Review Article

血管紧张素转换酶 2 阻断剂对 SARS-CoV-2 感染中神经炎症的潜在影响

卷 23, 期 4, 2022

页: [364 - 372] 页: 9

弟呕挨: 10.2174/1389450122666211103165837

价格: $65

Open Access Journals Promotions 2
摘要

背景:据报道,血管紧张素转换酶 2 (ACE2) 是严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 感染的门户。因此,对抗 2019 年冠状病毒病 (COVID-19) 的科学策略旨在通过阻断 ACE2 来阻止 SARS-CoV-2 的入侵。虽然阻断 ACE2 似乎是治疗 COVID-19 的一种有益方法,但引起临床关注的主要原因是 ACE2 在神经功能中的各种内在作用。选择性报告表明血管紧张素受体阻滞剂 (ARB) 和血管紧张素转换酶抑制剂 (ACEI) 上调 ACE2 水平。 ACE2 代谢血管紧张素 II 和几种肽,包括 apelin-13、神经降压素、kinetensin、强啡肽、(des-Arg9) 缓激肽和 (Lys-des-Arg9)-缓激肽,这可能会引起神经保护作用。由于 ARB 和 ACEI 上调 ACE2,因此可以假设接受 ARB 和 ACEI 的高血压患者可能具有更高的 ACE2 表达,因此因 SARS-CoV-2 感染而患严重疾病的风险更大。然而,最近的临床报告表明 ARBs/ACEI 在降低 COVID-19 严重性方面的有益作用。总之,这需要进一步研究 ACE2 阻断剂对使用 ARB/ACEI 药物治疗的高血压患者的影响,以及它们对神经元健康的相应影响。然而,它们的阻断与任何神经炎症之间的关联也值得进一步研究。目的:本综述整理了关于 ACE2 在 SARSCoV-2 侵袭和神经代谢功能中的二元作用以及 ACE2 阻断对神经炎症的可能影响的机制见解。 结论:已经得出结论,ACE2 阻断会导致神经炎症。

关键词: COVID-19、SARS-CoV-2、血管紧张素转换酶 2、神经炎症、高血压、ACEIs

图形摘要
[1]
WHO report 2021. 2021. Available from: https://covid19.who.int/?gclid=EAIaIQobChMIgaXT6suq7wIVfp1LBR0Dmwt-EAAYASACEgLgn_D_BwE (Accessed Mar 12 2021).
[2]
Gheblawi M, Wang K, Viveiros A, et al. Angiotensin converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system. Circ Res 2020; 126(10): 1456-74.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317015] [PMID: 32264791]
[3]
McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res 2020; 157: 104859.
[http://dx.doi.org/10.1016/j.phrs.2020.104859] [PMID: 32360480]
[4]
Ou T, Mou H, Zhang L, Ojha A, Choe H, Farzan M. Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2. PLoS Pathog 2021; 17(1): e1009212.
[http://dx.doi.org/10.1371/journal.ppat.1009212] [PMID: 33465165]
[5]
Hong W. Combating COVID-19 with Chloroquine. J Mol Cell Biol 2020; 12(4): 249-50.
[http://dx.doi.org/10.1093/jmcb/mjaa015] [PMID: 32236561]
[6]
Clarke NE, Turner AJ. Angiotensin-converting enzyme 2: the first decade. Int J Hypertens 2012; 2012: 307315.
[http://dx.doi.org/10.1155/2012/307315] [PMID: 22121476]
[7]
Kai H, Kai M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors-lessons from available evidence and insights into COVID-19. Hypertens Res 2020; 43(7): 648-54.
[http://dx.doi.org/10.1038/s41440-020-0455-8] [PMID: 32341442]
[8]
Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct 2012; 2012
[9]
Sukumaran V, Veeraveedu PT, Gurusamy N, et al. Olmesartan attenuates the development of heart failure after experimental autoimmune myocarditis in rats through the modulation of ANG 1-7 mas receptor. Mol Cell Endocrinol 2012; 351(2): 208-19.
[http://dx.doi.org/10.1016/j.mce.2011.12.010] [PMID: 22200414]
[10]
Pedrosa MA, Valenzuela R, Garrido-Gil P, et al. Experimental data using candesartan and captopril indicate no double-edged sword effect in COVID-19. Clin Sci (Lond) 2021; 135(3): 465-81.
[http://dx.doi.org/10.1042/CS20201511] [PMID: 33479758]
[11]
Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun 2020; 87: 18-22.
[http://dx.doi.org/10.1016/j.bbi.2020.03.031] [PMID: 32240762]
[12]
Bahat G. Covid-19 and the renin angiotensin system: implications for the older adults. J Nutr Health Aging 2020; 24(7): 699-704.
[http://dx.doi.org/10.1007/s12603-020-1403-7] [PMID: 32744564]
[13]
Cavalcanti DD, Raz E, Shapiro M, et al. Cerebral venous thrombosis associated with COVID-19. AJNR Am J Neuroradiol 2020; 41(8): 1370-6.
[http://dx.doi.org/10.3174/ajnr.A6644] [PMID: 32554424]
[14]
Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract 2020; 162: 108142.
[http://dx.doi.org/10.1016/j.diabres.2020.108142] [PMID: 32278764]
[15]
WHO report 2019. 2019. Available from: https://www.who.int/news-room/fact-sheets/detail/hypertension (Accessed Jan 25 2021).
[16]
Kim MJ, Lim NK, Choi SJ, Park HY. Hypertension is an independent risk factor for type 2 diabetes: the Korean genome and epidemiology study. Hypertens Res 2015; 38(11): 783-9.
[http://dx.doi.org/10.1038/hr.2015.72] [PMID: 26178151]
[17]
Xia H, Lazartigues E. Angiotensin-converting enzyme 2 in the brain: properties and future directions. J Neurochem 2008; 107(6): 1482-94.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05723.x] [PMID: 19014390]
[18]
Xiao L, Haack KK, Zucker IH. Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling. Am J Physiol Cell Physiol 2013; 304(11): C1073-9.
[http://dx.doi.org/10.1152/ajpcell.00364.2012] [PMID: 23535237]
[19]
Feng Y, Hans C, McIlwain E, Varner KJ, Lazartigues E. Angiotensin-converting enzyme 2 over-expression in the central nervous system reduces angiotensin-II-mediated cardiac hypertrophy. PLoS One 2012; 7(11): e48910.
[http://dx.doi.org/10.1371/journal.pone.0048910] [PMID: 23155428]
[20]
Chen J, Zhao Y, Chen S, et al. Neuronal over-expression of ACE2 protects brain from ischemia-induced damage. Neuropharmacology 2014; 79: 550-8.
[http://dx.doi.org/10.1016/j.neuropharm.2014.01.004] [PMID: 24440367]
[21]
Guimond MO, Gallo-Payet N. The angiotensin II type 2 receptor in brain functions: An update. Int J Hypertens 2012; 2012: 351758.
[http://dx.doi.org/10.1155/2012/351758] [PMID: 23320146]
[22]
Xia H, Suda S, Bindom S, et al. ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function. PLoS One 2011; 6(7): e22682.
[http://dx.doi.org/10.1371/journal.pone.0022682] [PMID: 21818366]
[23]
Singh G, Pachouri UC, Khaidem DC, Kundu A, Chopra C, Singh P. Mitochondrial DNA damage and diseases. F1000 Res 2015; 4: 176.
[http://dx.doi.org/10.12688/f1000research.6665.1] [PMID: 27508052]
[24]
Yan C, Duanmu X, Zeng L, Liu B, Song Z. Mitochondrial DNA: Distribution, mutations, and elimination. Cells 2019; 8(4): 379.
[http://dx.doi.org/10.3390/cells8040379] [PMID: 31027297]
[25]
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25A years. EMBO Mol Med 2016; 8(6): 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[26]
Cai Q, Tammineni P. Mitochondrial aspects of synaptic dysfunction in Alzheimer's disease. J Alzheimers Dis 2017; 57(4): 1087-103.
[http://dx.doi.org/10.3233/JAD-160726] [PMID: 27767992]
[27]
Miki H, Setou M, Kaneshiro K, Hirokawa N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA 2001; 98(13): 7004-11.
[http://dx.doi.org/10.1073/pnas.111145398] [PMID: 11416179]
[28]
Errea O, Moreno B, Gonzalez-Franquesa A, Garcia-Roves PM, Villoslada P. The disruption of mitochondrial axonal transport is an early event in neuroinflammation. J Neuroinflammation 2015; 12(1): 152.
[http://dx.doi.org/10.1186/s12974-015-0375-8] [PMID: 26310930]
[29]
Kamel AS, Abdelkader NF, Abd El-Rahman SS, Emara M, Zaki HF, Khattab MM. Stimulation of ACE2/ANG (1-7)/Mas axis by diminazene ameliorates Alzheimer's disease in the D-galactose-ovariectomized rat model: Role of PI3K/Akt pathway. Mol Neurobiol 2018; 55(10): 8188-202.
[http://dx.doi.org/10.1007/s12035-018-0966-3] [PMID: 29516284]
[30]
Sommerstein R, Kochen MM, Messerli FH, GrAni C. Coronavirus disease 2019 (COVID-19): Do angiotensin-converting enzyme inhibitors/angiotensin receptor blockers have a biphasic effect? J Am Heart Assoc 2020; 9(7): e016509.
[http://dx.doi.org/10.1161/JAHA.120.016509] [PMID: 32233753]
[31]
Chen D, Xu W, Lei Z, et al. Recurrence of positive SARS-CoV-2 RNA in COVID-19: A case report. Int J Infect Dis 2020; 93: 297-9.
[http://dx.doi.org/10.1016/j.ijid.2020.03.003] [PMID: 32147538]
[32]
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46(4): 586-90.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[33]
Tripathy S, Dassarma B, Roy S, Chabalala H, Matsabisa MG. A review on possible modes of action of chloroquine/hydroxychloroquine: repurposing against SAR-CoV-2 (COVID-19) pandemic. Int J Antimicrob Agents 2020; 56(2): 106028.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106028] [PMID: 32450198]
[34]
Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203(2): 631-7.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[35]
Duan J, Cui J, Yang Z, et al. Neuroprotective effect of Apelin 13 on ischemic stroke by activating AMPK/GSK-3Iy/Nrf2 signaling. J Neuroinflammation 2019; 16(1): 1-6.
[http://dx.doi.org/10.1186/s12974-019-1406-7] [PMID: 30606213]
[36]
Xu W, Li T, Gao L, et al. Apelin-13/APJ system attenuates early brain injury via suppression of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation and oxidative stress in a AMPK-dependent manner after subarachnoid hemorrhage in rats. J Neuroinflammation 2019; 16(1): 247.
[http://dx.doi.org/10.1186/s12974-019-1620-3] [PMID: 31791369]
[37]
Sato T, Kadowaki A, Suzuki T, et al. Loss of apelin augments angiotensin II-induced cardiac dysfunction and pathological remodeling. Int J Mol Sci 2019; 20(2): 239.
[http://dx.doi.org/10.3390/ijms20020239] [PMID: 30634441]
[38]
Wang W, McKinnie SM, Farhan M, et al. Angiotensin-converting enzyme 2 metabolizes and partially inactivates pyr-apelin-13 and apelin-17: physiological effects in the cardiovascular system. Hypertension 2016; 68(2): 365-77.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06892] [PMID: 27217402]
[39]
St-Gelais F, Jomphe C, Trudeau LA. The role of neurotensin in central nervous system pathophysiology: what is the evidence? J Psychiatry Neurosci 2006; 31(4): 229-45.
[PMID: 16862241]
[40]
Patel AB, Tsilioni I, Leeman SE, Theoharides TC. Neurotensin stimulates sortilin and mTOR in human microglia inhibitable by methoxyluteolin, a potential therapeutic target for autism. Proc Natl Acad Sci USA 2016; 113(45): E7049-58.
[http://dx.doi.org/10.1073/pnas.1604992113] [PMID: 27663735]
[41]
Read D, Shulkes A, Fletcher D, Hardy K. Pharmacokinetics and biological activity of kinetensin in conscious sheep. Agents Actions 1993; 38(3-4): 231-9.
[http://dx.doi.org/10.1007/BF01976215] [PMID: 8213349]
[42]
Wang Q, Shin EJ, Nguyen XK, et al. Endogenous dynorphin protects against neurotoxin-elicited nigrostriatal dopaminergic neuron damage and motor deficits in mice. J Neuroinflammation 2012; 9(1): 124.
[http://dx.doi.org/10.1186/1742-2094-9-124] [PMID: 22695044]
[43]
Hauser KF, Aldrich JV, Anderson KJ, et al. Pathobiology of dynorphins in trauma and disease. Front Biosci 2005; 10: 216-35.
[http://dx.doi.org/10.2741/1522] [PMID: 15574363]
[44]
Bregola G, Varani K, Gessi S, et al. Changes in hippocampal and cortical B1 bradykinin receptor biological activity in two experimental models of epilepsy. Neuroscience 1999; 92(3): 1043-9.
[http://dx.doi.org/10.1016/S0306-4522(99)00075-5] [PMID: 10426544]
[45]
Sarker MH, Hu DE, Fraser PA. Acute effects of bradykinin on cerebral microvascular permeability in the anaesthetized rat. J Physiol 2000; 528(Pt 1): 177-87.
[http://dx.doi.org/10.1111/j.1469-7793.2000.00177.x] [PMID: 11018116]
[46]
Ni A, Yin H, Agata J, Yang Z, Chao L, Chao J. Overexpression of kinin B1 receptors induces hypertensive response to des-Arg9-bradykinin and susceptibility to inflammation. J Biol Chem 2003; 278(1): 219-25.
[http://dx.doi.org/10.1074/jbc.M209490200] [PMID: 12411434]
[47]
GrAger M, Lebesgue D, Pruneau D, et al. Release of bradykinin and expression of kinin B2 receptors in the brain: role for cell death and brain edema formation after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2005; 25(8): 978-89.
[http://dx.doi.org/10.1038/sj.jcbfm.9600096] [PMID: 15815587]
[48]
Claesson-Welsh L. Vascular permeability--the essentials. Ups J Med Sci 2015; 120(3): 135-43.
[http://dx.doi.org/10.3109/03009734.2015.1064501] [PMID: 26220421]
[49]
Qadri F, Rimmele F, Mallis L, et al. Acute hypothalamo-pituitary-adrenal axis response to LPS-induced endotoxemia: expression pattern of kinin type B1 and B2 receptors. Biol Chem 2016; 397(2): 97-109.
[http://dx.doi.org/10.1515/hsz-2015-0206] [PMID: 26468906]
[50]
Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 2019; 15(8): 459-72.
[http://dx.doi.org/10.1038/s41582-019-0217-x] [PMID: 31263255]
[51]
Wang J, Kaplan N, Wysocki J, et al. The ACE2-deficient mouse: A model for a cytokine storm-driven inflammation. FASEB J 2020; 34(8): 10505-15.
[http://dx.doi.org/10.1096/fj.202001020R] [PMID: 32725927]
[52]
Obukhov AG, Stevens BR, Prasad R, et al. SARS-CoV-2 infections and ACE2: Clinical outcomes linked with increased morbidity and mortality in individuals with diabetes. Diabetes 2020; 69(9): 1875-86.
[http://dx.doi.org/10.2337/dbi20-0019] [PMID: 32669391]
[53]
Liu X, Long C, Xiong Q, et al. Association of renin-angiotensin-aldosterone system inhibition with risk of COVID-19, inflammation level severity and death in patients with COVID-19: A Rapid Systematic Review and Meta-Analysis. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.05.20.20108399]
[54]
Quitterer U, AbdAlla S. Improvements of symptoms of Alzheimer's disease by inhibition of the angiotensin system. Pharmacol Res 2020; 154: 104230.
[http://dx.doi.org/10.1016/j.phrs.2019.04.014] [PMID: 30991105]
[55]
Jarrahi A, Ahluwalia M, Khodadadi H, et al. Neurological consequences of COVID-19: what have we learned and where do we go from here? J Neuroinflammation 2020; 17(1): 286.
[http://dx.doi.org/10.1186/s12974-020-01957-4] [PMID: 32998763]
[56]
Vaira LA, Salzano G, Fois AG, Piombino P, De Riu G. Potential pathogenesis of ageusia and anosmia in COVID-19 patients. Int Forum Allergy Rhinol 2020; 10(9): 1103-4.
[http://dx.doi.org/10.1002/alr.22593] [PMID: 32342636]
[57]
Chen M, Shen W, Rowan NR, et al. Elevated ACE-2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Eur Respir J 2020; 56(3): 2001948.
[http://dx.doi.org/10.1183/13993003.01948-2020] [PMID: 32817004]
[58]
Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev 2020; 53: 13-24.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.009] [PMID: 32475759]
[59]
Zhao Y, Qin Y, Liu T, Hao D. Chronic nerve injury-induced Mas receptor expression in dorsal root ganglion neurons alleviates neuropathic pain. Exp Ther Med 2015; 10(6): 2384-8.
[http://dx.doi.org/10.3892/etm.2015.2801] [PMID: 26668645]
[60]
Wang XL, Iwanami J, Min LJ, et al. Deficiency of angiotensin-converting enzyme 2 causes deterioration of cognitive function. NPJ Aging Mech Dis 2016; 2(1): 16024.
[http://dx.doi.org/10.1038/npjamd.2016.24] [PMID: 28721275]
[61]
Kim JD, Yoon NA, Jin S, Diano S. Microglial UCP2 mediates inflammation and obesity induced by high-fat feeding. Cell Metab 2019; 30(5): 952-962.e5.
[http://dx.doi.org/10.1016/j.cmet.2019.08.010] [PMID: 31495690]
[62]
Sanchis-Gomar F, Lavie CJ, Mehra MR, Henry BM, Lippi G. Obesity and Outcomes in COVID-19: when an epidemic and pandemic collide. Mayo Clin Proc 2020; 95(7): 1445-53.
[http://dx.doi.org/10.1016/j.mayocp.2020.05.006] [PMID: 32622449]
[63]
Patel VB, Mori J, McLean BA, et al. ACE2 Deficiency worsens epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity. Diabetes 2016; 65(1): 85-95.
[PMID: 26224885]
[64]
Kotchen TA. Obesity-related hypertension: epidemiology, pathophysiology, and clinical management. Am J Hypertens 2010; 23(11): 1170-8.
[http://dx.doi.org/10.1038/ajh.2010.172] [PMID: 20706196]
[65]
Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med 2020; 76: 14-20.
[http://dx.doi.org/10.1016/j.ejim.2020.04.037] [PMID: 32336612]
[66]
Ruschitzka F, Taddei S. Angiotensin-converting enzyme inhibitors: first-line agents in cardiovascular protection? Eur Heart J 2012; 33(16): 1996-8.
[http://dx.doi.org/10.1093/eurheartj/ehs108] [PMID: 22659198]
[67]
Abiodun OA, Ola MS. Role of brain renin angiotensin system in neurodegeneration: An update. Saudi J Biol Sci 2020; 27(3): 905-12.
[http://dx.doi.org/10.1016/j.sjbs.2020.01.026] [PMID: 32127770]
[68]
Malik RA. Can diabetic neuropathy be prevented by angiotensin-converting enzyme inhibitors? Ann Med 2000; 32(1): 1-5.
[http://dx.doi.org/10.3109/07853890008995903] [PMID: 10711571]
[69]
Stern EM, Johnson JS, Mazzulla DA. Highly accelerated onset of hydroxychloroquine macular retinopathy. Ochsner J 2017; 17(3): 280-3.
[PMID: 29026363]
[70]
Cermak S, Kosicek M, Mladenovic-Djordjevic A, Smiljanic K, Kanazir S, Hecimovic S. Loss of Cathepsin B and L Leads to Lysosomal Dysfunction, NPC-Like cholesterol sequestration and accumulation of the key Alzheimer's Proteins. PLoS One 2016; 11(11): e0167428.
[http://dx.doi.org/10.1371/journal.pone.0167428] [PMID: 27902765]
[71]
Ulivi L, Squitieri M, Cohen H, Cowley P, Werring DJ. Cerebral venous thrombosis: A practical guide. Pract Neurol 2020; 20(5): 356-67.
[http://dx.doi.org/10.1136/practneurol-2019-002415] [PMID: 32958591]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy