Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Formulation and Characterization of Rutin Loaded Chitosan-alginate Nanoparticles: Antidiabetic and Cytotoxicity Studies

Author(s): Vijayaraj Surendran and Narahari N. Palei*

Volume 19, Issue 3, 2022

Published on: 05 January, 2022

Page: [379 - 394] Pages: 16

DOI: 10.2174/1567201818666211005090656

Price: $65

Open Access Journals Promotions 2
Abstract

Background: The rutin loaded chitosan-alginate nanoparticles (RCANP) were prepared using an ion gelation method. The optimized RCANP4 formulation composed of rutin: alginate: chitosan with the ratio of 1.24:5:2. The particle size, zeta potential, and entrapment efficiency of RCANP4 formulation were found to be 168.4 ± 11.23 nm, -24.7 ± 1.5 mV, and 91.23 ± 1.1%, respectively. The in vitro drug release of RCANP4 formulation was found to be 88.89 ± 2.9% within 24 h. The Fourier transform infrared spectroscopy (FT-IR) of RCANP4 revealed all characteristic groups of rutin, confirming the successful loading of rutin into the nanoparticles.

Methods: Due to rutin entrapment in the chitosan sodium alginate matrix, a broad curve was observed in the Differential Scanning Calorimetry (DSC) study of RCANP4. The RCANP4 was found to be uniform and spherical revealed from Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). RCANP4 showed 3.54 times more bioavailability than free rutin, resulting in more internalization of rutin in systemic circulation. The results of plasma glucose levels of diabetic rats administered with RCANP4 and rutin were evident that RCANP4 showed effective antidiabetic activity compared to rutin.

Results: The results obtained for glucose uptake in HepG2 cells, the RCANP4 caused a significant (P < 0.05) increase in glucose uptake in contrast to rutin. In vitro cytotoxicity results explained that RCANP4 could significantly (P < 0.05) reduce the cells viability rate compared with rutin. It may be due to the internalization of RCANP4 formulations in systemic circulation.

Conclusion: The results also showed that RCANP4 could significantly reduce cell viability over 24 h and 48 h compared to free rutin.

Keywords: Rutin, chitosan, nanoparticles, bioavailability, antidiabetic, cytotoxicity.

Graphical Abstract
[1]
Boadu, A.A.; Asase, A. Documentation of herbal medicines used for the treatment and management of human diseases by some communities in Southern Ghana. Evid. Based Complement. Alternat. Med., 2017, 2017, 3043061.
[http://dx.doi.org/10.1155/2017/3043061] [PMID: 28684965]
[2]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[3]
Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J., 2017, 25(2), 149-164.
[http://dx.doi.org/10.1016/j.jsps.2016.04.025] [PMID: 28344465]
[4]
Reddy, G.B.; Muthenna, P.; Akileshwari, C.; Saraswat, M.; Petrash, J.M. Inhibition of aldose reductase and sorbitol accumulation by dietary rutin. Curr. Sci., 2011, 101(9), 1191-1197.
[5]
Iriti, M.; Kubina, R.; Cochis, A.; Sorrentino, R.; Varoni, E.M.; Kabała-Dzik, A.; Azzimonti, B.; Dziedzic, A.; Rimondini, L.; Wojtyczka, R.D. Rutin, a Quercetin Glycoside, restores chemosensitivity in human breast cancer cells. Phytother. Res., 2017, 31(10), 1529-1538.
[http://dx.doi.org/10.1002/ptr.5878] [PMID: 28752532]
[6]
Lin, J.P.; Yang, J.S.; Lin, J.J.; Lai, K.C.; Lu, H.F.; Ma, C.Y.; Sai-Chuen Wu, R.; Wu, K.C.; Chueh, F.S.; Gibson, W.W.; Chung, J.G. Rutin inhibits human leukemia tumor growth in a murine xenograft model in vivo. Environ. Toxicol., 2012, 27(8), 480-484.
[http://dx.doi.org/10.1002/tox.20662] [PMID: 21254320]
[7]
Chen, Y.S.; Hu, Q.H.; Zhang, X.; Zhu, Q.; Kong, L.D. Beneficial effect of rutin on oxonate-induced hyperuricemia and renal dysfunction in mice. Pharmacology, 2013, 92(1-2), 75-83.
[http://dx.doi.org/10.1159/000351703] [PMID: 23942050]
[8]
Guon, T.E.; Chung, H.S. Hyperoside and rutin of Nelumbo nucifera induce mitochondrial apoptosis through a caspase-dependent mechanism in HT-29 human colon cancer cells. Oncol. Lett., 2016, 11(4), 2463-2470.
[http://dx.doi.org/10.3892/ol.2016.4247] [PMID: 27073499]
[9]
Radwan, R.R.; Ali, H.E. Radiation-synthesis of chitosan/poly (acrylic acid) nanogel for improving the antitumor potential of rutin in hepatocellular carcinoma. Drug Deliv. Transl. Res., 2021, 11(1), 261-278.
[http://dx.doi.org/10.1007/s13346-020-00792-7] [PMID: 32488816]
[10]
Pandian, S.R.K.; Pavadai, P.; Vellaisamy, S.; Ravishankar, V.; Palanisamy, P.; Sundar, L.M.; Chandramohan, V.; Sankaranarayanan, M.; Panneerselvam, T.; Kunjiappan, S. Formulation and evaluation of rutin-loaded solid lipid nanoparticles for the treatment of brain tumor. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(4), 735-749.
[http://dx.doi.org/10.1007/s00210-020-02015-9] [PMID: 33156389]
[11]
Deepika, M.S.; Thangam, R.; Sheena, T.S.; Sasirekha, R.; Sivasubramanian, S.; Babu, M.D.; Jeganathan, K.; Thirumurugan, R. A novel rutin-fucoidan complex based phytotherapy for cervical cancer through achieving enhanced bioavailability and cancer cell apoptosis. Biomed. Pharmacother., 2019, 109, 1181-1195.
[http://dx.doi.org/10.1016/j.biopha.2018.10.178] [PMID: 30551368]
[12]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez- Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol., 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[13]
Ahmad, H.; Arya, A.; Agrawal, S.; Mall, P.; Samuel, S.S.; Sharma, K.; Singh, P.K.; Singh, S.K.; Valicherla, G.R.; Mitra, K. Rutin phospholipid complexes confer neuroprotection in ischemic-stroke rats. RSC Advances, 2016, 6(99), 96445-96454.
[http://dx.doi.org/10.1039/C6RA17874J]
[14]
Mauludin, R.; Müller, R.H.; Keck, C.M. Development of an oral rutin nanocrystal formulation. Int. J. Pharm., 2009, 370(1-2), 202-209.
[http://dx.doi.org/10.1016/j.ijpharm.2008.11.029] [PMID: 19114097]
[15]
Kizilbey, K. Optimization of rutin-loaded PLGA nanoparticles synthesized by single-emulsion solvent evaporation method. ACS Omega, 2019, 4, 555-562.
[http://dx.doi.org/10.1021/acsomega.8b02767]
[16]
Kamel, R.; Basha, M. Preparation and in vitro evaluation of rutin nanostructured liquisolid delivery system. Bull. Fac. Pharm. Cairo Univ., 2013, 51(2), 261-272.
[http://dx.doi.org/10.1016/j.bfopcu.2013.08.002]
[17]
Lopez-Lopez, E.A.; Hernandez-Gallegos, M.A.; Cornejo-Mazon, M. Polysaccharide-based nanoparticles. Food Nanoscience and Nanotechnology; Hernandez-Sanchez, H.; Gutierrez-Lopez, G.F. Springer International Publishing, 2015, pp. 59-68.
[18]
Liu, J.; Xiao, J.; Li, F.; Shi, Y.; Li, D.; Huang, Q. Chitosan-sodium alginate nanoparticles as a delivery system for ε-polylysine: Preparation, characterization and antimicrobial activity. Food Control, 2018, 91, 302-310.
[http://dx.doi.org/10.1016/j.foodcont.2018.04.020]
[19]
Khdair, A.; Hamad, I.; Alkhatib, H.; Bustanji, Y.; Mohammad, M.; Tayem, R.; Aiedeh, K. Modified-chitosan nanoparticles: Novel drug delivery systems improve oral bioavailability of doxorubicin. Eur. J. Pharm. Sci., 2016, 93(10), 38-44.
[http://dx.doi.org/10.1016/j.ejps.2016.07.012] [PMID: 27473308]
[20]
Zhang, H.; Wu, F.; Li, Y.; Yang, X.; Huang, J.; Lv, T.; Zhang, Y.; Chen, J.; Chen, H.; Gao, Y.; Liu, G.; Jia, L. Chitosan-based nanoparticles for improved anticancer efficacy and bioavailability of mifepristone. Beilstein J. Nanotechnol., 2016, 7, 1861-1870.
[http://dx.doi.org/10.3762/bjnano.7.178] [PMID: 28144535]
[21]
Yan, J.; Guan, Z.Y.; Zhu, W.F.; Zhong, L.Y.; Qiu, Z.Q.; Yue, P.F.; Wu, W.T.; Liu, J.; Huang, X. Preparation of puerarin chitosan oral nanoparticles by ionic gelation method and its related kinetics. Pharmaceutics, 2020, 12(3), 216.
[http://dx.doi.org/10.3390/pharmaceutics12030216] [PMID: 32131425]
[22]
Khan, M.A.; Yue, C.; Fang, Z.; Hu, S.; Cheng, H.; Bakry, A.M.; Liang, L. Alginate/chitosan-coated zein nanoparticles for the delivery of resveratrol. J. Food Eng., 2019, 258, 45-53.
[http://dx.doi.org/10.1016/j.jfoodeng.2019.04.010]
[23]
Wang, F.; Yang, S.; Yuan, J.; Gao, Q.; Huang, C. Effective method of chitosan-coated alginate nanoparticles for target drug delivery applications. J. Biomater. Appl., 2016, 31(1), 3-12.
[http://dx.doi.org/10.1177/0885328216648478] [PMID: 27164869]
[24]
Thai, H.; Thuy, N.C.; Thi, T.L.; Thi, T.M.; Duc, M.H.; Thi, T.N.T.; Duc Le, G.; Van Can, M.; Dai, T.L.; Long, B.G.; Ramadass, K.; Sathish, C.I.; Van Le, Q. Characterization of chitosan/alginate/lovastatin nanoparticles and investigation of their toxic effects in vitro and in vivo. Sci. Rep., 2020, 10(1), 909.
[http://dx.doi.org/10.1038/s41598-020-57666-8] [PMID: 31969608]
[25]
Jaafar, M.H.M.; Hamid, K.A. Chitosan-coated alginate nanoparticles enhanced absorption profile of insulin via oral administration. Curr. Drug Deliv., 2019, 16(7), 672-686.
[http://dx.doi.org/10.2174/1567201816666190620110748] [PMID: 31250754]
[26]
Derman, S. Caffeic acid phenethyl ester loaded PLGA nanoparticles: Effect of various process parameters on reaction yield, encapsulation efficiency, and particle size. J. Nanomater., 2015, 2015, 1-12.
[http://dx.doi.org/10.1155/2015/341848]
[27]
Li, L.; Li, J.; Si, S.; Wang, L.; Shi, C.; Sun, Y.; Liang, Z.; Mao, S. Effect of formulation variables on in vitro release of a water-soluble drug from chitosan-sodium alginate matrix tablets. Asia J. Pharm. Sci., 2015, 10, 314-321.
[http://dx.doi.org/10.1016/j.ajps.2014.09.002]
[28]
Liu, J.; Hu, W.; Chen, H.; Ni, Q.; Xu, H.; Yang, X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int. J. Pharm., 2007, 328(2), 191-195.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.007] [PMID: 16978810]
[29]
van de Venter, M.; Roux, S.; Bungu, L.C.; Louw, J.; Crouch, N.R.; Grace, O.M.; Maharaj, V.; Pillay, P.; Sewnarian, P.; Bhagwandin, N.; Folb, P. Antidiabetic screening and scoring of 11 plants traditionally used in South Africa. J. Ethnopharmacol., 2008, 119(1), 81-86.
[http://dx.doi.org/10.1016/j.jep.2008.05.031] [PMID: 18588966]
[30]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[31]
Sarmento, B.; Ferreira, D.; Viega, F.; Ribeiro, A. Characterization of insulin loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr. Polym., 2006, 66, 1-7.
[http://dx.doi.org/10.1016/j.carbpol.2006.02.008]
[32]
Nagarwal, R.C.; Kumar, R.; Pandit, J.K. Chitosan coated sodium alginate-chitosan nanoparticles loaded with 5-FU for ocular delivery: In vitro characterization and in vivo study in rabbit eye. Eur. J. Pharm. Sci., 2012, 47(4), 678-685.
[http://dx.doi.org/10.1016/j.ejps.2012.08.008] [PMID: 22922098]
[33]
Hooresfand, Z.; Ghanbarzadeh, S.; Hamishehkar, H. Preparation and characterization of rutin-loaded nanophytosomes. Pharm. Sci., 2015, 21, 145-151.
[http://dx.doi.org/10.15171/PS.2015.29]
[34]
Motwani, S.K.; Chopra, S.; Talegaonkar, S.; Kohli, K.; Ahmad, F.J.; Khar, R.K. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimisation and in vitro characterisation. Eur. J. Pharm. Biopharm., 2008, 68(3), 513-525.
[PMID: 17983737]
[35]
Soares, J.M.D.; Pereira, L.A.E.B.; Silva, J.C.; Almeida, J.R.G.S.; de Oliveira, H.P. Influence of flavonoids on mechanism of modulation of insulin secretion. Pharmacogn. Mag., 2017, 13(52), 639-646.
[http://dx.doi.org/10.4103/pm.pm_87_17] [PMID: 29200726]
[36]
Jahangir, M.A.; Khan, R.; Sarim, I.S. Formulation of sitagliptin-loaded oral polymeric nano scaffold: Process parameters evaluation and enhanced anti-diabetic performance. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 66-78.
[http://dx.doi.org/10.1080/21691401.2017.1411933] [PMID: 29226729]
[37]
Iqbal, M.; Zafar, N.; Fessi, H.; Elaissari, A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int. J. Pharm., 2015, 496(2), 173-190.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.057] [PMID: 26522982]
[38]
Foretz, M.; Viollet, B. Regulation of hepatic metabolism by AMPK. J. Hepatol., 2011, 54(4), 827-829.
[http://dx.doi.org/10.1016/j.jhep.2010.09.014] [PMID: 21163246]
[39]
Viollet, B.; Guigas, B.; Sanz, G.N.; Leclerc, J.; Foretz, M.; Andreelli, F. Cellular and molecular mechanisms of metformin: An overview. Clin. Sci. (Lond.), 2012, 122(6), 253-270.
[http://dx.doi.org/10.1042/CS20110386] [PMID: 22117616]
[40]
Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci., 2010, 11(4), 1365-1402.
[http://dx.doi.org/10.3390/ijms11041365] [PMID: 20480025]
[41]
Sagbo, I.J.; van de Venter, M.; Koekemoer, T.; Bradley, G. In vitro antidiabetic activity and mechanism of action of Brachylaena elliptica (Thunb.) DC. Evid. Based Complement. Alternat. Med., 2018, 2018, 4170372.
[http://dx.doi.org/10.1155/2018/4170372] [PMID: 30108655]
[42]
Mohan, R.K.; Balsamy, T.; Thayumanavan, P.; Palanisamy, R. Inhibitory effect of Gymnema montanum leaves on α-glucosidase activity and α-amylase activity and their relationship with polyphenolic content. Med. Chem. Res., 2010, 19(8), 948-961.
[http://dx.doi.org/10.1007/s00044-009-9241-5]
[43]
El Omari, N.; Sayah, K.; Fettach, S.; El Blidi, O.; Bouyahya, A.; Faouzi, M.E.A.; Kamal, R.; Barkiyou, M. Evaluation of in vitro antioxidant and antidiabetic activities of Aristolochia longa extracts. Evid. Based Complement. Alternat. Med., 2019, 2019, 7384735.
[http://dx.doi.org/10.1155/2019/7384735] [PMID: 31061671]
[44]
Sabapati, M.; Palei, N.N.; Ashok, K.C.K.; Molakpogu, R.B. Solid lipid nanoparticles of Annona muricata fruit extract: Formulation, optimization and in vitro cytotoxicity studies. Drug Dev. Ind. Pharm., 2019, 45(4), 577-586.
[http://dx.doi.org/10.1080/03639045.2019.1569027] [PMID: 30663427]
[45]
Katuwavila, N.P.; Chandani, P.A.D.L.; Samarakoon, S.R.; Soysa, P.; Karunaratne, V.; Amaratunga, G.A.J.; Nedra, K.D. Chitosan-alginate nanoparticle system efficiently delivers doxorubicin to MCF-7 cells. J. Nanomater., 2016, 2016, 1-12.
[http://dx.doi.org/10.1155/2016/3178904]
[46]
Huo, Z.J.; Wang, S.J.; Wang, Z.Q.; Zuo, W.S.; Liu, P.; Pang, B.; Liu, K. Novel nanosystem to enhance the antitumor activity of lapatinib in breast cancer treatment: Therapeutic efficacy evaluation. Cancer Sci., 2015, 106(10), 1429-1437.
[http://dx.doi.org/10.1111/cas.12737] [PMID: 26177628]
[47]
Li, X.; Li, R.; Qian, X.; Ding, Y.; Tu, Y.; Guo, R.; Hu, Y.; Jiang, X.; Guo, W.; Liu, B. Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate. Eur. J. Pharm. Biopharm., 2008, 70(3), 726-734.
[http://dx.doi.org/10.1016/j.ejpb.2008.06.016] [PMID: 18634874]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy