Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Bergenin - A Biologically Active Scaffold: Nanotechnological Perspectives

Author(s): Reecha Madaan, Rajeev K. Singla*, Suresh Kumar, Ankit Kumar Dubey, Dinesh Kumar, Pooja Sharma, Rajni Bala, Shailja Singla and Bairong Shen*

Volume 22, Issue 2, 2022

Published on: 15 October, 2021

Page: [132 - 149] Pages: 18

DOI: 10.2174/1568026621666211015092654

Price: $65

Open Access Journals Promotions 2
Abstract

Bergenin, 4-O-methyl gallic acid glucoside, is a bioactive compound in various plants belonging to different families. The present work compiles scattered information on pharmacology, structure-activity relationship and nanotechnological aspects of bergenin, collected from various electronic databases such as Sci Finder, PubMed, Google Scholar, etc. Bergenin has been reported to exhibit hepatoprotective, anti-inflammatory, anticancer, neuroprotective, antiviral, and antimicrobial activities. Molecular docking studies have shown that isocoumarin pharmacophore of bergenin is essential for its bioactivities. Bergenin holds a great potential to be used as a lead molecule and also as a therapeutic agent for the development of more efficacious and safer semisynthetic derivatives. Nanotechnological concepts can be employed to overcome the poor bioavailability of bergenin. Finally, it is concluded that bergenin can emerge as clinically potential medicine in modern therapeutics.

Keywords: Anticancer, Anti-inflammatory, Bergenin, Hepatoprotective, Molecular docking, Nanotechnology.

Graphical Abstract
[1]
Kingston, D.G.I. Modern natural products drug discovery and its relevance to biodiversity conservation. J. Nat. Prod., 2011, 74(3), 496-511.
[http://dx.doi.org/10.1021/np100550t] [PMID: 21138324]
[2]
Nazir, N.; Koul, S.; Qurishi, M.A.; Najar, M.H.; Zargar, M.I. Evaluation of antioxidant and antimicrobial activities of Bergenin and its derivatives obtained by chemoenzymatic synthesis. Eur. J. Med. Chem., 2011, 46(6), 2415-2420.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.025] [PMID: 21474216]
[3]
Namdari, M.; Eatemadi, A.; Soleimaninejad, M.; Hammed, A.T. A brief review on the application of nanoparticle enclosed herbal medicine for the treatment of infective endocarditis. Biomed. Pharmacother., 2017, 87, 321-331.
[http://dx.doi.org/10.1016/j.biopha.2016.12.099] [PMID: 28064105]
[4]
Ramana, K.V.; Singhal, S.S.; Reddy, A.B. Therapeutic potential of natural pharmacological agents in the treatment of human diseases. BioMed Res. Int., 2014, 2014, 573452.
[http://dx.doi.org/10.1155/2014/573452] [PMID: 25610867]
[5]
Aggarwal, D.; Gautam, D.; Sharma, M.; Singla, S.K. Bergenin attenuates renal injury by reversing mitochondrial dysfunction in ethylene glycol induced hyperoxaluric rat model. Eur. J. Pharmacol., 2016, 791, 611-621.
[http://dx.doi.org/10.1016/j.ejphar.2016.10.002] [PMID: 27717728]
[6]
De Abreu, H.A.; Aparecida Dos S Lago, I.; Souza, G.P.; Piló-Veloso, D.; Duarte, H.A.; de C Alcântara, A.F. Antioxidant activity of (+)-bergenin: a phytoconstituent isolated from the bark of Sacoglottis uchi Huber (Humireaceae). Org. Biomol. Chem., 2008, 6(15), 2713-2718.
[http://dx.doi.org/10.1039/b804385j] [PMID: 18633529]
[7]
Rastogi, S.; Rawat, A. A comprehensive review on bergenin, a potential hepatoprotective and antioxidative phytoconstituent. Herba Pol., 2008, 54, 66-79.
[8]
Alam, P.; Siddiqui, N.; Al-Rehaily, A.; Alajmi, M.; Basudan, O.; Khan, T. Stability-indicating densitometric high-performance thin-layer chromatographic method for the quantitative analysis of biomarker naringin in the leaves and stems of Rumex Vesicarius L. JPC -. J. Planar Chromatogr. Mod. TLC, 2014, 27(3), 204-209.
[http://dx.doi.org/10.1556/JPC.27.2014.3.10]
[9]
Khan, M.S.; Khan, W.; Ahmad, W.; Singh, M.; Ahmad, S. Bergenin determination in different extracts by high-performance thin-layer chromatographic densitometry. J. Pharm. Bioallied Sci., 2015, 7(4), 272-274.
[http://dx.doi.org/10.4103/0975-7406.168024] [PMID: 26681881]
[10]
Siddiqui, N.A.; Alam, P.; Al-Rehaily, A.J.; Al-Oqail, M.M.; Parvez, M.K. Simultaneous quantification of biomarkers bergenin and menisdaurin in the methanol extract of aerial parts of Flueggea virosa by validated HPTLC densitometric method. J. Chromatogr. Sci., 2015, 53(5), 824-829.
[http://dx.doi.org/10.1093/chromsci/bmu231] [PMID: 25662964]
[11]
Sawada, Y.; Akiyama, K.; Sakata, A.; Kuwahara, A.; Otsuki, H.; Sakurai, T.; Saito, K.; Hirai, M.Y. Widely targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants. Plant Cell Physiol., 2009, 50(1), 37-47.
[http://dx.doi.org/10.1093/pcp/pcn183] [PMID: 19054808]
[12]
Srivastava, N.; Verma, S.; Pragyadeep, S.; Srivastava, S.; Rawat, A.K.S. Evaluation of successive fractions for optimum quantification of bergenin and gallic acid in three industrially important bergenia species by high-performance thin-layer chromatography. J. Planar Chromatogr. Mod. TLC, 2014, 27(1), 69-71.
[http://dx.doi.org/10.1556/JPC.27.2014.1.13]
[13]
Chernetsova, E.S.; Crawford, E.A.; Shikov, A.N.; Pozharitskaya, O.N.; Makarov, V.G.; Morlock, G.E. ID-CUBE direct analysis in real time high-resolution mass spectrometry and its capabilities in the identification of phenolic components from the green leaves of Bergenia crassifolia L. Rapid Commun. Mass Spectrom., 2012, 26(11), 1329-1337.
[http://dx.doi.org/10.1002/rcm.6226] [PMID: 22555926]
[14]
Dhalwal, K.; Shinde, V.M.; Biradar, Y.S.; Mahadik, K.R. Simultaneous quantification of bergenin, catechin, and gallic acid from Bergenia Ciliata and Bergenia Ligulata by using thin-layer chromatography. J. Food Compos. Anal., 2008, 21(6), 496-500.
[http://dx.doi.org/10.1016/j.jfca.2008.02.008]
[15]
Koul, B.; Kumar, A.; Yadav, D.; Jin, J-O. Bergenia genus: Traditional uses, phytochemistry and pharmacology. Molecules, 2020, 25(23), 5555.
[http://dx.doi.org/10.3390/molecules25235555] [PMID: 33256153]
[16]
Shi, X.; Xu, M.; Luo, K.; Huang, W.; Yu, H.; Zhou, T. Anticancer activity of bergenin against cervical cancer cells involves apoptosis, cell cycle arrest, inhibition of cell migration and the STAT3 signalling pathway. Exp. Ther. Med., 2019, 17(5), 3525-3529.
[http://dx.doi.org/10.3892/etm.2019.7380] [PMID: 30988733]
[17]
Bharate, S.B.; Kumar, V.; Bharate, S.S.; Singh, B.; Singh, G.; Singh, A.; Gupta, M.; Singh, D.; Kumar, A.; Singh, S.; Vishwakarma, R.A. Discovery and preclinical development of IIIM-160, a Bergenia ciliata-based anti-inflammatory and anti-arthritic botanical drug candidate. J. Integr. Med., 2019, 17(3), 192-204.
[http://dx.doi.org/10.1016/j.joim.2019.03.001] [PMID: 30898582]
[18]
Siddiq, F.; Fatima, I.; Malik, A.; Afza, N.; Iqbal, L.; Lateef, M.; Hameed, S.; Khan, S.W. Biologically active bergenin derivatives from Bergenia stracheyi. Chem. Biodivers., 2012, 9(1), 91-98.
[http://dx.doi.org/10.1002/cbdv.201100003] [PMID: 22253106]
[19]
Chauhan, S.K.; Singh, B.; Agrawal, S. Simultaneous determination of bergenin and gallic acid in Bergenia ligulata wall by high-performance thin-layer chromatography. J. AOAC Int., 2000, 83(6), 1480-1483.
[http://dx.doi.org/10.1093/jaoac/83.6.1480] [PMID: 11128157]
[20]
Ahmad, M.; Butt, M.A.; Zhang, G.; Sultana, S.; Tariq, A.; Zafar, M. Bergenia ciliata: A comprehensive review of its traditional uses, phytochemistry, pharmacology and safety. Biomed. Pharmacother., 2018, 97, 708-721.
[http://dx.doi.org/10.1016/j.biopha.2017.10.141] [PMID: 29102914]
[21]
Xin-Min, C.; Yoshida, T.; Hatano, T.; Fukushima, M.; Okuda, T. Galloylarbutin and other polyphenols from Bergenia Purpurascens. Phytochemistry, 1987, 26(2), 515-517.
[http://dx.doi.org/10.1016/S0031-9422(00)81446-6]
[22]
Pandey, R.; Kumar, B.; Meena, B.; Srivastava, M.; Mishra, T.; Tiwari, V.; Pal, M.; Nair, N.K.; Upreti, D.K.; Rana, T.S. Major bioactive phenolics in Bergenia species from the Indian Himalayan region: Method development, validation and quantitative estimation using UHPLC-QqQLIT-MS/MS. PLoS One, 2017, 12(7), e0180950.
[http://dx.doi.org/10.1371/journal.pone.0180950] [PMID: 28749965]
[23]
Sun, H-X.; Ye, Y-P.; Yang, K. [Studies on the chemical constituents in radix Astilbes chinensis]. Zhongguo Zhongyao Zazhi, 2002, 27(10), 751-754.
[PMID: 12776553]
[24]
Han, L.K.; Ninomiya, H.; Taniguchi, M.; Baba, K.; Kimura, Y.; Okuda, H. Norepinephrine-augmenting lipolytic effectors from Astilbe thunbergii rhizomes. J. Nat. Prod., 1998, 61(8), 1006-1011.
[http://dx.doi.org/10.1021/np980107o] [PMID: 9722485]
[25]
Izawa, K.; Nagai, M.; Inoue, T. Triterpene acids and bergenin in Peltoboykinia Watanabei and Boykinia Lycoctonifolia. Phytochemistry, 1973, 12(6), 1508.
[http://dx.doi.org/10.1016/0031-9422(73)80604-1]
[26]
Pan, R.H.; He, H.M.; Dai, Y.; Xia, Y.F. Comparative pharmacokinetics of bergenin, a main active constituent of Saxifraga stolonifera Curt., in normal and hepatic injury rats after oral administration. Chin. J. Nat. Med., 2016, 14(10), 776-782.
[http://dx.doi.org/10.1016/S1875-5364(16)30092-9] [PMID: 28236407]
[27]
Zuo, G.Y.; Li, Z.Q.; Chen, L.R.; Xu, X.J. In vitro anti-HCV activities of Saxifraga melanocentra and its related polyphenolic compounds. Antivir. Chem. Chemother., 2005, 16(6), 393-398.
[http://dx.doi.org/10.1177/095632020501600606] [PMID: 16329286]
[28]
Nyasse, B.; Nono, J.; Sonke, B.; Denier, C.; Fontaine, C. Trypanocidal activity of bergenin, the major constituent of Flueggea virosa, on Trypanosoma brucei. Pharmazie, 2004, 59(6), 492-494.
[PMID: 15248469]
[29]
Patel, D.K.; Patel, K.; Kumar, R.; Gadewar, M.; Tahilyani, V. Pharmacological and analytical aspects of bergenin: A concise report. Asian Pac. J. Trop. Dis., 2012, 2(2), 163-167.
[http://dx.doi.org/10.1016/S2222-1808(12)60037-1]
[30]
Wibowo, A.; Ahmat, N.; Hamzah, A.S.; Sufian, A.S.; Ismail, N.H.; Ahmad, R.; Jaafar, F.M.; Takayama, H.; Malaysianol, A. Malaysianol A, a new trimer resveratrol oligomer from the stem bark of Dryobalanops aromatica. Fitoterapia, 2011, 82(4), 676-681.
[http://dx.doi.org/10.1016/j.fitote.2011.02.006] [PMID: 21338657]
[31]
Mishima, S.; Matsumoto, K.; Futamura, Y.; Araki, Y.; Ito, T.; Tanaka, T.; Iinuma, M.; Nozawa, Y.; Akao, Y. Antitumor effect of stilbenoids from Vateria indica against allografted sarcoma S-180 in animal model. J. Exp. Ther. Oncol., 2003, 3(5), 283-288.
[http://dx.doi.org/10.1111/j.1533-869X.2003.01102.x] [PMID: 14696625]
[32]
Lee, Y.Y.; Jang, D.S.; Jin, J.L.; Yun-Choi, H.S. Anti-platelet aggregating and anti-oxidative activities of 11-O-(4′-O-methylgalloyl)-bergenin, a new compound isolated from Crassula cv. ‘Himaturi’. Planta Med., 2005, 71(8), 776-777.
[http://dx.doi.org/10.1055/s-2005-864189] [PMID: 16142645]
[33]
Li, Y-C.; Kuo, P-C.; Yang, M-L.; Chen, T-Y.; Hwang, T-L.; Chiang, C-C.; Thang, T.D.; Tuan, N.N.; Tzen, J.T.C. Chemical constituents of the leaves of Peltophorum pterocarpum and Their Bioactivity. Molecules, 2019, 24(2), 240.
[http://dx.doi.org/10.3390/molecules24020240] [PMID: 30634658]
[34]
Omara, T. Antimalarial plants used across Kenyan communities. Evid. Based Complement. Alternat. Med., 2020, 2020, 4538602.
[http://dx.doi.org/10.1155/2020/4538602] [PMID: 32617107]
[35]
Bomgning, C.L.K.; Sinda, P.V.K.; Ponou, B.K.; Fotio, A.L.; Tsague, M.K.; Tsafack, B.T.; Kühlborn, J.; Mbuyo-Nguelefack, E.P.; Teponno, R.B.; Opatz, T.; Tapondjou, L.A.; Nguelefack, T.B. Hepatoprotective effects of extracts, fractions and compounds from the stem bark of Pentaclethra macrophylla Benth: Evidence from in vitro and in vivo studies. Biomed. Pharmacother., 2021, 136(111242), 111242.
[http://dx.doi.org/10.1016/j.biopha.2021.111242] [PMID: 33486213]
[36]
Qin, X.; Yuan, F.; Zhou, D.; Huang, Y. Oral characteristics of bergenin and the effect of absorption enhancers in situ, in vitro and in vivo. Arzneimittelforschung, 2010, 60(4), 198-204.
[PMID: 20486470]
[37]
Veerapur, V.P.; Prabhakar, K.R.; Thippeswamy, B.S.; Bansal, P.; Srinivasan, K.K.; Unnikrishnan, M.K. Antidiabetic effect of Ficus racemosa Linn. stem bark in high-fat diet and low-dose streptozotocin-induced type 2 diabetic rats: a mechanistic study. Food Chem., 2012, 132(1), 186-193.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.052] [PMID: 26434279]
[38]
Hoffmann-Bohm, K.; Lotter, H.; Seligmann, O.; Wagner, H. Antihepatotoxic C-glycosylflavones from the leaves of Allophyllus edulis var. edulis and gracilis. Planta Med., 1992, 58(6), 544-548.
[http://dx.doi.org/10.1055/s-2006-961546] [PMID: 1484895]
[39]
Lim, H.K.; Kim, H.S.; Chung, M.W.; Kim, Y.C. Protective effects of bergenin, the major constituent of Mallotus japonicus, on D-galactosamine-intoxicated rat hepatocytes. J. Ethnopharmacol., 2000, 70(1), 69-72.
[http://dx.doi.org/10.1016/S0378-8741(99)00138-5] [PMID: 10720791]
[40]
Kim, H.S.; Lim, H.K.; Chung, M.W.; Kim, Y.C. Antihepatotoxic activity of bergenin, the major constituent of Mallotus japonicus, on carbon tetrachloride-intoxicated hepatocytes. J. Ethnopharmacol., 2000, 69(1), 79-83.
[http://dx.doi.org/10.1016/S0378-8741(99)00137-3] [PMID: 10661887]
[41]
Lim, H.K.; Kim, H.S.; Choi, H.S.; Oh, S.; Choi, J. Hepatoprotective effects of bergenin, a major constituent of Mallotus japonicus, on carbon tetrachloride-intoxicated rats. J. Ethnopharmacol., 2000, 72(3), 469-474.
[http://dx.doi.org/10.1016/S0378-8741(00)00260-9] [PMID: 10996288]
[42]
Lim, H.K.; Kim, H.S.; Choi, H.S.; Choi, J.; Kim, S.H.; Chang, M.J. Effects of bergenin, the major constituent of Mallotus japonicus against D-galactosamine-induced hepatotoxicity in rats. Pharmacology, 2001, 63(2), 71-75.
[http://dx.doi.org/10.1159/000056115] [PMID: 11490198]
[43]
Lim, H.K.; Kim, H.S.; Kim, S.H.; Chang, M.J.; Rhee, G.S.; Choi, J. Protective effects of acetylbergenin against carbon tetrachloride-induced hepatotoxicity in rats. Arch. Pharm. Res., 2001, 24(2), 114-118.
[http://dx.doi.org/10.1007/BF02976478] [PMID: 11339630]
[44]
Lim, H.K.; Kim, H.S.; Choi, H.S.; Oh, S.; Jang, C.G.; Choi, J.; Kim, S.H.; Chang, M.J. Effects of acetylbergenin against D -galactosamine-induced hepatotoxicity in rats. Pharmacol. Res., 2000, 42(5), 471-474.
[http://dx.doi.org/10.1006/phrs.2000.0730] [PMID: 11023710]
[45]
Xia, Y.; Li, J.; Chen, K.; Feng, J.; Guo, C. Bergenin attenuates hepatic fibrosis by regulating autophagy mediated by the PPAR-γ/TGF-β pathway. PPAR Res., 2020, 2020, 6694214.
[http://dx.doi.org/10.1155/2020/6694214] [PMID: 33488687]
[46]
Xiang, S.; Chen, K.; Xu, L.; Wang, T.; Guo, C. Bergenin exerts hepatoprotective effects by inhibiting the release of inflammatory factors, apoptosis and autophagy via the PPAR-γ pathway. Drug Des. Devel. Ther., 2020, 14, 129-143.
[http://dx.doi.org/10.2147/DDDT.S229063] [PMID: 32021098]
[47]
Sriset, Y.; Chatuphonprasert, W.; Jarukamjorn, K. Bergenin exhibits hepatoprotective activity against ethanol-induced oxidative stress in ICR mice. Curr. Top. Nutraceutical Res., 2020, 18(4), 297-302.
[48]
Sriset, Y.; Chatuphonprasert, W.; Jarukamjorn, K. Hepatoprotective activity of bergenin against xenobiotics-induced oxidative stress in human hepatoma (Hep G2) cells. Chiang Mai Univ. J. Nat. Sci., 2020, 20(1), e2021011.
[49]
Swarnalakshmi, T.; Sethuraman, M.G.; Sulochana, N.; Arivudainambi, R. A note on the anti-inflammatory activity of bergenin. Curr. Sci., 1984, 53, 917.
[50]
Nunomura, R.C.S.; Oliveira, V.G.; Da Silva, S.L.; Nunomura, S.M. Characterization of bergenin in Endopleura uchi bark and its anti-inflammatory activity. J. Braz. Chem. Soc., 2009, 20(6), 1060-1064.
[http://dx.doi.org/10.1590/S0103-50532009000600009]
[51]
Gao, X-J.; Guo, M-Y.; Zhang, Z-C.; Wang, T-C.; Cao, Y-G.; Zhang, N-S. Bergenin plays an anti-inflammatory role via the modulation of MAPK and NF-κB signaling pathways in a mouse model of LPS-induced mastitis. Inflammation, 2015, 38(3), 1142-1150.
[http://dx.doi.org/10.1007/s10753-014-0079-8] [PMID: 25487780]
[52]
Oliveira, G.A.; Araujo, A.K.; Pacheco, G.; Oliveira, A.P.; Carvalho, J.L.; Chaves, L.S.; Medeiros, J.V.R. Anti-inflammatory properties of bergenin in mice. J. Appl. Pharm. Sci., 2019, 9(7), 69-77.
[http://dx.doi.org/10.7324/JAPS.2019.90709]
[53]
Alves, C.Q.; David, J.M.; David, J.P.; Villareal, C.F.; Soares, M.B.P.; de Queiroz, L.P.; Aguiar, R.M. Flavonoids and other bioactive phenolics isolated from Cenostigma Macrophyllum (Leguminosae). Quim. Nova, 2012, 35(6), 1137-1140.
[http://dx.doi.org/10.1590/S0100-40422012000600013]
[54]
de Oliveira, C.M.; Nonato, F.R.; de Lima, F.O.; Couto, R.D.; David, J.P.; David, J.M.; Soares, M.B.P.; Villarreal, C.F. Antinociceptive properties of bergenin. J. Nat. Prod., 2011, 74(10), 2062-2068.
[http://dx.doi.org/10.1021/np200232s] [PMID: 21939182]
[55]
Takahashi, H.; Kosaka, M.; Watanabe, Y.; Nakade, K.; Fukuyama, Y. Synthesis and neuroprotective activity of bergenin derivatives with antioxidant activity. Bioorg. Med. Chem., 2003, 11(8), 1781-1788.
[http://dx.doi.org/10.1016/S0968-0896(02)00666-1] [PMID: 12659764]
[56]
Kumar, R.; Patel, D.K.; Prasad, S.K.; Laloo, D.; Krishnamurthy, S.; Hemalatha, S. Type 2 antidiabetic activity of bergenin from the roots of Caesalpinia digyna Rottler. Fitoterapia, 2012, 83(2), 395-401.
[http://dx.doi.org/10.1016/j.fitote.2011.12.008] [PMID: 22178680]
[57]
Srinivasan, R.; Chandrasekar, M.J.N.; Nanjan, M.J.; Suresh, B. Antioxidant activity of Caesalpinia digyna root. J. Ethnopharmacol., 2007, 113(2), 284-291.
[http://dx.doi.org/10.1016/j.jep.2007.06.006] [PMID: 17686593]
[58]
Subramanian, R.; Subbramaniyan, P.; Raj, V. Isolation of bergenin from peltophorum pterocarpum flowers and its bioactivity. Beni. Suef Univ. J. Basic Appl. Sci., 2015, 4(3), 256-261.
[http://dx.doi.org/10.1016/j.bjbas.2015.06.002]
[59]
Sousa, C.M. de M.; Silva, H.R.e. Vieira-Jr., G. M.; Ayres, M. C. C.; Costa, C. L. S. da; Araújo, D. S.; Cavalcante, L. C. D.; Barros, E. D. S.; Araújo, P. B. de M.; Brandão, M. S.; Chaves, M. H. Total phenols and antioxidant activity of five medicinal plants. Quim. Nova, 2007, 30(2), 351-355.
[http://dx.doi.org/10.1590/S0100-40422007000200021]
[60]
Muniz, M.; Nunomura, S.; Nunomura, R.; Lima, E.; de Almeida, P.; Lima, A. Quantification of bergenin, antioxidant activity and nitric oxide inhibition from bark, leaf and twig of Endopleura uchi. Quim. Nova, 2020, 43(4), 413-418.
[http://dx.doi.org/10.21577/0100-4042.20170514]
[61]
Maduka, H.C.C.; Okoye, Z.S.C.; Eje, A. The influence of Sacoglottis gabonensis stem bark extract and its isolate bergenin, Nigerian alcoholic beverage additives, on the metabolic and haematological side effects of 2,4-dinitrophenyl hydrazine-induced tissue damage. Vascul. Pharmacol., 2002, 39(6), 317-324.
[http://dx.doi.org/10.1016/S1537-1891(03)00042-9] [PMID: 14567070]
[62]
Sadat, A.; Uddin, G.; Alam, M.; Ahmad, A.; Siddiqui, B.S. Structure activity relationship of bergenin, p-hydroxybenzoyl bergenin, 11-O-galloylbergenin as potent antioxidant and urease inhibitor isolated from Bergenia ligulata. Nat. Prod. Res., 2015, 29(24), 2291-2294.
[http://dx.doi.org/10.1080/14786419.2015.1004173] [PMID: 25674661]
[63]
Yollada, S.; Waranya, C.; Kanokwan, J. In vitro antioxidant potential of Mallotus Repandus (Willd.) Muell. Arg. stem extract and its active constituent bergenin. Songklanakarin J. Sci. Technol., 2019, 43(1), 24-30.
[64]
Qi, Q.; Dong, Z.; Sun, Y.; Li, S.; Zhao, Z. Protective effect of bergenin against cyclophosphamide-induced immunosuppression by immunomodulatory effect and antioxidation in balb/c mice. Molecules, 2018, 23(10), 2668.
[http://dx.doi.org/10.3390/molecules23102668] [PMID: 30336565]
[65]
Nazir, N.; Koul, S.; Qurishi, M.A.; Taneja, S.C.; Ahmad, S.F.; Bani, S.; Qazi, G.N. Immunomodulatory effect of bergenin and norbergenin against adjuvant-induced arthritis--a flow cytometric study. J. Ethnopharmacol., 2007, 112(2), 401-405.
[http://dx.doi.org/10.1016/j.jep.2007.02.023] [PMID: 17408893]
[66]
Okada, T.; Suzuki, T.; Hasobe, S.; Kisara, K. [Bergenin. 1. Antiulcerogenic activities of bergenin]. Nippon Yakurigaku Zasshi, 1973, 69(2), 369-378. [Bergenin. 1. Antiulcerogenic activities of bergenin].
[http://dx.doi.org/10.1254/fpj.69.369] [PMID: 4807887]
[67]
Abe, K.; Sakai, K.; Uchida, M. Effects of bergenin on experimental ulcers--prevention of stress induced ulcers in rats. Gen. Pharmacol., 1980, 11(4), 361-368.
[http://dx.doi.org/10.1016/0306-3623(80)90100-7] [PMID: 7399254]
[68]
Goel, R.K.; Maiti, R.N.; Manickam, M.; Ray, A.B. Antiulcer activity of naturally occurring pyrano-coumarin and isocoumarins and their effect on prostanoid synthesis using human colonic mucosa. Indian J. Exp. Biol., 1997, 35(10), 1080-1083.
[PMID: 9475044]
[69]
Zhang, Y.H.; Fang, L.H.; Lee, M.K.; Ku, B.S. In vitro inhibitory effects of bergenin and norbergenin on bovine adrenal tyrosine hydroxylase. Phytother. Res., 2003, 17(8), 967-969.
[http://dx.doi.org/10.1002/ptr.1292] [PMID: 13680837]
[70]
Arfan, M.; Amin, H.; Khan, I.; Shah, M.R.; Shah, H.; Khan, A.Z.; Halimi, S.M.A.; Khan, N.; Kaleem, W.A.; Qayum, M.; Shahidullah, A.; Khan, M.A. Molecular simulations of bergenin as a new urease inhibitor. Med. Chem. Res., 2012, 21(9), 2454-2457.
[http://dx.doi.org/10.1007/s00044-011-9762-6]
[71]
Wang, K.; Li, Y-F.; Lv, Q.; Li, X-M.; Dai, Y.; Wei, Z-F. Bergenin, acting as an agonist of PPARγ, ameliorates experimental colitis in mice through improving expression of SIRT1, and therefore inhibiting NF-κB-mediated macrophage activation. Front. Pharmacol., 2018, 8, 981.
[http://dx.doi.org/10.3389/fphar.2017.00981] [PMID: 29375382]
[72]
Lopes de Oliveira, G.A.; Alarcón de la Lastra, C.; Rosillo, M.Á.; Castejon Martinez, M.L.; Sánchez-Hidalgo, M.; Rolim Medeiros, J.V.; Villegas, I. Preventive effect of bergenin against the development of TNBS-induced acute colitis in rats is associated with inflammatory mediators inhibition and NLRP3/ASC inflammasome signaling pathways. Chem. Biol. Interact., 2019, 297, 25-33.
[http://dx.doi.org/10.1016/j.cbi.2018.10.020] [PMID: 30365937]
[73]
Ren, X.; Ma, S.; Wang, J.; Tian, S.; Fu, X.; Liu, X.; Li, Z.; Zhao, B.; Wang, X. Comparative effects of dexamethasone and bergenin on chronic bronchitis and their anti-inflammatory mechanisms based on NMR metabolomics. Mol. Biosyst., 2016, 12(6), 1938-1947.
[http://dx.doi.org/10.1039/C6MB00041J] [PMID: 27098339]
[74]
Yang, S.; Yu, Z.; Wang, L.; Yuan, T.; Wang, X.; Zhang, X.; Wang, J.; Lv, Y.; Du, G. The natural product bergenin ameliorates lipopolysaccharide-induced acute lung injury by inhibiting NF-kappaB activition. J. Ethnopharmacol., 2017, 200, 147-155.
[http://dx.doi.org/10.1016/j.jep.2017.02.013] [PMID: 28192201]
[75]
Zhang, C.; Zhao, B.; Zhang, C.; Qiu, M.; Ma, S.; Jin, X.; Shao, Y.; Wang, M.; Wang, X. Mechanisms of bergenin treatment on chronic bronchitis analyzed by liquid chromatography-tandem mass spectrometry based on metabolomics. Biomed. Pharmacother., 2019, 109, 2270-2277.
[http://dx.doi.org/10.1016/j.biopha.2018.11.119] [PMID: 30551484]
[76]
Ambika, S.; Saravanan, R. Effect of bergenin on hepatic glucose metabolism and insulin signaling in C57BL/6J mice with high fat-diet induced type 2 diabetes. J. Appl. Biomed., 2016, 14(3), 221-227.
[http://dx.doi.org/10.1016/j.jab.2016.04.002]
[77]
Rajput, S.A.; Mirza, M.R.; Choudhary, M.I. Bergenin protects pancreatic beta cells against cytokine-induced apoptosis in INS-1E cells. PLoS One, 2020, 15(12), e0241349.
[http://dx.doi.org/10.1371/journal.pone.0241349] [PMID: 33347462]
[78]
Yang, J.; Kan, M.; Wu, G.Y. Bergenin ameliorates diabetic nephropathy in rats via suppressing renal inflammation and TGF-β1-Smads pathway. Immunopharmacol. Immunotoxicol., 2016, 38(2), 145-152.
[http://dx.doi.org/10.3109/08923973.2016.1142560] [PMID: 26954391]
[79]
Qiao, S.; Liu, R.; Lv, C.; Miao, Y.; Yue, M.; Tao, Y.; Wei, Z.; Xia, Y.; Dai, Y. Bergenin impedes the generation of extracellular matrix in glomerular mesangial cells and ameliorates diabetic nephropathy in mice by inhibiting oxidative stress via the mTOR/β-TrcP/Nrf2 pathway. Free Radic. Biol. Med., 2019, 145, 118-135.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.09.003] [PMID: 31494242]
[80]
Villarreal, C.F.; Santos, D.S.; Lauria, P.S.S.; Gama, K.B.; Espírito-Santo, R.F.; Juiz, P.J.L.; Alves, C.Q.; David, J.M.; Soares, M.B.P. Bergenin reduces experimental painful diabetic neuropathy by restoring redox and immune homeostasis in the nervous system. Int. J. Mol. Sci., 2020, 21(14), 4850.
[http://dx.doi.org/10.3390/ijms21144850] [PMID: 32659952]
[81]
Sanjeev, S.; Murthy, M.K.; Sunita Devi, M.; Khushboo, M.; Renthlei, Z.; Ibrahim, K.S.; Kumar, N.S.; Roy, V.K.; Gurusubramanian, G. Isolation, characterization, and therapeutic activity of bergenin from marlberry (Ardisia colorata Roxb.) leaf on diabetic testicular complications in Wistar albino rats. Environ. Sci. Pollut. Res. Int., 2019, 26(7), 7082-7101.
[http://dx.doi.org/10.1007/s11356-019-04139-9] [PMID: 30648235]
[82]
Lee, K.H.; Choi, E.M. Effects of bergenin on methylglyoxal-induced damage in osteoblastic MC3T3-E1 cells. J. Appl. Toxicol., 2018, 38(4), 585-593.
[http://dx.doi.org/10.1002/jat.3565] [PMID: 29148590]
[83]
Suh, K.S.; Chon, S.; Jung, W-W.; Choi, E.M. Effect of bergenin on RANKL-induced osteoclast differentiation in the presence of methylglyoxal. Toxicol. In Vitro, 2019, 61(104613), 104613.
[http://dx.doi.org/10.1016/j.tiv.2019.104613] [PMID: 31369791]
[84]
Zhang, Z.Y.; Lee, S.Y. PTP1B inhibitors as potential therapeutics in the treatment of type 2 diabetes and obesity. Expert Opin. Investig. Drugs, 2003, 12(2), 223-233.
[http://dx.doi.org/10.1517/13543784.12.2.223] [PMID: 12556216]
[85]
Li, Y.F.; Hu, L.H.; Lou, F.C.; Li, J.; Shen, Q. PTP1B inhibitors from Ardisia japonica. J. Asian Nat. Prod. Res., 2005, 7(1), 13-18.
[http://dx.doi.org/10.1080/10286020310001596033] [PMID: 15621596]
[86]
Newell, A.M.B.; Yousef, G.G.; Lila, M.A.; Ramírez-Mares, M.V.; de Mejia, E.G. Comparative in vitro bioactivities of tea extracts from six species of Ardisia and their effect on growth inhibition of HepG2 cells. J. Ethnopharmacol., 2010, 130(3), 536-544.
[http://dx.doi.org/10.1016/j.jep.2010.05.051] [PMID: 20561930]
[87]
Gao, X.; Wang, Y.; Zhang, J.; Lin, L.; Yao, Q.; Xiang, G. Bergenin suppresses the growth of colorectal cancer cells by inhibiting PI3K/AKT/MTOR signaling pathway. Trop. J. Pharm. Res., 2017, 16(10), 2307-2313.
[http://dx.doi.org/10.4314/tjpr.v16i10.1]
[88]
Bulugahapitiya, V.P.; Munasinghe, M.M.A.B.; Hettihewa, L.M.; Kihara, N. Anticancer activity of Fluggea Leucopyrus Willd. (Katupila) against human ovarian carcinoma and characterization of active compounds. J. Sci., 2020, 11(2), 12-26.
[http://dx.doi.org/10.4038/jsc.v11i2.27]
[89]
Zhang, J.; Nishimoto, Y.; Tokuda, H.; Suzuki, N.; Yasukawa, K.; Kitdamrongtham, W.; Akazawa, H.; Manosroi, A.; Manosroi, J.; Akihisa, T. Cancer chemopreventive effect of bergenin from Peltophorum pterocarpum wood. Chem. Biodivers., 2013, 10(10), 1866-1875.
[http://dx.doi.org/10.1002/cbdv.201300182] [PMID: 24130029]
[90]
Nyemb, J.N.; Djankou, M.T.; Talla, E.; Tchinda, A.T.; Ngoudjou, D.T.; Iqbal, J.; Mbafor, J.T. Antimicrobial, α-glucosidase and alkaline phosphatase inhibitory activities of bergenin, the major constituent of Cissus Populnea roots. Med. Chem. (Los Angeles), 2018, 8, 2.
[http://dx.doi.org/10.4172/2161-0444.1000492]
[91]
Liu, J.; Zhang, Y.; Yu, C.; Zhang, P.; Gu, S.; Wang, G.; Xiao, H.; Li, S. Bergenin inhibits bladder cancer progression via activating the PPARγ/PTEN/Akt signal pathway. Drug Dev. Res., 2021, 82(2), 278-286.
[http://dx.doi.org/10.1002/ddr.21751] [PMID: 33112006]
[92]
Magaji, M.G.; Musa, A.M.; Abdullahi, M.I.; Ya’u, J.; Hussaini, I.M. Isolation of bergenin from the root bark of Securinega virosa and evaluation of its potential sleep promoting effect. Avicenna J. Phytomed., 2015, 5(6), 587-596.
[PMID: 26693416]
[93]
Singh, J.; Kumar, A.; Sharma, A. Antianxiety activity guided isolation and characterization of bergenin from Caesalpinia digyna Rottler roots. J. Ethnopharmacol., 2017, 195, 182-187.
[http://dx.doi.org/10.1016/j.jep.2016.11.016] [PMID: 27845264]
[94]
Kumar, D.; Kumar, S. Neuroprotective constituents of Actaea acuminata (Wall. ex Royle) H. Hara roots. Z. Naturforsch. C J. Biosci., 2020, 76(9-10), 357-365.
[http://dx.doi.org/10.1515/znc-2020-0209] [PMID: 32986615]
[95]
Barai, P.; Raval, N.; Acharya, S.; Borisa, A.; Bhatt, H.; Acharya, N. Neuroprotective effects of bergenin in Alzheimer’s disease: Investigation through molecular docking, in vitro and in vivo studies. Behav. Brain Res., 2019, 356, 18-40.
[http://dx.doi.org/10.1016/j.bbr.2018.08.010] [PMID: 30118774]
[96]
Ji, Y.; Wang, D.; Zhang, B.; Lu, H. Bergenin ameliorates MPTP-induced Parkinson’s disease by activating PI3K/Akt signaling pathway. J. Alzheimers Dis., 2019, 72(3), 823-833.
[http://dx.doi.org/10.3233/JAD-190870] [PMID: 31658061]
[97]
Dwivedi, V.P.; Bhattacharya, D.; Yadav, V.; Singh, D.K.; Kumar, S.; Singh, M.; Ojha, D.; Ranganathan, A.; Van Kaer, L.; Chattopadhyay, D.; Das, G. The phytochemical bergenin enhances t helper 1 responses and anti-mycobacterial immunity by activating the MAP kinase pathway in macrophages. Front. Cell. Infect. Microbiol., 2017, 7, 149.
[http://dx.doi.org/10.3389/fcimb.2017.00149] [PMID: 28507951]
[98]
Kumar, S.; Sharma, C.; Kaushik, S.R.; Kulshreshtha, A.; Chaturvedi, S.; Nanda, R.K.; Bhaskar, A.; Chattopadhyay, D.; Das, G.; Dwivedi, V.P. The phytochemical bergenin as an adjunct immunotherapy for tuberculosis in mice. J. Biol. Chem., 2019, 294(21), 8555-8563.
[http://dx.doi.org/10.1074/jbc.RA119.008005] [PMID: 30975902]
[99]
Pu, H-L.; Huang, X.; Zhao, J-H.; Hong, A. Bergenin is the antiarrhythmic principle of Fluggea virosa. Planta Med., 2002, 68(4), 372-374.
[http://dx.doi.org/10.1055/s-2002-26758] [PMID: 11988869]
[100]
Piacente, S.; Pizza, C.; De Tommasi, N.; Mahmood, N. Constituents of Ardisia japonica and their in vitro anti-HIV activity. J. Nat. Prod., 1996, 59(6), 565-569.
[http://dx.doi.org/10.1021/np960074h] [PMID: 8786362]
[101]
Bessong, P.O.; Obi, C.L.; Andréola, M-L.; Rojas, L.B.; Pouységu, L.; Igumbor, E.; Meyer, J.J.M.; Quideau, S.; Litvak, S. Evaluation of selected South African medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase. J. Ethnopharmacol., 2005, 99(1), 83-91.
[http://dx.doi.org/10.1016/j.jep.2005.01.056] [PMID: 15848024]
[102]
Rajbhandari, M.; Lalk, M.; Mentel, R.; Lindequist, U. Antiviral activity and constituents of the Nepalese medicinal plant Astilbe Rivularis. Rec. Nat. Prod., 2011, 5(2), 138-142.
[103]
Jahromi, M.A.F.; Chansouria, J.P.N.; Ray, A.B. Hypolipidaemic activity in rats of bergenin, the major constituent of Flueggea Microcarpa. Phytother. Res., 1992, 6(4), 180-183.
[http://dx.doi.org/10.1002/ptr.2650060403]
[104]
Tasleem, F.; Ahmed, S.; Azhar, I. Antiemetic activity of bergenin from Peltophorum Roxburghii L. Indo Am. J. Pharm. Res., 2015, 5, 2.
[105]
Liang, J.; Li, Y.; Liu, X.; Huang, Y.; Shen, Y.; Wang, J.; Liu, Z.; Zhao, Y. In vivo and in vitro antimalarial activity of bergenin. Biomed. Rep., 2014, 2(2), 260-264.
[http://dx.doi.org/10.3892/br.2013.207] [PMID: 24649107]
[106]
Khan, H.; Amin, H.; Ullah, A.; Saba, S.; Rafique, J.; Khan, K.; Ahmad, N.; Badshah, S.L. Antioxidant and antiplasmodial activities of bergenin and 11-O-galloylbergenin isolated from Mallotus philippensis. Oxid. Med. Cell. Longev., 2016, 2016, 1051925.
[http://dx.doi.org/10.1155/2016/1051925] [PMID: 26998192]
[107]
Kimura, Y.; Sumiyoshi, M.; Sakanaka, M. Effects of Astilbe thunbergii rhizomes on wound healing Part 1. Isolation of promotional effectors from Astilbe thunbergii rhizomes on burn wound healing. J. Ethnopharmacol., 2007, 109(1), 72-77.
[http://dx.doi.org/10.1016/j.jep.2006.07.007] [PMID: 16920297]
[108]
Chen, M.; Ye, C.; Zhu, J.; Zhang, P.; Jiang, Y.; Lu, X.; Wu, H. Bergenin as a novel urate-lowering therapeutic strategy for hyperuricemia. Front. Cell Dev. Biol., 2020, 8, 703.
[http://dx.doi.org/10.3389/fcell.2020.00703] [PMID: 32850823]
[109]
Hou, W.; Ye, C.; Chen, M.; Li, W.; Gao, X.; He, R.; Zheng, Q.; Zhang, W. Bergenin activates SIRT1 as a novel therapeutic agent for osteogenesis of bone mesenchymal stem cells. Front. Pharmacol., 2019, 10, 618.
[http://dx.doi.org/10.3389/fphar.2019.00618] [PMID: 31258473]
[110]
Kumar, J.R.; Mandira, T.G. Anti-angiogenic Property of Bergenin in Chicken Chorioallantoic Membrane. Eur. J. Mol. Clin. Med., 2021, 8(3), 2217-2229.
[111]
da Silva, S.L.; de Oliveira, V.G.; Yano, T.; Nunomura, R. de C. S. Antimicrobial activity of bergenin from Endopleura Uchi (Huber) Cuatrec. Acta Amazon., 2009, 39(1), 187-191.
[http://dx.doi.org/10.1590/S0044-59672009000100019]
[112]
Raj, M.K.; Duraipandiyan, V.; Agustin, P.; Ignacimuthu, S. Antimicrobial activity of bergenin isolated from Peltophorum Pterocarpum DC. Flowers. Asian Pac. J. Trop. Biomed., 2012, 2(2), S901-S904.
[http://dx.doi.org/10.1016/S2221-1691(12)60333-5]
[113]
da Silva Neto, O.; Teodoro, M.; do Nascimento, B.; Cardoso, K.; Silva, E.; David, J.; David, J. Bergenin of Peltophorum Dubium (Fabaceae) roots and its bioactive semi-synthetic derivatives. J. Braz. Chem. Soc., 2020, 31(12), 2644-2650.
[http://dx.doi.org/10.21577/0103-5053.20200141]
[114]
Prithiviraj, B.; Singh, U.P.; Manickam, M.; Srivastava, J.S.; Ray, A.B. Antifungal activity of bergenin, a constituent of Flueggea Microcarpa. Plant Pathol., 1997, 46(2), 224-228.
[http://dx.doi.org/10.1046/j.1365-3059.1997.d01-220.x]
[115]
Tandon, M.; Shukla, Y.N.; Triphati, A.K.; Sharma, S. Antifeedant activity of bergenin isolated from Astilbe Rivularis. Fitoterapia, 1996, 67, 277-278.
[116]
Kumar, D.; Malik, F.; Bedi, P.M.S.; Jain, S. 2,4-diarylpyrano[3,2-c]-chromen-5(4H)-ones as coumarin - chalcone conjugates: Design, synthesis and biological evaluation as apoptosis inducing agents. Chem. Pharm. Bull. (Tokyo), 2016, 64, 399-409.
[http://dx.doi.org/10.1248/cpb.c15-00958] [PMID: 27150472]
[117]
Farnsworth, N.R. Ethnobotany and the search for new drugs, Wiley Willett WC. Diet and health: what should we eat. Science, 1994, 264, 532-537.
[http://dx.doi.org/10.1126/science.8160011]
[118]
Kumar, D.; Sharma, P.; Singh, H.; Nepali, K.; Gupta, G.K.; Jain, S.K.; Ntie-Kang, F. The value of pyrans as anticancer scaffolds in medicinal chemistry. RSC Advances, 2017, 7(59), 36977-36999.
[http://dx.doi.org/10.1039/C7RA05441F]
[119]
Kumar, D.; Jain, S.K. A comprehensive review of N-heterocycles as cytotoxic agents. Curr. Med. Chem., 2016, 23(38), 4338-4394.
[http://dx.doi.org/10.2174/0929867323666160809093930] [PMID: 27516198]
[120]
Kashima, Y.; Yamaki, H.; Suzuki, T.; Miyazawa, M. Structure-activity relationships of bergenin derivatives effect on α-glucosidase inhibition. J. Enzyme Inhib. Med. Chem., 2013, 28(6), 1162-1170.
[http://dx.doi.org/10.3109/14756366.2012.719503] [PMID: 23009660]
[121]
Singh, S.V.; Manhas, A.; Kumar, Y.; Mishra, S.; Shanker, K.; Khan, F.; Srivastava, K.; Pal, A. Antimalarial activity and safety assessment of Flueggea virosa leaves and its major constituent with special emphasis on their mode of action. Biomed. Pharmacother., 2017, 89, 761-771.
[http://dx.doi.org/10.1016/j.biopha.2017.02.056] [PMID: 28273638]
[122]
Pavan Kumar, P.; Siva, B.; Venkateswara Rao, B.; Dileep Kumar, G.; Lakshma Nayak, V.; Nishant Jain, S.; Tiwari, A.K.; Purushotham, U.; Venkata Rao, C.; Suresh Babu, K. Synthesis and biological evaluation of bergenin-1,2,3-triazole hybrids as novel class of anti-mitotic agents. Bioorg. Chem., 2019, 91(103161), 103161.
[http://dx.doi.org/10.1016/j.bioorg.2019.103161] [PMID: 31387060]
[123]
Kaur, R.; Sharma, P.; Gupta, G.K.; Ntie-Kang, F.; Kumar, D. Structure-activity-relationship and mechanistic insights for anti-HIV natural products. Molecules, 2020, 25(9), 2070.
[http://dx.doi.org/10.3390/molecules25092070] [PMID: 32365518]
[124]
Patel, R.; Vanzara, A.; Patel, N.; Vasava, A.; Patil, S.; Rajput, K. Discovery of fungal metabolites bergenin, quercitrin and dihydroartemisinin as potential inhibitors against main protease of SARS-COV-2. ChemRxiv, 2020, preprint.
[125]
Yang, B.; Dong, Y.; Wang, F.; Zhang, Y. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules, 2020, 25(20), E4613.
[http://dx.doi.org/10.3390/molecules25204613] [PMID: 33050462]
[126]
Conte, R.; Calarco, A.; Napoletano, A.; Valentino, A.; Margarucci, S.; Di Cristo, F.; Di Salle, A.; Peluso, G. Polyphenols nanoencapsulation for therapeutic applications. J. Biomol. Res. Ther., 2016, 5, 2.
[127]
Hoda, M.; Hemaiswarya, S.; Doble, M. Polyphenol nanoformulations with potential antidiabetic properties. In: Role of Phenolic Phytochemicals in Diabetes Management; Springer: Singapore, 2019; pp. 145-157.
[http://dx.doi.org/10.1007/978-981-13-8997-9_6]
[128]
Goyal, A.; Kumar, S.; Nagpal, M.; Singh, I.; Arora, S. Potential of Novel Drug Delivery Systems for Herbal Drugs. Indian J. Pharma. Educ. Res., 2011, 45(3), 225-235.
[129]
Ucisik, M.H.; Küpcü, S.; Schuster, B.; Sleytr, U.B. Characterization of CurcuEmulsomes: nanoformulation for enhanced solubility and delivery of curcumin. J. Nanobiotechnology, 2013, 11(1), 37.
[http://dx.doi.org/10.1186/1477-3155-11-37] [PMID: 24314310]
[130]
Mirzaei, H.; Shakeri, A.; Rashidi, B.; Jalili, A.; Banikazemi, Z.; Sahebkar, A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomed. Pharmacother., 2017, 85, 102-112.
[http://dx.doi.org/10.1016/j.biopha.2016.11.098] [PMID: 27930973]
[131]
Allam, A.N.; Komeil, I.A.; Fouda, M.A.; Abdallah, O.Y. Preparation, characterization and in vivo evaluation of curcumin self-nano phospholipid dispersion as an approach to enhance oral bioavailability. Int. J. Pharm., 2015, 489(1-2), 117-123.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.067] [PMID: 25936626]
[132]
Santos, A.C.; Pereira, I.; Pereira-Silva, M.; Ferreira, L.; Caldas, M.; Collado-González, M.; Magalhães, M.; Figueiras, A.; Ribeiro, A.J.; Veiga, F. Nanotechnology-based formulations for resveratrol delivery: Effects on resveratrol in vivo bioavailability and bioactivity. Colloids Surf. B Biointerfaces, 2019, 180, 127-140.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.030] [PMID: 31035056]
[133]
Rao, K.; Roome, T.; Aziz, S.; Razzak, A.; Abbas, G.; Imran, M.; Jabri, T.; Gul, J.; Hussain, M.; Sikandar, B.; Sharafat, S.; Shah, M.R. Bergenin loaded gum xanthan stabilized silver nanoparticles suppress synovial inflammation through modulation of the immune response and oxidative stress in adjuvant induced arthritic rats. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(27), 4486-4501.
[http://dx.doi.org/10.1039/C8TB00672E] [PMID: 32254666]
[134]
Qin, X.; Yang, Y.; Fan, T-T.; Gong, T.; Zhang, X-N.; Huang, Y. Preparation, characterization and in vivo evaluation of bergenin-phospholipid complex. Acta Pharmacol. Sin., 2010, 31(1), 127-136.
[http://dx.doi.org/10.1038/aps.2009.171] [PMID: 19966834]
[135]
Gao, H.; Wei, Y.; Xi, L.; Sun, Y.; Zhang, T. Evaluation of intestinal absorption and bioavailability of a bergenin-phospholipid complex solid dispersion in rats. AAPS PharmSciTech, 2018, 19(4), 1720-1729.
[http://dx.doi.org/10.1208/s12249-018-0984-5] [PMID: 29556829]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy