Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Application of Some Graphene Derivatives to Increase the Efficiency of Stem Cell Therapy

Author(s): Tahereh Foroutan*

Volume 17, Issue 3, 2022

Published on: 07 January, 2022

Page: [294 - 300] Pages: 7

DOI: 10.2174/1574888X16666211102085246

Price: $65

Open Access Journals Promotions 2
Abstract

Graphene and its derivatives have application potential in many areas such as environmental technology, catalysis, biomedicine, and in particular, stem cell-based differentiation and regenerative therapies. Mesenchymal stem cell transplantation has emerged as a potential therapy for some diseases, such as acute kidney damage, liver failure and myocardial infarction. However, the poor survival of transplanted stem cells in such applications has significantly limited their therapeutic effectiveness. Graphene-based materials can improve the therapeutic efficacy of stem cells as they prevent the death of implanted cells by attaching them prior to implantation and increasing their paracrine secretion. In this review, we will highlight a number of recent studies that have investigated the potential use of graphene or its derivatives in stem cell applications and the prevention of transplanted stem cells from cell death, thereby improving their therapeutic efficacy.

Keywords: Stem cell, graphene oxide, regenerative medicine, differentiation, mesenchymal stem cell, osteogenesis.

« Previous
[1]
Kim TH, Lee T, El-Said WA, Choi JW. Graphene- based materials for stem cell applications. Materials (Basel) 2015; 8(12): 8674-90.
[http://dx.doi.org/10.3390/ma8125481] [PMID: 28793737]
[2]
Wang YH, Wu DB, Chen B, Chen EQ, Tang H. Progress in mesenchymal stem cell-based therapy for acute liver failure. Stem Cell Res Ther 2018; 9(1): 227.
[http://dx.doi.org/10.1186/s13287-018-0972-4] [PMID: 30143052]
[3]
Ho PH, Liou YT, Chuang CH, et al. Self-crack-filled graphene films by metallic nanoparticles for high-performance graphene heterojunction solar cells. Adv Mater 2015; 27(10): 1724-9.
[http://dx.doi.org/10.1002/adma.201404843] [PMID: 25619427]
[4]
Nezakati T, Cousins BG, Seifalian AM. Toxicology of chemically modified graphene-based materials for medical application. Arch Toxicol 2014; 88(11): 1987-2012.
[http://dx.doi.org/10.1007/s00204-014-1361-0] [PMID: 25234085]
[5]
Son YW, Cohen ML, Louie SG. Energy gaps in graphene nanoribbons. Phys Rev Lett 2006; 97(21): 216803.
[http://dx.doi.org/10.1103/PhysRevLett.97.216803] [PMID: 17155765]
[6]
Foroutan T, Kassaee MZ, Salari M, Ahmady F, Molavi F, Moayer F. Magnetic Fe3O4 @graphene oxide improves the therapeutic effects of embryonic stem cells on acute liver damage. Cell Prolif 2021; 2021: e13126.
[PMID: 34569673]
[7]
De Sanctis A, Russo S, Craciun MF, et al. New routes to the functionalization patterning and manufacture of graphene-based materials for biomedical applications. Interface Focus 2018; 8(3): 20170057.
[http://dx.doi.org/10.1098/rsfs.2017.0057] [PMID: 29696089]
[8]
Dideikin AT, Vul AY. Graphene oxide and derivatives: the place in graphene family. Front Phys 2019; 6: 149.
[http://dx.doi.org/10.3389/fphy.2018.00149]
[9]
Zhang X, Yan X, Chen J, et al. Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters. Carbon 2014; 69: 437-43.
[http://dx.doi.org/10.1016/j.carbon.2013.12.046]
[10]
Ong CB, Ng LY, Mohammad AW. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew Sustain Energy Rev 2018; 81: 536-51.
[http://dx.doi.org/10.1016/j.rser.2017.08.020]
[11]
Park J, Kim B, Han J, et al. Graphene oxide flakes as a cellular adhesive: Prevention of reactive oxygen species mediated death of implanted cells for cardiac repair. ACS Nano 2015; 9(5): 4987-99.
[http://dx.doi.org/10.1021/nn507149w] [PMID: 25919434]
[12]
Lalwani G, Sundararaj JL, Schaefer K, Button T, Sitharaman B. Characterization, in vitro phantom imaging, and cytotoxicity of a novel graphene-based multimodal magnetic resonance imaging-X-ray computed tomography contrast agent. J Mater Chem B Mater Biol Med 2014; 2(22): 3519-30.
[http://dx.doi.org/10.1039/C4TB00326H] [PMID: 24999431]
[13]
Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 2013; 9(12): 9243-57.
[http://dx.doi.org/10.1016/j.actbio.2013.08.016] [PMID: 23958782]
[14]
Paul A, Hasan A, Kindi HA, et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 2014; 8(8): 8050-62.
[http://dx.doi.org/10.1021/nn5020787] [PMID: 24988275]
[15]
Feng L, Zhang S, Liu Z. Graphene based gene transfection. Nanoscale 2011; 3(3): 1252-7.
[http://dx.doi.org/10.1039/c0nr00680g] [PMID: 21270989]
[16]
Shin SR, Aghaei-Ghareh-Bolagh B, Gao X, et al. Layer-by-layer assembly of 3D tissue constructs with functionalized graphene. Adv Funct Mater 2014; 24(39): 6136-44.
[http://dx.doi.org/10.1002/adfm.201401300] [PMID: 25419209]
[17]
Shen H, Zhang L, Liu M, Zhang Z. Biomedical applications of graphene. Theranostics 2012; 2(3): 283-94.
[http://dx.doi.org/10.7150/thno.3642] [PMID: 22448195]
[18]
Kopp JL, Grompe M, Sander M. Human airway epithelia express a beta-defensin. Am J Respir Cell Mol Biol 2016; 16: 343-9.
[http://dx.doi.org/10.1038/ncb3309]
[19]
Li N, Zhang Q, Gao S, et al. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep 2013; 3: 1604.
[http://dx.doi.org/10.1038/srep01604] [PMID: 23549373]
[20]
Kim TH, Lee T, El-Said WA, Choi JW. Graphene-based materials for stem cell applications. Materials (Basel) 2015; 8(12): 8674-90.
[http://dx.doi.org/10.3390/ma8125481] [PMID: 28793737]
[21]
Kim TH, Shah S, Yang L, et al. Controlling differentiation of adipose-derived stem cells using combinatorial graphene hybrid-pattern arrays. ACS Nano 2015; 9(4): 3780-90.
[http://dx.doi.org/10.1021/nn5066028] [PMID: 25840606]
[22]
Nayak TR, Andersen H, Makam VS, et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 2011; 5(6): 4670-8.
[http://dx.doi.org/10.1021/nn200500h] [PMID: 21528849]
[23]
Zhou M, Lozano N, Wychowaniec JK, et al. Graphene oxide: A growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels. Acta Biomater 2019; 96: 271-80.
[http://dx.doi.org/10.1016/j.actbio.2019.07.027] [PMID: 31325577]
[24]
Foroutan T, Nazemi N, Tavana M, et al. Suspended graphene oxide nanoparticle for accelerated multilayer osteoblast attachment. J Biomed Mater Res A 2018; 106(1): 293-303.
[http://dx.doi.org/10.1002/jbm.a.36231] [PMID: 28891194]
[25]
Shang Y, Zhang D, Liu YY, et al. Simultaneous synthesis of diverse graphene via electrochemical reduction of graphene oxide. J Appl Electrochem 2015; 45: 453-62.
[http://dx.doi.org/10.1007/s10800-015-0818-z]
[26]
Hayes WI, Joseph P, Mughal MZ, et al. Production of reduced graphene oxide via hydrothermal reduction in an aqueous sulphuric acid suspension and its electrochemical behaviour. J Solid State Electrochem 2015; 19: 361-80.
[http://dx.doi.org/10.1007/s10008-014-2560-6]
[27]
Xue D, Chen E, Zhong H, et al. Immunomodulatory properties of graphene oxide for osteogenesis and angiogenesis. Int J Nanomedicine 2018; 13: 5799-810.
[http://dx.doi.org/10.2147/IJN.S170305] [PMID: 30310282]
[28]
Lee WC, Lim CHYX, Shi H, et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 2011; 5(9): 7334-41.
[http://dx.doi.org/10.1021/nn202190c] [PMID: 21793541]
[29]
Orive G, Anitua E, Pedraz JL, Emerich DF. Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 2009; 10(9): 682-92.
[http://dx.doi.org/10.1038/nrn2685] [PMID: 19654582]
[30]
Xie H, Cao T, Franco-Obregón A, Rosa V. Graphene-induced osteogenic differentiation is mediated by the integrin/FAK axis. Int J Mol Sci 2019; 20(3): 574.
[http://dx.doi.org/10.3390/ijms20030574] [PMID: 30699966]
[31]
Kanakia S, Toussaint JD, Mullick Chowdhury S, et al. Dose ranging, expanded acute toxicity and safety pharmacology studies for intravenously administered functionalized graphene nanoparticle formulations. Biomaterials 2014; 35(25): 7022-31.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.066] [PMID: 24854092]
[32]
Yang K, Gong H, Shi X, Wan J, Zhang Y, Liu Z. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 2013; 34(11): 2787-95.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.001] [PMID: 23340196]
[33]
Chang Y, Yang ST, Liu JH, et al. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 2011; 200(3): 201-10.
[http://dx.doi.org/10.1016/j.toxlet.2010.11.016] [PMID: 21130147]
[34]
Cruz SMA, Girão AF, Gonçalves G, Marques PA. Graphene: The missing piece for cancer diagnosis? Sensors (Basel) 2016; 16(1): 137.
[http://dx.doi.org/10.3390/s16010137] [PMID: 26805845]
[35]
Bujoli B, Scimeca JC, Verron E. Fibrin as a multipurpose physiological platform for bone tissue engineering and targeted delivery of bioactive compounds. Pharmaceutics 2019; 11(11): 556.
[http://dx.doi.org/10.3390/pharmaceutics11110556] [PMID: 31661853]
[36]
Deepachitra R, Ramnath V, Sastry TP. Graphene oxide incorporated collagen–fibrin biofilm as a wound dressing material. RSC Advances 2014; 107: 62717-27.
[http://dx.doi.org/10.1039/C4RA10150B]
[37]
Chen S, Du X, Jia L, Chang H, Ikoma T, Hanagata N. Synthesis and osteo-compatibility of novel reduced graphene oxide-aminosilica hybrid nanosheets. Mater Sci Eng C 2016; 61: 251-6.
[http://dx.doi.org/10.1016/j.msec.2015.12.056] [PMID: 26838848]
[38]
Dong W, Hou L, Li T, et al. A dual role of graphene oxide sheet deposition on titanate nanowire scaffolds for osteo-implantation: mechanical hardener and surface activity regulator. Sci Rep 2015; 5: 18266.
[http://dx.doi.org/10.1038/srep18266] [PMID: 26687002]
[39]
Safaei Firoozabady A, Aidun A, Kowsari-Esfahan R, Allahyari A. Characterization and evaluation of graphene oxide incorporated into nanofibrous scaffold for bone tissue engineering. J Tissues Mater 2019; 2(1): 1-13.
[40]
Silva GA, Czeisler C, Niece KL, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004; 303(5662): 1352-5.
[http://dx.doi.org/10.1126/science.1093783] [PMID: 14739465]
[41]
Shah S, Yin PT, Uehara TM, Chueng ST, Yang L, Lee KB. Guiding stem cell differentiation into oligodendrocytes using graphene- nanofiber hybrid scaffolds. Adv Mater 2014; 26(22): 3673-80.
[http://dx.doi.org/10.1002/adma.201400523] [PMID: 24668911]
[42]
Duan S, Yang X, Mei F, et al. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials. J Biomed Mater Res A 2015; 103(4): 1424-35.
[http://dx.doi.org/10.1002/jbm.a.35283] [PMID: 25046153]
[43]
Bressan E, Ferroni L, Gardin C, et al. Graphene based scaffolds effects on stem cells commitment. J Transl Med 2014; 12: 296.
[http://dx.doi.org/10.1186/s12967-014-0296-9] [PMID: 25344443]
[44]
Alzhavan O, Ghaderi E, Shahsavar M. Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells. Carbon 2013; 59: 200-11.
[http://dx.doi.org/10.1016/j.carbon.2013.03.010]
[45]
Yang D, Li T, Xu M, et al. Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons. Nanomedicine (Lond) 2014; 9(16): 2445-55.
[http://dx.doi.org/10.2217/nnm.13.197] [PMID: 24564300]
[46]
Ayobian-Markazi N, Foroutan T, Zahmatkesh A. An in vitro evaluation of the responses of human osteoblast-like SaOs-2 cells to SLA titanium surfaces irradiated by Er: YAG lasers. Lasers Med Sci 2014; 29(1): 47-53.
[http://dx.doi.org/10.1007/s10103-012-1224-y] [PMID: 23179305]
[47]
Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed Engl 2009; 48(42): 7752-77.
[http://dx.doi.org/10.1002/anie.200901678] [PMID: 19784976]
[48]
Foroutan T, Ahmady F, Moayer F, et al. Role of antimicrobial peptides in skin barrier repair in individuals with atopic dermatitis. Int J Mol Sci 2020; 21: 7607.
[49]
Geim AK. Graphene: Status and prospects. Science 2009; 324(5934): 1530-4.
[http://dx.doi.org/10.1126/science.1158877] [PMID: 19541989]
[50]
Abedi A, Azarnia M, Jamali Zahvarehy M, Foroutan T, Golestani S. Effect of different times of Intraperitoneal injections of human bone marrow mesenchymal stem cell conditioned medium on gentamicin-induced acute kidney injury. Urol J 2016; 13(3): 2707-16.
[PMID: 27351327]
[51]
Foroutan T, Farhadi A, Abroun S, Mohammad Soltani B. Adipose derived stem cells affect mir-145 and P53 expression of co-cultured hematopoietic stem cells. Cell J 2018; 19(4): 654-9.
[PMID: 29105402]
[52]
Eini F, Foroutan T, Bidadkosh A, et al. The effects of freeze/thawing process on cryopreserved equine umbilical cord bloodderived mesenchymal stem cells. Comp Clin Pathol 2012; 21(6): 1713-8.
[http://dx.doi.org/10.1007/s00580-011-1355-8]
[53]
Abedini F, Foroutan T, Jahangiri L. Alkaline phosphatase and CD34 reaction of deciduous teeth pulp stem cells. Pak J Biol Sci 2007; 10(18): 3146-9.
[http://dx.doi.org/10.3923/pjbs.2007.3146.3149] [PMID: 19090114]
[54]
Pooyanfar F, Foroutan T, Dashtizad M. Intracellular receptor for human host defense peptide LL-37 in monocytes. J Immunol 2018; 183: 2688-96.
[55]
Talukdar Y, Rashkow J, Lalwani G, Kanakia S, Sitharaman B. The effects of graphene nanostructures on mesenchymal stem cells. Biomaterials 2014; 35(18): 4863-77.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.054] [PMID: 24674462]
[56]
Urbas K, Aleksandrzak M, Jedrzejczak M, et al. Chemical and magnetic functionalization of graphene oxide as a route to enhance its biocompatibility. Nanoscale Res Lett 2014; 9(1): 656.
[http://dx.doi.org/10.1186/1556-276X-9-656] [PMID: 25593549]
[57]
Foroutan T, Nafar M, Motamedi E. Intraperitoneal injection of graphene oxide nanoparticle accelerates stem cell therapy effects on acute kidney injury. Stem Cells Cloning 2020; 13: 21-32.
[http://dx.doi.org/10.2147/SCCAA.S212087] [PMID: 32104004]
[58]
Humphreys BD, Bonventre JV. Mesenchymal stem cells in acute kidney injury. Annu Rev Med 2008; 59: 311-25.
[http://dx.doi.org/10.1146/annurev.med.59.061506.154239] [PMID: 17914926]
[59]
Foroutan T, Kabiri F, Motamedi E. Silica magnetic graphene pxide improves the effects of stem cell-conditioned medium on acute liver failure. ACS Omega 2021; 6(33): 21194-206.
[http://dx.doi.org/10.1021/acsomega.0c05395] [PMID: 34471725]
[60]
Solanki A, Chueng ST, Yin PT, Kappera R, Chhowalla M, Lee KB. Axonal alignment and enhanced neuronal differentiation of neural stem cells on graphene-nanoparticle hybrid structures. Adv Mater 2013; 25(38): 5477-82.
[http://dx.doi.org/10.1002/adma.201302219] [PMID: 23824715]
[61]
Kim J, Park S, Kim YJ, et al. Monolayer graphene-directed growth and neuronal differentiation of mesenchymal stem cells. J Biomed Nanotechnol 2015; 11(11): 2024-33.
[http://dx.doi.org/10.1166/jbn.2015.2137] [PMID: 26554160]
[62]
Fiorillo M, Verre AF, Iliut M, et al. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”. Oncotarget 2015; 6(6): 3553-62.
[http://dx.doi.org/10.18632/oncotarget.3348] [PMID: 25708684]
[63]
Sharifi E, Hoseini Motlagh HN, Haghiralsadat BF, Majdizadeh M. Experimental study: Investigation of graphene oxide nanoparticles effect on increasing the thermal effect of ultrasound waves on water for thermal therapy of cancer cells. J Torbat Heydariyeh University Med Sci 2021; 46-54.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy