Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Utility of 1-(4-Substituted Aminophenyl)Ethanones in Heterocyclic Synthesis Part (II)

Author(s): Mohammed A. Salem, Mohamed H. Helal, Abdullah Y.A. Alzahrani and Moustafa A. Gouda*

Volume 19, Issue 5, 2022

Published on: 04 January, 2022

Page: [575 - 590] Pages: 16

DOI: 10.2174/1570193X18666210920123042

Price: $65

conference banner
Abstract

The improvement of new synthetic routes towards thiophene, oxazole, triazole, pyrimidine, pyridine, quinolone, coumarin, imidazopyrimidine, pyridoimidazole and triazolo[1,5-a] pyridine for their biological and medicinal exploration is an appealing vicinity for researchers. This review focuses on the utility of 1-(4-substituted-aminophenyl) ethanones and their derivatives as critical intermediates for the synthesis of these systems developed within the closing decade.

Keywords: 1-(4-substitutedaminophenyl) ethanones, heterocyclic synthesis, thiazole, pyridine, 2-aminothiophenes, nonlinear optical materials.

Graphical Abstract
[1]
Herbivo, C.; Comel, A.; Kirsch, G.; Manuela, M.; Raposo, M. Synthesis of 5-aryl-5¢-formyl-2, 2¢-bithiophenes as new precursors for nonlinear optical (NLO) materials. Tetrahedron, 2009, 65(10), 2079-2086.
[http://dx.doi.org/10.1016/j.tet.2008.12.078]
[2]
Miyazaki, Y.; Maeda, Y.; Sato, H.; Nakano, M.; Mellor, G.W. Rational design of 4-amino-5,6-diaryl-furo[2,3-d]pyrimidines as potent glycogen synthase kinase-3 inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(6), 1967-1971.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.113] [PMID: 18280153]
[3]
Mathew, S.C.; Ghosh, N.; By, Y.; Berthault, A.; Virolleaud, M.A.; Carrega, L.; Chouraqui, G.; Commeiras, L.; Condo, J.; Attolini, M.; Gaudel-Siri, A.J. Ruf, Parrain, J-L.; Rodriguez, J.; Guieu, R. Design, synthesis and biological evaluation of a bivalent μ opiate and adenosine A1 receptor antagonist. Bioorg. Med. Chem. Lett., 2009, 19(23), 6736-6739.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.112] [PMID: 19836950]
[4]
Zarghi, A.; Praveen Rao, P.N.; Knaus, E.E. Synthesis and biological evaluation of methanesulfonamide analogues of rofecoxib: Replacement of methanesulfonyl by methane-sulfonamido decreases cyclooxygenase-2 selectivity. Bioorg. Med. Chem., 2007, 15(2), 1056-1061.
[http://dx.doi.org/10.1016/j.bmc.2006.10.023] [PMID: 17067801]
[5]
Panneerselvam, P.; Nair, R.R.; Vijayalakshmi, G.; Subramanian, E.H.; Sridhar, S.K. Synthesis of Schiff bases of 4-(4-aminophenyl)-morpholine as potential antimicrobial agents. Eur. J. Med. Chem., 2005, 40(2), 225-229.
[http://dx.doi.org/10.1016/j.ejmech.2004.09.003] [PMID: 15694658]
[6]
Dorn, C.P.; Hale, J.J.; Mac Coss, M.; Mills, S.G. Morpholine compounds are prodrugs useful as tachyleinin receptor antagonists. U.S. patent 5691336: 1997, 128, 48231.
[7]
Avramova, P.; Danchev, N.; Buyukliev, R.; Bogoslovova, T. Synthesis, toxicological, and pharmacological assessment of derivatives of 2-aryl-4-(3-arylpropyl)morpholines. Arch. Pharm. (Weinheim), 1998, 331(11), 342-346.
[http://dx.doi.org/10.1002/(SICI)1521-4184(199811)331:11<342:AID-ARDP342>3.0.CO;2-6] [PMID: 9881056]
[8]
Manfred, R.; Michael, M.; Robert, S.; Wolfgang, G. Process for the production of erythropoietin free of animal proteins. Eur. pat.Appl. Ep. 334146: 28, 1989, 112, 178999.,
[9]
Fisher, M.H.; Wyvratt, M.J. Morphine derivatives compositions and use. U.S. patent 5077290:10, 1991, 116, 214513.
[10]
Gouda, M. A.; Helal, M. H.; Ragab, A.; El-Bana, G. G.; Salem, M. A. Overview on the chemistry of 1-(4-substituted aminophenyl) ethanones Part(I). To Chemistry Journal, 2020, 7, 2581-7507.
[11]
Mishra, V.; Pandeya, S.N.; DeClercq, E.; Pannecouque, C.; Witvrouw, M. Synthesis of aryl semicarbazone of 4-aminoacetophenone and their anti-HIV activity. Pharm. Acta Helv., 1998, 73(4), 215-218.
[http://dx.doi.org/10.1016/S0031-6865(98)00028-4] [PMID: 9861870]
[12]
Shukla, S.; Mishra, A.P. Metal complexes used as anti-inflammatory agents: Synthesis, characterization and anti-inflammatory action of VO (II)-complexes. Arab. J. Chem., 2019, 12(7), 1715-1721.
[http://dx.doi.org/10.1016/j.arabjc.2014.08.020]
[13]
Helal, M.H.M.; Salem, M.A.; El-Gaby, M.S.A.; Aljahdali, M. Synthesis and biological evaluation of some novel thiazole compounds as potential anti-inflammatory agents. Eur. J. Med. Chem., 2013, 65, 517-526.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.005] [PMID: 23787438]
[14]
Motaal, E.A.; Salem, M.A.; Helal, M.H.; El-Gaby, M.S.A. Design, synthesis and anticancer activity of new 3-cyano-2 (1H)-pyridone and 3-cyanopyridine-2-(1H)-thione derivatives. Orient. J. Chem., 2015, 31(2), 875-884.
[http://dx.doi.org/10.13005/ojc/310230]
[15]
Helal, M.H. Utility of 2-cyano-N-(1-(4-morpholinophenyl)-ethylidene)aceto hydrazide for the synthesis of some new acrylohydrazide, 2-oxo-1,2-dihydropyridine, bispyridine and chromene derivatives as potent antimicrobial agents. Pharma Chem., 2016, 8(20), 140-148.
[16]
dos Santos, L.; Lima, L.A.; Cechinel-Filho, V.; Corrêa, R.; de Campos Buzzi, F.; Nunes, R.J. Synthesis of new 1-phenyl-3-{4-[(2E)-3-phenylprop-2-enoyl] phenyl}-thiourea and urea derivatives with anti-nociceptive activity. Bioorg. Med. Chem. Lett., 2008, 16(18), 8526-8534.
[http://dx.doi.org/10.1016/j.bmc.2008.08.019] [PMID: 18722128]
[17]
Sonmez, F.; Sevmezler, S.; Atahan, A.; Ceylan, M.; Demir, D.; Gencer, N.; Arslan, O.; Kucukislamoglu, M. Evaluation of new chalcone derivatives as polyphenol oxidase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(24), 7479-7482.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.130] [PMID: 22055203]
[18]
Yalçın, E.; Achelle, S.; Bayrak, Y.; Seferoğlu, N.; Barsella, A.; Seferoğlu, Z. Styryl-based NLO chromophores: Synthesis, spectroscopic properties, and theoretical calculations. Tetrahedron Lett., 2015, 56(20), 2586-2589.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.133]
[19]
Helal, M.H.; Salem, M.A.; Gouda, M.A.; Ahmed, N.S.; El-Sherif, A.A. Design, synthesis, characterization, quantum-chemical calculations and anti-inflammatory activity of novel series of thiophene derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 147(147), 73-83.
[http://dx.doi.org/10.1016/j.saa.2015.03.070] [PMID: 25827768]
[20]
Thanusu, J.; Kanagarajan, V.; Gopalakrishnan, M. Synthesis and spectral analysis of an array of novel 4-(4-morpholinophenyl)-6-aryl-pyrimidin-2-amines. J. Chil. Chem. Soc., 2010, 55(4), 511-514.
[21]
Rocha, M.; Di Santo, A.; Echeverría, G.A.; Piro, O.E.; Cukiernik, F.D.; Ulic, S.E.; Gil, D.M. Supramolecular self-assembly of a new multi-conformational Schiff base through hydrogen bonds: Crystal structure, spectroscopic and theoretical investigation. J. Mol. Struct., 2017, 1133, 24-36.
[http://dx.doi.org/10.1016/j.molstruc.2016.11.071]
[22]
Ramadan, R.M.; Abu Al-Nasr, A.K.; Noureldeen, A.F. Synthesis, spectroscopic studies, antimicrobial activities and antitumor of a new monodentate V-shaped Schiff base and its transition metal complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 132, 417-422.
[http://dx.doi.org/10.1016/j.saa.2014.04.151] [PMID: 24887503]
[23]
Ahsan, M.J.; Saini, V. Design and synthesis of 3-(4-aminophenyl)-5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carboxamide/carbothioamide analogues as antitubercular agents. Beni-Suef Univ. J. Appl. Sci., 2015, 4(1), 41-46.
[24]
Selvam, P.; Nanjundan, S. Synthesis and characterization of new photoresponsive acrylamide polymers having pendant chalcone moieties. React. Funct. Polym., 2005, 62(2), 179-193.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2004.10.003]
[25]
Abdel-Sayed, M.A.; Bayomi, S.M.; El-Sherbeny, M.A.; Abdel-Aziz, N.I.; ElTahir, K.E.; Shehatou, G.S.; Abdel-Aziz, A.A. Synthesis, anti-inflammatory, analgesic, COX-1/2 inhibition activities and molecular docking study of pyrazoline derivatives. Bioorg. Med. Chem., 2016, 24(9), 2032-2042.
[http://dx.doi.org/10.1016/j.bmc.2016.03.032] [PMID: 27025563]
[26]
Rajesh, B.K.; Luke, V.; Madhava, R.V. Substituted pyridine catalysed domino synthesis of pyrazolines and pyrimidines. World J. Pharm. Res., 2014, 3(8), 389-398.
[27]
Ekbote, A.; Patil, P.S.; Maidur, S.R.; Chia, T.S.; Quah, C.K. Structure and nonlinear optical properties of (E)-1-(4-aminophenyl)-3-(3-chlorophenyl) prop-2-en-1-one: A promising new D-π-A-π-D type chalcone derivative crystal for nonlinear optical devices. J. Mol. Struct., 2017, 1129, 239-247.
[http://dx.doi.org/10.1016/j.molstruc.2016.09.077]
[28]
Joseph, L.; Sajan, D.; Shettigar, V.; Chaitanya, K.; Misra, N.; Sundius, T.; Němec, I. Synthesis, crystal growth, thermal studies and scaled quantum chemical studies of structural and vibrational spectra of the highly efficient organic NLO crystal: 1-(4-Aminophenyl)-3-(3, 4-dimethoxyphenyl)-prop-2-en-1-one. Mater. Chem. Phys., 2013, 141(1), 248-262.
[http://dx.doi.org/10.1016/j.matchemphys.2013.05.007]
[29]
Simons, L.J.; Caprathe, B.W.; Callahan, M.; Graham, J.M.; Kimura, T.; Lai, Y.; LeVine, H., III; Lipinski, W.; Sakkab, A.T.; Tasaki, Y.; Walker, L.C.; Yasunaga, T.; Ye, Y.; Zhuang, N.; Augelli-Szafran, C.E. The synthesis and structure-activity relationship of substituted N-phenyl anthranilic acid analogs as amyloid aggregation inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(3), 654-657.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.049] [PMID: 19121939]
[30]
Abdel-Aziz, M.; Park, S.E. Abuo-Rahma, Gel-D.; Sayed, M.A.; Kwon, Y. Novel N-4-piperazinyl-ciprofloxacin-chalcone hybrids: Synthesis, physicochemical properties, anticancer and topoisomerase I and II inhibitory activity. Eur. J. Med. Chem., 2013, 69, 427-438.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.040] [PMID: 24090914]
[31]
Abuo-Rahma, Gel-D.; Abdel-Aziz, M.; Mourad, M.A.; Farag, H.H. Synthesis, anti-inflammatory activity and ulcerogenic liability of novel nitric oxide donating/chalcone hybrids. Bioorg. Med. Chem., 2012, 20(1), 195-206.
[http://dx.doi.org/10.1016/j.bmc.2011.11.012] [PMID: 22137931]
[32]
Oliveira, J.R.; Shiguemoto, C.Y.; Neves, A.R.D.; Moreira, F.M.; Gomes, G.B.; Perdomo, R.T.; Barbosa, S.L.; Guerrero, P.G.J.; Croda, J.; Baroni, A.C.M. Design, Synthesis and antitubercular activity of novel isoniazid-cyclic-amine-azachalcones hybrids. j. braz. chem. soc., 2020, 31(6), 1284-1295.
[http://dx.doi.org/10.21577/0103-5053.20200013]
[33]
Shi, Y.; Zhang, C.; Ban, M.; Cui, D.; Xia, Y.; Zhang, L. Preparation method of chalcones compound containing piperidine ring for preparation of medicine for treating breast carcinoma.Faming Zhuanli Shenqing CN 109912539 A,, 2019.
[34]
Ranganathan, K.; Kamalakkannan, D.; Suresh, R.; Sakthinathan, S.P.; Arulkumaran, R.; Sundararajan, R.; Manikandan, V.; Thirunarayanan, G. Synthesis, Hammett spectral correlation and evaluation of antimicrobial activities of some substituted styryl 4¢-piperdinophenyl ketones. Indian J. Chem., 2019, 58B(10), 1131-1143.
[35]
Sever, B.; Altıntop, M.D.; Radwan, M.O.; Özdemir, A.; Otsuka, M.; Fujita, M.; Ciftci, H.I. Design, synthesis and biological evaluation of a new series of thiazolyl-pyrazolines as dual EGFR and HER2 inhibitors. Eur. J. Med. Chem., 2019, 182 ,111648
[http://dx.doi.org/10.1016/j.ejmech.2019.111648] [PMID: 31493743]
[36]
Lafta, S.J.; Abd, H.J.; Abdula, A.M. Synthesis, characterization, antimicrobial evaluation and docking study of new chalcone derivatives containing 1, 3, 5-Triazinane-1, 3, 5-Triyl) moiety. Int. J. Chem. Sci., 2016, 14(1), 88-102.
[37]
Ahmad Bhat, M.; Al-Omar, M.A.; Naglah, A.M.; Khan, A.A. Enaminone-derived pyrazoles with antimicrobial activity. J. Chem., 2019, 2019 ,2467970
[38]
Ahmad Bhat, M.; Al-Omar, M. A.; Naglah, A. M. Preparation of dihydropyrimidinone derivatives as anti-ulcer agents. US 9856232 B1, 2018.
[39]
Ahmad Bhat, M.; Al-Omar, M.A.; Naglah, A.M. Synthesis and in vivo anti-ulcer evaluation of some novel piperidine linked dihydropyrimidinone derivatives. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 978-988.
[PMID: 29792357]
[40]
Kocyigit, U.M.; Budak, Y.; Gürdere, M.B.; Tekin, Ş.; Köprülü, T.K.; Ertürk, F.; Özcan, K.; Gülçin, İ.; Ceylan, M. Synthesis, characterization, anticancer, antimicrobial and carbonic anhydrase inhibition profiles of novel (3aR,4S,7R,7aS)-2-(4-((E)-3-(3-aryl)acryloyl) phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoin-dole-1,3(2H)-dione derivatives. Bioorg. Chem., 2017, 70, 118-125.
[PMID: 28043719]
[41]
Khalil, A.M.; Berghot, M.A.; Gouda, M.A. Synthesis and study of some new 1,3-isoindoledione derivatives as potential antibacterial agents. Eur. J. Med. Chem., 2010, 45(4), 1552-1559.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.064] [PMID: 20117862]
[42]
Joshi, S.D.; Dixit, S.R.; Kirankumar, M.N.; Aminabhavi, T.M.; Raju, K.V.S.N.; Narayan, R.; Lherbet, C.; Yang, K.S. Synthesis, antimycobacterial screening and ligand-based molecular docking studies on novel pyrrole derivatives bearing pyrazoline, isoxazole and phenyl thiourea moieties. Eur. J. Med. Chem., 2016, 107(107), 133-152.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.047] [PMID: 26580979]
[43]
Desai, N.C.; Joshi, V.V.; Rajpara, K.M.; Makwana, A.H. A new synthetic approach and in vitro antimicrobial evaluation of novel imidazole incorporated 4-thiazolidinone motifs. Arab. J. Chem., 2017, 10, S589-S599.
[http://dx.doi.org/10.1016/j.arabjc.2012.10.020]
[44]
Radulović, N.S.; Zlatković, D.B.; Mitić, K.V.; Randjelović, P.J.; Stojanović, N.M. Synthesis, spectral characterization, cytotoxicity and enzyme-inhibiting activity of new ferrocene–indole hybrids. Polyhedron, 2014, 80, 134-141.
[http://dx.doi.org/10.1016/j.poly.2014.03.006]
[45]
Kym, P.R.; Carlson, K.E.; Katzenellenbogen, J.A. Progestin 16 alpha, 17 alpha-dioxolane ketals as molecular probes for the progesterone receptor: Synthesis, binding affinity, and photochemical evaluation. J. Med. Chem., 1993, 36(9), 1111-1119.
[http://dx.doi.org/10.1021/jm00061a001] [PMID: 8387596]
[46]
Zarghi, A.; Zebardast, T.; Hakimion, F.; Shirazi, F.H.; Rao, P.N.; Knaus, E.E. Synthesis and biological evaluation of 1,3-diphenylprop-2-en-1-ones possessing a methanesulfonamido or an azido pharmacophore as cyclooxygenase-1/-2 inhibitors. Bioorg. Med. Chem., 2006, 14(20), 7044-7050.
[http://dx.doi.org/10.1016/j.bmc.2006.06.022] [PMID: 16798002]
[47]
Mohammadi, A.; Yazdanbakhsh, M.R.; Farahnak, L. Synthesis and evaluation of changes induced by solvent and substituent in electronic absorption spectra of some azo disperse dyes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 89, 238-242.
[http://dx.doi.org/10.1016/j.saa.2011.12.062] [PMID: 22261112]
[48]
Hassan, D.F. Synthesis of some novel 4-aminoacetophenone diazenyl and 1, 2, 3-triazole derivatives as potential antibacterial agents. Irq. Nat. J. Chem., 2017, 17(2), 117-126.
[49]
Abu-Melha, S. Design, synthesis and DFT/DNP modeling study of new 2-amino-5-arylazothiazole derivatives as potential antibacterial agents. Molecules, 2018, 23(2), 434.
[http://dx.doi.org/10.3390/molecules23020434] [PMID: 29462895]
[50]
Al-Obaidi, N.S.; Sattar, O.D.A.; Hadi, F.F.; Ali, A.S.; Zaki, B.T. Synthesis and characterization of some azo dyes derived from 4-aminoacetophenone, 1, 4 phenylene diamine and studying its dyeing performance and antibacterial activity. J. Biochem. Technol., 2018, 9(4), 33-42.
[51]
Vembu, S.; Parasuraman, P.; Gopalakrishnan, M. Design, in silico molecular docking studies, synthesis, spectral characterization and in vitro antifungal evaluation of 1-(4-(1H-tetrazole-1-yl) phenyl)-3-arylprop-2-en-1-ones. Pharma Chem., 2014, 6, 35-44.
[52]
Vembu, S.; Parasuraman, P.; Gopalakrishnan, M. Synthesis, in vitro antifungal and antitubercular evaluation of novel amino pyrimidines based tetrazole derivatives. J. Pharm. Res., 2014, 8(10), 1552-1558.
[53]
Vembu, S.; Pazhamalai, S.; Gopalakrishnan, M. Synthesis, spectral characterization, and effective antifungal evaluation of 1H-tetrazole containing 1, 3, 5-triazine dendrimers. Med. Chem. Res., 2016, 25, 1916-1924.
[http://dx.doi.org/10.1007/s00044-016-1627-6]
[54]
Lamie, P.F.; Philoppes, J.N.; Azouz, A.A.; Safwat, N.M. Novel tetrazole and cyanamide derivatives as inhibitors of cyclooxygenase-2 enzyme: Design, synthesis, anti-inflammatory evaluation, ulcerogenic liability and docking study. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 805-820.
[http://dx.doi.org/10.1080/14756366.2017.1326110] [PMID: 28587532]
[55]
Gurjar, J.; Fokin, V.V. Sulfuryl fluoride mediated synthesis of amides and amidines from ketoximes via beckmann rearrangement. Chemistry, 2020, 26(46), 10402-10405.
[http://dx.doi.org/10.1002/chem.201905358] [PMID: 31997464]
[56]
Suslick, B.A.; Tilley, T.D. Olefin hydroarylation catalyzed by a single-component cobalt(-i) complex. Org. Lett., 2021, 23(4), 1495-1499.
[http://dx.doi.org/10.1021/acs.orglett.1c00258] [PMID: 33560852]
[57]
Gao, J.; Zhang, J.; Fang, S.; Feng, J.; Lu, T.; Du, D. Synergistic N-heterocyclic carbene/palladium-catalyzed [3 + 2] annulation of vinyl enolates with 1-tosyl-2-vinylaziridine. Org. Lett., 2020, 22(19), 7725-7729.
[http://dx.doi.org/10.1021/acs.orglett.0c02935] [PMID: 32966091]
[58]
Huang, Y.K.; Zhang, W.Z.; Zhang, K.; Wang, W.L.; Lu, X.B. Carbon dioxide-promoted palladium-catalyzed dehydration of primary allylic alcohols: Access to substituted 1, 3-dienes. Org. Chem. Front., 2021, 8(5), 941-946.
[http://dx.doi.org/10.1039/D0QO01465F]
[59]
Li, S.; Xiao, J.; Lan, X.; Yan, H.; Zhong, W.; Zheng, Z.; Wang, X.; Xie, Y.; Cao, R.; Li, X. Preparation of 1-phenyl-2-phenylamino ketone derivatives as antibacterial agents. CN 110963935 A, 2020.
[60]
Wang, F.; Song, D.; Dickie, D.A.; Fraser, C.L. Ring size effects on multi-stimuli responsive luminescent properties of cyclic amine substituted β-diketones and difluoroboron complexes. Chem. Asian J., 2019, 14(10), 1849-1859.
[http://dx.doi.org/10.1002/asia.201801576] [PMID: 30721577]
[61]
Wu, X-X.; Ye, H.; Li, M.; Qian, J.; Dai, H.; Shi, Y. selective synthesis of acylated caprolactam via sequential Michael addition/palladium-catalyzed alpha-arylation of ketones.. Org. Chem. Front., 2021, 8(3), 560-565.
[http://dx.doi.org/10.1039/D0QO01323D]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy