Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

Molecular Docking of the Cardenolides of Asclepias subulata in the Human p53 Protein Reveals an Interaction in the Cleft of the Y220C Mutant

Author(s): Ignacio Valenzuela-Chavira, Salvador Meneses-Sagrero, Aldo A. Arvizu-Flores, Javier Hernández-Paredes, Luisa Rascón-Valenzuela, Carlos A. Velázquez-Contreras and Ramón E. Robles-Zepeda*

Volume 15, Issue 3, 2021

Published on: 26 October, 2021

Page: [222 - 233] Pages: 12

DOI: 10.2174/2212796815666211026112056

Price: $65

Abstract

Background and Objective: The objective of the present study is to use docking and ADME analysis to determine if the cardenolides of Asclepias subulata are potential stabilizing drugs of the p53-Y220C mutant.

Materials and Methods: Two different receptors, wild-type p53, and the mutant p53-Y220C, were used for docking. Three independent stochastic series were performed, with 60,000 poses considered, and the 30 best poses were selected. ADME analysis was performed using SwissADME.

Results: Docking experiments revealed that corotoxigenin 3-O-glucopyranoside and calotropin interact with the cleft, so they were considered potential stabilizers of the p53-Y220C mutant comparable to the control drug 9H5, which was able to predict a position very similar to that already reported in the crystallographic structure. The ADME predicted that calotropin and desglucouzarin have more favorable pharmacokinetic parameters. Both molecules are predicted to be absorbed from the GIT.

Conclusion: Calotropin of A. subulata is predicted to be a potential drug for p53-Y220C, because it binds to the cleft of the mutant and has favorable pharmacokinetic parameters. Corotoxigenin 3- O-glucopyranoside also binds to the Y220C cleft, but had less favorable pharmacokinetic parameters. These results have a future impact since calotropin could be used for the treatment of some types of cancer.

Keywords: p53, Y220C mutant, cardenolides, Asclepias subulata, docking, ADME, cancer.

Graphical Abstract
[1]
Freed-Pastor WA, Prives C. Mutant p53: One name, many proteins. Genes Dev 2012; 26(12): 1268-86.
[http://dx.doi.org/10.1101/gad.190678.112] [PMID: 22713868]
[2]
Vousden KH, Lu X. Live or let die: The cell’s response to p53. Nat Rev Cancer 2002; 2(8): 594-604.
[http://dx.doi.org/10.1038/nrc864] [PMID: 12154352]
[3]
Vousden KH, Prives C. Blinded by the light: The growing complexity of p53. Cell 2009; 137(3): 413-31.
[http://dx.doi.org/10.1016/j.cell.2009.04.037] [PMID: 19410540]
[4]
Vousden KH, Ryan KM. p53 and metabolism. Nat Rev Cancer 2009; 9(10): 691-700.
[http://dx.doi.org/10.1038/nrc2715] [PMID: 19759539]
[5]
Joerger AC, Fersht AR. Structural biology of the tumor suppressor p53. Annu Rev Biochem 2008; 77(1): 557-82.
[http://dx.doi.org/10.1146/annurev.biochem.77.060806.091238] [PMID: 18410249]
[6]
Prives C, Hall PA. The p53 pathway. J Pathol 1999; 187(1): 112-26.
[http://dx.doi.org/10.1002/(SICI)1096-9896(199901)187:1<112::AID-PATH250>3.0.CO;2-3] [PMID: 10341712]
[7]
Laptenko O, Prives C. Transcriptional regulation by p53: One protein, many possibilities. Cell Death Differ 2006; 13(6): 951-61.
[http://dx.doi.org/10.1038/sj.cdd.4401916] [PMID: 16575405]
[8]
DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA 1979; 76(5): 2420-4.
[http://dx.doi.org/10.1073/pnas.76.5.2420] [PMID: 221923]
[9]
Levine AJ, Oren M. The first 30 years of p53: Growing ever more complex. Nat Rev Cancer 2009; 9(10): 749-58.
[http://dx.doi.org/10.1038/nrc2723] [PMID: 19776744]
[10]
Ferenczy A, Franco E. Persistent human papillomavirus infection and cervical neoplasia. Lancet Oncol 2002; 3(1): 11-6.
[http://dx.doi.org/10.1016/S1470-2045(01)00617-9] [PMID: 11905599]
[11]
Poyurovsky MV, Prives C. Unleashing the power of p53: Lessons from mice and men. Genes Dev 2006; 20(2): 125-31.
[http://dx.doi.org/10.1101/gad.1397506] [PMID: 16418478]
[12]
Manfredi JJ. The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev 2010; 24(15): 1580-9.
[http://dx.doi.org/10.1101/gad.1941710] [PMID: 20679392]
[13]
Marine JC, Lozano G. Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ 2010; 17(1): 93-102.
[http://dx.doi.org/10.1038/cdd.2009.68] [PMID: 19498444]
[14]
Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. Science 1994; 265(5170): 346-55.
[http://dx.doi.org/10.1126/science.8023157] [PMID: 8023157]
[15]
Petitjean A, Achatz MIW, Borresen-Dale AL, Hainaut P, Olivier M. TP53 mutations in human cancers: Functional selection and impact on cancer prognosis and outcomes. Oncogene 2007; 26(15): 2157-65.
[http://dx.doi.org/10.1038/sj.onc.1210302] [PMID: 17401424]
[16]
Brosh R, Rotter V. When mutants gain new powers: News from the mutant p53 field. Nat Rev Cancer 2009; 9(10): 701-13.
[http://dx.doi.org/10.1038/nrc2693] [PMID: 19693097]
[17]
Oren M, Rotter V. Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2010; 2(2): a001107.
[http://dx.doi.org/10.1101/cshperspect.a001107] [PMID: 20182618]
[18]
Dearth LR, Qian H, Wang T, et al. Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis 2007; 28(2): 289-98.
[http://dx.doi.org/10.1093/carcin/bgl132] [PMID: 16861262]
[19]
Joerger AC, Fersht AR. Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene 2007; 26(15): 2226-42.
[http://dx.doi.org/10.1038/sj.onc.1210291] [PMID: 17401432]
[20]
Marin MC, Jost CA, Brooks LA, et al. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat Genet 2000; 25(1): 47-54.
[http://dx.doi.org/10.1038/75586] [PMID: 10802655]
[21]
Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 2001; 21(5): 1874-87.
[http://dx.doi.org/10.1128/MCB.21.5.1874-1887.2001] [PMID: 11238924]
[22]
Strano S, Fontemaggi G, Costanzo A, et al. Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem 2002; 277(21): 18817-26.
[http://dx.doi.org/10.1074/jbc.M201405200] [PMID: 11893750]
[23]
Bullock AN, Henckel J, Fersht AR. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: Definition of mutant states for rescue in cancer therapy. Oncogene 2000; 19(10): 1245-56.
[http://dx.doi.org/10.1038/sj.onc.1203434] [PMID: 10713666]
[24]
Joerger AC, Ang HC, Fersht AR. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Proc Natl Acad Sci USA 2006; 103(41): 15056-61.
[http://dx.doi.org/10.1073/pnas.0607286103] [PMID: 17015838]
[25]
Rascón-Valenzuela L, Velázquez C, Garibay-Escobar A, Medina-Juárez LA, Vilegas W, Robles-Zepeda RE. Antiproliferative activity of cardenolide glycosides from Asclepias subulata. J Ethnopharmacol 2015; 171: 280-6.
[http://dx.doi.org/10.1016/j.jep.2015.05.057] [PMID: 26068432]
[26]
Fernández Brewer A, Juárez Jaimes V, Cortés Zárraga L. Usos de las especies del género Asclepias L. (Apocynaceae, Asclepiadoideae), información del Herbario Nacional de México, MEXU. Polibotánica 2008; (25): 155-71. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-27682008000100012
[27]
Peinado M, Alcaraz F, Aguirre JL, Delgadillo J. Major plant communities of warm North American deserts. J Veg Sci 1995; 6(1): 79-94.
[http://dx.doi.org/10.2307/3236259]
[28]
Wilder BT, Felger RS, Morales HR. Succulent plant diversity of the Sonoran Islands, Gulf of California, Mexico. Haseltonia 2008; 14(14): 127-60.
[http://dx.doi.org/10.2985/1070-0048-14.1.127]
[29]
Alonso-Castro AJ, Villarreal ML, Salazar-Olivo LA, Gomez- Sanchez M, Dominguez F, Garcia-Carranca A. Mexican medicinal plants used for cancer treatment: Pharmacological, phytochemical and ethnobotanical studies. J Ethnopharmacol 2011; 133(3): 945-72.
[http://dx.doi.org/10.1016/j.jep.2010.11.055] [PMID: 21146599]
[30]
Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S. Toxic cardenolides: Chemical ecology and coevolution of specialized plant-herbivore interactions. New Phytol 2012; 194(1): 28-45.
[http://dx.doi.org/10.1111/j.1469-8137.2011.04049.x] [PMID: 22292897]
[31]
Rascón-Valenzuela LA, Velázquez C, Garibay-Escobar A, et al. Apoptotic activities of cardenolide glycosides from Asclepias subulata. J Ethnopharmacol 2016; 193: 303-11.
[http://dx.doi.org/10.1016/j.jep.2016.08.022] [PMID: 27545974]
[32]
Rascón Valenzuela LA, Jiménez Estrada M, Velázquez Contreras CA, et al. Antiproliferative and apoptotic activities of extracts of Asclepias subulata. Pharm Biol 2015; 53(12): 1741-51.
[http://dx.doi.org/10.3109/13880209.2015.1005752] [PMID: 25853961]
[33]
Baud MGJ, Bauer MR, Verduci L, et al. Aminobenzothiazole derivatives stabilize the thermolabile p53 cancer mutant Y220C and show anticancer activity in p53-Y220C cell lines. Eur J Med Chem 2018; 152: 101-14.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.035] [PMID: 29702446]
[34]
Cousins KR. Computer review of ChemDraw ultra 12.0. J Am Chem Soc 2011; 133: 8388.
[http://dx.doi.org/10.1021/ja204075s] [PMID: 21561109]
[35]
Tobergte DR, Curtis S. MOE molecular operating environment. J Chem Inf Model 2013; 53: 1689-99.
[36]
Mackerell AD Jr, Feig M, Brooks CL III. Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 2004; 25(11): 1400-15.
[http://dx.doi.org/10.1002/jcc.20065] [PMID: 15185334]
[37]
Guevara-Hernandez E, Arvizu-Flores AA, Lugo-Sanchez ME, et al. A novel viral thymidylate kinase with dual kinase activity. J Bioenerg Biomembr 2015; 47(5): 431-40.
[http://dx.doi.org/10.1007/s10863-015-9622-z] [PMID: 26315341]
[38]
Delano LW. The PyMOL Molecular Graphics System. 2002. Available from: http://pymol.org (Accessed date: March 15, 2021).
[39]
Golovenko D, Bräuning B, Vyas P, Haran TE, Rozenberg H, Shakked Z. New insights into the role of DNA shape on its recognition by p53 proteins. Structure 2018; 26(9): 1237-50.
[http://dx.doi.org/10.1016/j.str.2018.06.006]
[40]
Laskowski RA, Swindells MB. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 2011; 51(10): 2778-86.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[41]
Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys 1988; 38(6): 3098-100.
[http://dx.doi.org/10.1103/PhysRevA.38.3098] [PMID: 9900728]
[42]
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR. Gaussian 09, Rev A1. Wallingford CT: Gaussian Inc. 2009.
[43]
Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem 2012; 33(5): 580-92.
[http://dx.doi.org/10.1002/jcc.22885] [PMID: 22162017]
[44]
Bader RFM, Bader RFM. Atoms in molecules A quantum theory. Oxford: Oxford University Press 1995.
[45]
Espinosa E, Alkorta I, Elguero J, Molins E. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H⋯F-Y systems. J Chem Phys 2002; 117(12): 5529-42.
[http://dx.doi.org/10.1063/1.1501133]
[46]
Espinosa E, Alkorta I, Rozas I, Elguero J, Molins E. About the evaluation of the local kinetic, potential and total energy densities in closed-shell interactions. Chem Phys Lett 2001; 336(5-6): 457-61.
[http://dx.doi.org/10.1016/S0009-2614(01)00178-6]
[47]
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7: 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[48]
Salt AN, Plontke SK. Pharmacokinetic principles in the inner ear: Influence of drug properties on intratympanic applications. Hear Res 2018; 368: 28-40.
[http://dx.doi.org/10.1016/j.heares.2018.03.002] [PMID: 29551306]
[49]
Daina A, Zoete V. A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016; 11(11): 1117-21.
[http://dx.doi.org/10.1002/cmdc.201600182] [PMID: 27218427]
[50]
Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci USA 2008; 105(30): 10360-5.
[http://dx.doi.org/10.1073/pnas.0805326105] [PMID: 18650397]
[51]
Wilcken R, Zimmermann MO, Bauer MR, et al. Experimental and theoretical evaluation of the ethynyl moiety as a halogen bioisostere. ACS Chem Biol 2015; 10(12): 2725-32.
[http://dx.doi.org/10.1021/acschembio.5b00515] [PMID: 26378745]
[52]
Joerger AC, Bauer MR, Wilcken R, et al. Exploiting transient protein states for the design of small-molecule stabilizers of mutant p53. Structure 2015; 23(12): 2246-55.
[http://dx.doi.org/10.1016/j.str.2015.10.016] [PMID: 26636255]
[53]
Gilli G, Gilli P. The nature of the hydrogen bond: Outline of a comprehensive hydrogen bond theory. Oxford University Press: Oxford, 2009.
[54]
Iwaoka M, Takemoto S, Tomoda S. Statistical and theoretical investigations on the directionality of nonbonded S...O interactions. Implications for molecular design and protein engineering. J Am Chem Soc 2002; 124(35): 10613-20.
[http://dx.doi.org/10.1021/ja026472q] [PMID: 12197764]
[55]
Iwaoka M, Isozumi N. Hypervalent nonbonded interactions of a divalent sulfur atom. Implications in protein architecture and the functions. Molecules 2012; 17(6): 7266-83.
[http://dx.doi.org/10.3390/molecules17067266] [PMID: 22695232]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy