. Stroke 2003; 34(8): 2007-12.
[http://dx.doi.org/10.1161/01.STR.0000080677.24419.88] [PMID: 12829860]
[111]
Li A, Lv S, Yu Z, et al. Simvastatin attenuates hypomyelination induced by hypoxia-ischemia in neonatal rats. Neurol Res 2010; 32(9): 945-52.
[http://dx.doi.org/10.1179/016164110X12670144737774] [PMID: 20433776]
[112]
Carloni S, Balduini W. Simvastatin preconditioning confers neuroprotection against hypoxia-ischemia induced brain damage in neonatal rats via autophagy and silent information regulator 1 (SIRT1) activation. Exp Neurol 2020; 324, 113117.
[http://dx.doi.org/10.1016/j.expneurol.2019.113117] [PMID: 31734315]
[113]
Bialer M, Johannessen SI, Koepp MJ, et al. Progress report on new antiepileptic drugs: A summary of the Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV). I. Drugs in preclinical and early clin-ical development. Epilepsia 2018; 59(10): 1811-41.
[http://dx.doi.org/10.1111/epi.14557] [PMID: 30368792]
[114]
Eschbach K, Knupp KG. Stiripentol for the treatment of seizures in Dravet syndrome. Expert Rev Clin Pharmacol 2019; 12(5): 379-88.
[http://dx.doi.org/10.1080/17512433.2019.1605904] [PMID: 31017478]
[115]
Halford J, Arkilo D, Asgharnejad M, et al. Initial data from the ongoing ENDYMION open-label extension trial of Soticlestat (TAK-935/OV935) in participants with developmental and/or Epileptic Encephalopathies (DEE). Neurology 2020; 94(15): 4492.
[116]
Halford J, Sperling M, Arkilo D, et al. A phase 1b/2a study of soticlestat as adjunctive therapy in adults with developmental and/or Epileptic Encephalopathies. Epilap. Res 2021; p. 106646.
[117]
Steriade C, French J, Devinsky O. Epilepsy: key experimental therapeutics in early clinical development. Expert Opin Investig Drugs 2020; 29(4): 373-83.
[http://dx.doi.org/10.1080/13543784.2020.1743678] [PMID: 32172604]
[118]
Nishi T, Fujimoto S, Hasegawa S, Watanabe S, Kondo S. Inhibition of cholesterol 24-hydroxylase is a novel pharmacological strategy for epilepsy treatment. Neurology 2018; 90(15): p5.264.
[119]
Nishi T, Kondo S, Miyamoto M, et al. Soticlestat, a novel cholesterol 24-hydroxylase inhibitor shows a therapeutic potential for neural hyperexcitation in mice. Sci Rep 2020; 10(1): 17081.
[http://dx.doi.org/10.1038/s41598-020-74036-6] [PMID: 33051477]
[120]
Cecil D, Jiang H, Villanueva V, et al. Efficacy, safety and tolerability of Soticlestat (TAK-935/OV935) as adjunctive therapy in pediatric patients with Dravet Syndrome and Lennox-Gastaut Syndrome (ELEKTRA). Neurology 2021; 96(15): 4234.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy