Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Nanotherapeutics for Alzheimer's Disease with Preclinical Evaluation and Clinical Trials: Challenges, Promises and Limitations

Author(s): Syed Nasir Abbas Bukhari*

Volume 19, Issue 1, 2022

Published on: 10 September, 2021

Page: [17 - 31] Pages: 15

DOI: 10.2174/1567201818666210910162750

Price: $65

conference banner
Abstract

Alzheimer’s Disease (AD), a progressive and irreversible neurodegenerative disorder, is the most common form of dementia worldwide. Currently, there is no disease-modifying AD drug, and the development of effective treatments is made even harder by the highly selective nature of the Blood-Brain Barrier (BBB) that allows the passage only of molecules with specific chemicalphysical properties. In this context, nanomedicine and its Nanoparticles (NPs) offer potential solutions to the challenge of AD therapy, in particular, the requirements for i) BBB crossing, ii) multitarget therapy iii) enhancement of pharmacokinetics; and iv) more precise delivery. In addition, the possibility to optimize NP biophysical and biological (i.e. target-specific ligands) properties allows for highly tailored delivery platforms. Preclinical studies have demonstrated that nanotherapeutics provide superior pharmacokinetics and brain uptake than free drugs and, on the other hand, these are also able to mitigate the side-effects of the symptomatic treatments approved by the FDA. Among the plethora of potential AD nanodrugs, multitarget nanotherapeutics are considered the most promising strategy due to their ability to hit simultaneously multiple pathogenic factors, while nano-nutraceuticals are emerging as interesting tools in the treatment/prevention of AD. This review provides a comprehensive overview of nanomedicine in AD therapy, focusing on key optimization of NPs properties, most promising nanotherapeutics in preclinical studies and difficulties that are limiting the efficient translation from bench to bedside.

Keywords: Alzheimer’s Disease, drug delivery systems, brain targeting, amyloid-β, multifunctional nanoparticles, nutraceuticals.

Graphical Abstract
[1]
Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; Fox, N.; Gitlin, L.N.; Howard, R.; Kales, H.C.; Larson, E.B.; Ritchie, K.; Rockwood, K.; Sampson, E.L.; Samus, Q.; Schneider, L.S.; Selbæk, G.; Teri, L.; Mukadam, N. Dementia prevention, intervention, and care. Lancet, 2017, 390(10113), 2673-2734.
[http://dx.doi.org/10.1016/S0140-6736(17)31363-6] [PMID: 28735855]
[2]
World Alzheimer Report 2019 Attitudes to dementia. Alzheimer's Disease International, 2019, 1-166.
[3]
Hippius, H.; Neundörfer, G. The discovery of Alzheimer’s disease. Dialogues Clin. Neurosci., 2003, 5(1), 101-108.
[http://dx.doi.org/10.31887/DCNS.2003.5.1/hhippius] [PMID: 22034141]
[4]
Binda, A.; Murano, C.; Rivolta, I. Innovative therapies and nanomedicine applications for the treatment of alzheimer’s disease: a state-of-the-art (2017-2020). Int. J. Nanomedicine, 2020, 15, 6113-6135.
[http://dx.doi.org/10.2147/IJN.S231480] [PMID: 32884267]
[5]
Briggs, R.; Kennelly, S.P.; O’Neill, D. Drug treatments in Alzheimer’s disease. Clin. Med. (Lond.), 2016, 16(3), 247-253.
[http://dx.doi.org/10.7861/clinmedicine.16-3-247] [PMID: 27251914]
[6]
Zhou, Y.; Zhu, F.; Liu, Y.; Zheng, M.; Wang, Y.; Zhang, D.; Anraku, Y.; Zou, Y.; Li, J.; Wu, H.; Pang, X.; Tao, W.; Shimoni, O.; Bush, A.I.; Xue, X.; Shi, B. Blood-brain barrier-penetrating siRNA nanomedicine for Alzheimer’s disease therapy. Sci. Adv., 2020, 6(41), eabc7031.
[http://dx.doi.org/10.1126/sciadv.abc7031] [PMID: 33036977]
[7]
Tosi, G.; Pederzoli, F.; Belletti, D.; Vandelli, M.A.; Forni, F.; Duskey, J.T.; Ruozi, B. Nanomedicine in Alzheimer’s disease: Amyloid beta targeting strategy. Prog. Brain Res., 2019, 245, 57-88.
[http://dx.doi.org/10.1016/bs.pbr.2019.03.001] [PMID: 30961872]
[8]
Qian, C.; Yuan, C.; Li, C.; Liu, H.; Wang, X. Multifunctional nano-enabled delivery systems in Alzheimer’s disease management. Biomater. Sci., 2020, 8(20), 5538-5554.
[http://dx.doi.org/10.1039/D0BM00756K] [PMID: 32955528]
[9]
Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci., 2015, 18(6), 794-799.
[http://dx.doi.org/10.1038/nn.4017] [PMID: 26007212]
[10]
Maccioni, R.B.; Farías, G.; Morales, I.; Navarrete, L. The revitalized tau hypothesis on Alzheimer’s disease. Arch. Med. Res., 2010, 41(3), 226-231.
[http://dx.doi.org/10.1016/j.arcmed.2010.03.007] [PMID: 20682182]
[11]
Contestabile, A. The history of the cholinergic hypothesis. Behav. Brain Res., 2011, 221(2), 334-340.
[http://dx.doi.org/10.1016/j.bbr.2009.12.044] [PMID: 20060018]
[12]
Harilal, S.; Jose, J.; Parambi, D.G.T.; Kumar, R.; Mathew, G.E.; Uddin, M.S.; Kim, H.; Mathew, B. Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J. Pharm. Pharmacol., 2019, 71(9), 1370-1383.
[http://dx.doi.org/10.1111/jphp.13132] [PMID: 31304982]
[13]
Beydoun, M.A.; Lhotsky, A.; Wang, Y.; Dal Forno, G.; An, Y.; Metter, E.J.; Ferrucci, L.; O’Brien, R.; Zonderman, A.B. Association of adiposity status and changes in early to mid-adulthood with incidence of Alzheimer’s disease. Am. J. Epidemiol., 2008, 168(10), 1179-1189.
[http://dx.doi.org/10.1093/aje/kwn229] [PMID: 18835864]
[14]
Díaz-Ruiz, C.; Wang, J.; Ksiezak-Reding, H.; Ho, L.; Qian, X.; Humala, N.; Thomas, S.; Martínez-Martín, P.; Pasinetti, G.M. Role of hypertension in aggravating abeta neuropathology of ad type and tau-mediated motor impairment. Cardiovasc. Psychiatry Neurol., 2009, 2009, 107286.
[http://dx.doi.org/10.1155/2009/107286] [PMID: 19936102]
[15]
Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine, 2019, 14, 5541-5554.
[http://dx.doi.org/10.2147/IJN.S200490] [PMID: 31410002]
[16]
2020 Alzheimer’s disease facts and figures. Alzheimers Dement., 2020, 2020.
[PMID: 32157811]
[17]
Vaz, M.; Silvestre, S. Alzheimer’s disease: Recent treatment strategies. Eur. J. Pharmacol., 2020, 887, 173554.
[http://dx.doi.org/10.1016/j.ejphar.2020.173554] [PMID: 32941929]
[18]
Santos, M.A.; Chand, K.; Chaves, S. Recent progress in repositioning Alzheimer’s disease drugs based on a multitarget strategy. Future Med. Chem., 2016, 8(17), 2113-2142.
[http://dx.doi.org/10.4155/fmc-2016-0103] [PMID: 27774814]
[19]
Moreno, S.; Cerù, M.P. In search for novel strategies towards neuroprotection and neuroregeneration: is PPARα a promising therapeutic target? Neural Regen. Res., 2015, 10(9), 1409-1412.
[http://dx.doi.org/10.4103/1673-5374.165313] [PMID: 26604898]
[20]
Park, K. Controlled drug delivery systems: past forward and future back. J. Control. Release, 2014, 190, 3-8.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.054] [PMID: 24794901]
[21]
Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: the amyloid cascade hypothesis. Science, 1992, 256(5054), 184-185.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[22]
Cruts, M.; Theuns, J.; Van Broeckhoven, C. Locus-specific mutation databases for neurodegenerative brain diseases. Hum. Mutat., 2012, 33(9), 1340-1344.
[http://dx.doi.org/10.1002/humu.22117] [PMID: 22581678]
[23]
Calvo-Rodriguez, M.; Hou, S.S.; Snyder, A.C.; Kharitonova, E.K.; Russ, A.N.; Das, S.; Fan, Z.; Muzikansky, A.; Garcia-Alloza, M.; Serrano-Pozo, A.; Hudry, E.; Bacskai, B.J. Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nat. Commun., 2020, 11(1), 2146.
[http://dx.doi.org/10.1038/s41467-020-16074-2] [PMID: 32358564]
[24]
Karran, E.; De Strooper, B. The amyloid cascade hypothesis: are we poised for success or failure? J. Neurochem., 2016, 139(Suppl. 2), 237-252.
[http://dx.doi.org/10.1111/jnc.13632] [PMID: 27255958]
[25]
Gauthier, S.; Feldman, H.H.; Schneider, L.S.; Wilcock, G.K.; Frisoni, G.B.; Hardlund, J.H.; Moebius, H.J.; Bentham, P.; Kook, K.A.; Wischik, D.J.; Schelter, B.O.; Davis, C.S.; Staff, R.T.; Bracoud, L.; Shamsi, K.; Storey, J.M.; Harrington, C.R.; Wischik, C.M. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet, 2016, 388(10062), 2873-2884.
[http://dx.doi.org/10.1016/S0140-6736(16)31275-2] [PMID: 27863809]
[26]
Praticò, D. Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy: lights and shadows. Ann. N. Y. Acad. Sci., 2008, 1147, 70-78.
[http://dx.doi.org/10.1196/annals.1427.010] [PMID: 19076432]
[27]
Llanos-González, E.; Henares-Chavarino, Á.A.; Pedrero-Prieto, C.M.; García-Carpintero, S.; Frontiñán-Rubio, J.; Sancho-Bielsa, F.J.; Alcain, F.J.; Peinado, J.R.; Rabanal-Ruíz, Y.; Durán-Prado, M. Interplay between mitochondrial oxidative disorders and proteostasis in alzheimer’s disease. Front. Neurosci., 2020, 13, 1444.
[http://dx.doi.org/10.3389/fnins.2019.01444] [PMID: 32063825]
[28]
Swerdlow, R.H.; Khan, S.M. A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med. Hypotheses, 2004, 63(1), 8-20.
[http://dx.doi.org/10.1016/j.mehy.2003.12.045] [PMID: 15193340]
[29]
Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[30]
Furtado, D.; Björnmalm, M.; Ayton, S.; Bush, A.I.; Kempe, K.; Caruso, F. Overcoming the blood-brain barrier: the role of nanomaterials in treating neurological diseases. Adv. Mater., 2018, 30(46), e1801362.
[http://dx.doi.org/10.1002/adma.201801362] [PMID: 30066406]
[31]
Henderson, V.W. Estrogen-containing hormone therapy and Alzheimer’s disease risk: understanding discrepant inferences from observational and experimental research. Neuroscience, 2006, 138(3), 1031-1039.
[http://dx.doi.org/10.1016/j.neuroscience.2005.06.017] [PMID: 16310963]
[32]
Atri, A.; Hendrix, S.B.; Pejović, V.; Hofbauer, R.K.; Edwards, J.; Molinuevo, J.L.; Graham, S.M. Cumulative, additive benefits of memantine-donepezil combination over component monotherapies in moderate to severe Alzheimer’s dementia: a pooled area under the curve analysis. Alzheimers Res. Ther., 2015, 7(1), 28.
[http://dx.doi.org/10.1186/s13195-015-0109-2] [PMID: 25991927]
[33]
Cummings, J.; Lee, G.; Ritter, A.; Sabbagh, M.; Zhong, K. Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement. (N. Y.), 2020, 6(1), e12050.
[http://dx.doi.org/10.1002/trc2.12050] [PMID: 32695874]
[34]
Carradori, D.; Balducci, C.; Re, F.; Brambilla, D.; Le Droumaguet, B.; Flores, O.; Gaudin, A.; Mura, S.; Forloni, G.; Ordoñez-Gutierrez, L.; Wandosell, F.; Masserini, M.; Couvreur, P.; Nicolas, J.; Andrieux, K. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomedicine, 2018, 14(2), 609-618.
[http://dx.doi.org/10.1016/j.nano.2017.12.006] [PMID: 29248676]
[35]
Wilson, B.; Geetha, K.M. Neurotherapeutic applications of nanomedicine for treating Alzheimer’s disease. J. Control. Release, 2020, 325, 25-37.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.044] [PMID: 32473177]
[36]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med., 2019, 4(3), e10143.
[http://dx.doi.org/10.1002/btm2.10143] [PMID: 31572799]
[37]
Kreuter, J.; Alyautdin, R.N.; Kharkevich, D.A.; Ivanov, A.A. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res., 1995, 674(1), 171-174.
[http://dx.doi.org/10.1016/0006-8993(95)00023-J] [PMID: 7773690]
[38]
Lombardo, S.M.; Schneider, M.; Türeli, A.E.; Günday Türeli, N. Key for crossing the BBB with nanoparticles: the rational design. Beilstein J. Nanotechnol., 2020, 11, 866-883.
[http://dx.doi.org/10.3762/bjnano.11.72] [PMID: 32551212]
[39]
Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA, 2008, 105(38), 14265-14270.
[http://dx.doi.org/10.1073/pnas.0805135105] [PMID: 18809927]
[40]
Johnsen, K.B.; Moos, T. Revisiting nanoparticle technology for blood-brain barrier transport: Unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes. J. Control. Release, 2016, 222, 32-46.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.032] [PMID: 26658072]
[41]
Ohta, S.; Kikuchi, E.; Ishijima, A.; Azuma, T.; Sakuma, I.; Ito, T. Investigating the optimum size of nanoparticles for their delivery into the brain assisted by focused ultrasound-induced blood-brain barrier opening. Sci. Rep., 2020, 10(1), 18220.
[http://dx.doi.org/10.1038/s41598-020-75253-9] [PMID: 33106562]
[42]
Pozzi, D.; Colapicchioni, V.; Caracciolo, G.; Piovesana, S.; Capriotti, A.L.; Palchetti, S.; De Grossi, S.; Riccioli, A.; Amenitsch, H.; Laganà, A. Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale, 2014, 6(5), 2782-2792.
[http://dx.doi.org/10.1039/c3nr05559k] [PMID: 24463404]
[43]
Cole, J.T.; Holland, N.B. Multifunctional nanoparticles for use in theranostic applications. Drug Deliv. Transl. Res., 2015, 5(3), 295-309.
[http://dx.doi.org/10.1007/s13346-015-0218-2] [PMID: 25787729]
[44]
Gao, K.; Jiang, X. Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int. J. Pharm., 2006, 310(1-2), 213-219.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.040] [PMID: 16426779]
[45]
Shen, Y.; Guo, J.; Chen, G.; Chin, C.T.; Chen, X.; Chen, J.; Wang, F.; Chen, S.; Dan, G. Delivery of liposomes with different sizes to mice brain after sonication by focused ultrasound in the presence of microbubbles. Ultrasound Med. Biol., 2016, 42(7), 1499-1511.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2016.01.019] [PMID: 27126236]
[46]
Sonavane, G.; Tomoda, K.; Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf. B Biointerfaces, 2008, 66(2), 274-280.
[http://dx.doi.org/10.1016/j.colsurfb.2008.07.004] [PMID: 18722754]
[47]
Nowak, M.; Brown, T.D.; Graham, A.; Helgeson, M.E.; Mitragotri, S. Size, shape, and flexibility influence nanoparticle transport across brain endothelium under flow. Bioeng. Transl. Med., 2019, 5(2), e10153.
[http://dx.doi.org/10.1002/btm2.10153] [PMID: 32440560]
[48]
Liang, H.; Rossouw, D.; Zhao, H.; Cushing, S.K.; Shi, H.; Korinek, A.; Xu, H.; Rosei, F.; Wang, W.; Wu, N.; Botton, G.A.; Ma, D. Asymmetric silver “nanocarrot” structures: solution synthesis and their asymmetric plasmonic resonances. J. Am. Chem. Soc., 2013, 135(26), 9616-9619.
[http://dx.doi.org/10.1021/ja404345s] [PMID: 23758332]
[49]
Bahadur, S.; Sachan, N.; Harwansh, R.K.; Deshmukh, R. Nanoparticlized system: promising approach for the management of alzheimer’s disease through intranasal delivery. Curr. Pharm. Des., 2020, 26(12), 1331-1344.
[http://dx.doi.org/10.2174/1381612826666200311131658] [PMID: 32160843]
[50]
Hettiarachchi, S.D.; Zhou, Y.; Seven, E.; Lakshmana, M.K.; Kaushik, A.K.; Chand, H.S.; Leblanc, R.M. Nanoparticle-mediated approaches for Alzheimer’s disease pathogenesis, diagnosis, and therapeutics. J. Control. Release, 2019, 314, 125-140.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.034] [PMID: 31647979]
[51]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[52]
Ross, C.; Taylor, M.; Fullwood, N.; Allsop, D. Liposome delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine, 2018, 13, 8507-8522.
[http://dx.doi.org/10.2147/IJN.S183117] [PMID: 30587974]
[53]
Ordóñez-Gutiérrez, L.; Wandosell, F. Nanoliposomes as a therapeutic tool for alzheimer’s disease. Front. Synaptic Neurosci., 2020, 12, 20.
[http://dx.doi.org/10.3389/fnsyn.2020.00020] [PMID: 32523525]
[54]
Gobbi, M.; Re, F.; Canovi, M.; Beeg, M.; Gregori, M.; Sesana, S.; Sonnino, S.; Brogioli, D.; Musicanti, C.; Gasco, P.; Salmona, M.; Masserini, M.E. Lipid-based nanoparticles with high binding affinity for amyloid-beta1-42 peptide. Biomaterials, 2010, 31(25), 6519-6529.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.044] [PMID: 20553982]
[55]
Mufamadi, M.S.; Choonara, Y.E.; Kumar, P.; Modi, G.; Naidoo, D.; van Vuuren, S.; Ndesendo, V.M.; Toit, L.C.; Iyuke, S.E.; Pillay, V. Ligand-functionalized nanoliposomes for targeted delivery of galantamine. Int. J. Pharm., 2013, 448(1), 267-281.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.037] [PMID: 23535346]
[56]
Yang, Z.Z.; Zhang, Y.Q.; Wang, Z.Z.; Wu, K.; Lou, J.N.; Qi, X.R. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int. J. Pharm., 2013, 452(1-2), 344-354.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.009] [PMID: 23680731]
[57]
Salimi, A.; Gobadian, H.; Sharif Makhmalzadeh, B. Dermal pharmacokinetics of rivastigmine-loaded liposomes: an ex vivo-in vivo correlation study. J. Liposome Res., 2020, 31(3), 246-254.
[http://dx.doi.org/10.1080/08982104.2020.1787440] [PMID: 32594811]
[58]
Al Asmari, A.K.; Ullah, Z.; Tariq, M.; Fatani, A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des. Devel. Ther., 2016, 10, 205-215.
[PMID: 26834457]
[59]
Misra, S.; Chopra, K.; Sinha, V.R.; Medhi, B. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv., 2016, 23(4), 1434-1443.
[http://dx.doi.org/10.3109/10717544.2015.1089956] [PMID: 26405825]
[60]
Hickey, J.W.; Santos, J.L.; Williford, J.M.; Mao, H.Q. Control of polymeric nanoparticle size to improve therapeutic delivery. J. Control. Release, 2015, 219, 536-547.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.006] [PMID: 26450667]
[61]
Md, S.; Ali, M.; Baboota, S.; Sahni, J.K.; Bhatnagar, A.; Ali, J. Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev. Ind. Pharm., 2014, 40(2), 278-287.
[http://dx.doi.org/10.3109/03639045.2012.758130] [PMID: 23369094]
[62]
Baysal, I.; Ucar, G.; Gultekinoglu, M.; Ulubayram, K.; Yabanoglu-Ciftci, S. Donepezil loaded PLGA-b-PEG nanoparticles: their ability to induce destabilization of amyloid fibrils and to cross blood brain barrier in vitro. J. Neural Transm. (Vienna), 2017, 124(1), 33-45.
[http://dx.doi.org/10.1007/s00702-016-1527-4] [PMID: 26911385]
[63]
Wilson, B.; Samanta, M.K.; Santhi, K.; Kumar, K.P.; Paramakrishnan, N.; Suresh, B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res., 2008, 1200, 159-168.
[http://dx.doi.org/10.1016/j.brainres.2008.01.039] [PMID: 18291351]
[64]
Yang, G.; Phua, S.Z.F.; Bindra, A.K.; Zhao, Y. Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv. Mater., 2019, 31(10), e1805730.
[http://dx.doi.org/10.1002/adma.201805730] [PMID: 30614561]
[65]
Gupta, J.; Fatima, M.T.; Islam, Z.; Khan, R.H.; Uversky, V.N.; Salahuddin, P. Nanoparticle formulations in the diagnosis and therapy of Alzheimer’s disease. Int. J. Biol. Macromol., 2019, 130, 515-526.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.156] [PMID: 30826404]
[66]
John, T.; Gladytz, A.; Kubeil, C.; Martin, L.L.; Risselada, H.J.; Abel, B. Impact of nanoparticles on amyloid peptide and protein aggregation: a review with a focus on gold nanoparticles. Nanoscale, 2018, 10(45), 20894-20913.
[http://dx.doi.org/10.1039/C8NR04506B] [PMID: 30225490]
[67]
Dos Santos Tramontin, N.; da Silva, S.; Arruda, R.; Ugioni, K.S.; Canteiro, P.B.; de Bem Silveira, G.; Mendes, C.; Silveira, P.C.L.; Muller, A.P. Gold nanoparticles treatment reverses brain damage in alzheimer’s disease model. Mol. Neurobiol., 2020, 57(2), 926-936.
[http://dx.doi.org/10.1007/s12035-019-01780-w] [PMID: 31612296]
[68]
Ali, T.; Kim, M.J.; Rehman, S.U.; Ahmad, A.; Kim, M.O. Anthocyanin-loaded peg-gold nanoparticles enhanced the neuroprotection of anthocyanins in an aβ1-42 mouse model of alzheimer’s disease. Mol. Neurobiol., 2017, 54(8), 6490-6506.
[http://dx.doi.org/10.1007/s12035-016-0136-4] [PMID: 27730512]
[69]
Karimzadeh, M.; Rashidi, L.; Ganji, F. Mesoporous silica nanoparticles for efficient rivastigmine hydrogen tartrate delivery into SY5Y cells. Drug Dev. Ind. Pharm., 2017, 43(4), 628-636.
[http://dx.doi.org/10.1080/03639045.2016.1275668] [PMID: 28043167]
[70]
Yang, L.; Yin, T.; Liu, Y.; Sun, J.; Zhou, Y.; Liu, J. Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for Alzheimer’s disease treatment. Acta Biomater., 2016, 46, 177-190.
[http://dx.doi.org/10.1016/j.actbio.2016.09.010] [PMID: 27619837]
[71]
Nigro, A.; Pellegrino, M.; Greco, M.; Comandè, A.; Sisci, D.; Pasqua, L.; Leggio, A.; Morelli, C. Dealing with skin and blood-brain barriers: the unconventional challenges of mesoporous silica nanoparticles. Pharmaceutics, 2018, 10(4), E250.
[http://dx.doi.org/10.3390/pharmaceutics10040250] [PMID: 30513731]
[72]
Sharma, K. Cholinesterase inhibitors as alzheimer’s therapeutics (review). Mol. Med. Rep., 2019, 20(2), 1479-1487.
[PMID: 31257471]
[73]
Qian, S.; Wo, S.K.; Zuo, Z. Pharmacokinetics and brain dispositions of tacrine and its major bioactive monohydroxylated metabolites in rats. J. Pharm. Biomed. Anal., 2012, 61, 57-63.
[http://dx.doi.org/10.1016/j.jpba.2011.11.025] [PMID: 22196801]
[74]
Bonferoni, M.C.; Rossi, S.; Sandri, G.; Ferrari, F.; Gavini, E.; Rassu, G.; Giunchedi, P. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics, 2019, 11(2), E84.
[http://dx.doi.org/10.3390/pharmaceutics11020084] [PMID: 30781585]
[75]
Corace, G.; Angeloni, C.; Malaguti, M.; Hrelia, S.; Stein, P.C.; Brandl, M.; Gotti, R.; Luppi, B. Multifunctional liposomes for nasal delivery of the anti-Alzheimer drug tacrine hydrochloride. J. Liposome Res., 2014, 24(4), 323-335.
[http://dx.doi.org/10.3109/08982104.2014.899369] [PMID: 24807822]
[76]
Igartúa, D.E.; Martinez, C.S.; Del V Alonso, S.; Prieto, M.J. Combined therapy for alzheimer’s disease: tacrine and pamam dendrimers co-administration reduces the side effects of the drug without modifying its activity. AAPS PharmSciTech, 2020, 21(3), 110.
[http://dx.doi.org/10.1208/s12249-020-01652-w] [PMID: 32215751]
[77]
Balducci, C.; Mancini, S.; Minniti, S.; La Vitola, P.; Zotti, M.; Sancini, G.; Mauri, M.; Cagnotto, A.; Colombo, L.; Fiordaliso, F.; Grigoli, E.; Salmona, M.; Snellman, A.; Haaparanta-Solin, M.; Forloni, G.; Masserini, M.; Re, F. Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in Alzheimer’s disease mouse models. J. Neurosci., 2014, 34(42), 14022-14031.
[http://dx.doi.org/10.1523/JNEUROSCI.0284-14.2014] [PMID: 25319699]
[78]
Bana, L.; Minniti, S.; Salvati, E.; Sesana, S.; Zambelli, V.; Cagnotto, A.; Orlando, A.; Cazzaniga, E.; Zwart, R.; Scheper, W.; Masserini, M.; Re, F. Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood-brain-barrier: implications for therapy of Alzheimer disease. Nanomedicine, 2014, 10(7), 1583-1590.
[http://dx.doi.org/10.1016/j.nano.2013.12.001] [PMID: 24333591]
[79]
Baysal, I.; Yabanoglu-Ciftci, S.; Tunc-Sarisozen, Y.; Ulubayram, K.; Ucar, G. Interaction of selegiline-loaded PLGA-b-PEG nanoparticles with beta-amyloid fibrils. J. Neural Transm. (Vienna), 2013, 120(6), 903-910.
[http://dx.doi.org/10.1007/s00702-013-0992-2] [PMID: 23420173]
[80]
Krishna, K.V.; Wadhwa, G.; Alexander, A.; Kanojia, N.; Saha, R.N.; Kukreti, R.; Singhvi, G.; Dubey, S.K. Design and biological evaluation of lipoprotein-based donepezil nanocarrier for enhanced brain uptake through oral delivery. ACS Chem. Neurosci., 2019, 10(9), 4124-4135.
[http://dx.doi.org/10.1021/acschemneuro.9b00343] [PMID: 31418556]
[81]
Song, Q.; Huang, M.; Yao, L.; Wang, X.; Gu, X.; Chen, J.; Chen, J.; Huang, J.; Hu, Q.; Kang, T.; Rong, Z.; Qi, H.; Zheng, G.; Chen, H.; Gao, X. Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer’s disease by accelerating the clearance of amyloid-beta. ACS Nano, 2014, 8(3), 2345-2359.
[http://dx.doi.org/10.1021/nn4058215] [PMID: 24527692]
[82]
Rombouts, F.; Kusakabe, K.I.; Hsiao, C.C.; Gijsen, H.J.M. Small- molecule BACE1 inhibitors: a patent literature review (2011 to 2020). Expert Opin. Ther. Pat., 2021, 31(1), 25-52.
[http://dx.doi.org/10.1080/13543776.2021.1832463] [PMID: 33006491]
[83]
Choi, I.; Lee, L.P. Rapid detection of Aβ aggregation and inhibition by dual functions of gold nanoplasmic particles: catalytic activator and optical reporter. ACS Nano, 2013, 7(7), 6268-6277.
[http://dx.doi.org/10.1021/nn402310c] [PMID: 23777418]
[84]
Mahmoudi, M.; Quinlan-Pluck, F.; Monopoli, M.P.; Sheibani, S.; Vali, H.; Dawson, K.A.; Lynch, I. Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid β protein fibrillation in solution. ACS Chem. Neurosci., 2013, 4(3), 475-485.
[http://dx.doi.org/10.1021/cn300196n] [PMID: 23509983]
[85]
Li, H.; Luo, Y.; Derreumaux, P.; Wei, G. Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimer’s amyloid-β(16-22) peptide. Biophys. J., 2011, 101(9), 2267-2276.
[http://dx.doi.org/10.1016/j.bpj.2011.09.046] [PMID: 22067167]
[86]
Glat, M.; Skaat, H.; Menkes-Caspi, N.; Margel, S.; Stern, E.A. Age-dependent effects of microglial inhibition in vivo on Alzheimer’s disease neuropathology using bioactive-conjugated iron oxide nanoparticles. J. Nanobiotechnology, 2013, 11, 32.
[http://dx.doi.org/10.1186/1477-3155-11-32] [PMID: 24059692]
[87]
Ghalandari, B.; Asadollahi, K.; Shakerizadeh, A.; Komeili, A.; Riazi, G.; Kamrava, S.K.; Attaran, N. Microtubule network as a potential candidate for targeting by gold nanoparticle-assisted photothermal therapy. J. Photochem. Photobiol. B, 2019, 192, 131-140.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.01.012] [PMID: 30735954]
[88]
Sonawane, S.K.; Ahmad, A.; Chinnathambi, S. Protein-Capped Metal Nanoparticles Inhibit Tau Aggregation in alzheimer’s disease. ACS Omega, 2019, 4(7), 12833-12840.
[http://dx.doi.org/10.1021/acsomega.9b01411] [PMID: 31460408]
[89]
Gao, C.; Chu, X.; Gong, W.; Zheng, J.; Xie, X.; Wang, Y.; Yang, M.; Li, Z.; Gao, C.; Yang, Y. Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer’s disease. J. Nanobiotechnology, 2020, 18(1), 71.
[http://dx.doi.org/10.1186/s12951-020-00626-1] [PMID: 32404183]
[90]
Huang, N.; Lu, S.; Liu, X.G.; Zhu, J.; Wang, Y.J.; Liu, R.T. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer’s disease mice. Oncotarget, 2017, 8(46), 81001-81013.
[http://dx.doi.org/10.18632/oncotarget.20944] [PMID: 29113362]
[91]
Han, Q.; Cai, S.; Yang, L.; Wang, X.; Qi, C.; Yang, R.; Wang, C. Molybdenum disulfide nanoparticles as multifunctional inhibitors against alzheimer’s disease. ACS Appl. Mater. Interfaces, 2017, 9(25), 21116-21123.
[http://dx.doi.org/10.1021/acsami.7b03816] [PMID: 28613069]
[92]
Liu, Y.; An, S.; Li, J.; Kuang, Y.; He, X.; Guo, Y.; Ma, H.; Zhang, Y.; Ji, B.; Jiang, C. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer’s disease mice. Biomaterials, 2016, 80, 33-45.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.060] [PMID: 26706474]
[93]
Burilova, E.A.; Pashirova, T.N.; Zueva, I.V.; Gibadullina, E.M.; Lushchekina, S.V.; Sapunova, A.S.; Kayumova, R.M.; Rogov, A.M.; Evtjugin, V.G.; Sudakov, I.A.; Vyshtakalyuk, A.B.; Voloshina, A.D.; Bukharov, S.V.; Burilov, A.R.; Petrov, K.A.; Zakharova, L.Y.; Sinyashin, O.G. Bi-functional sterically hindered phenol lipid-based delivery systems as potential multi-target agents against Alzheimer’s disease via an intranasal route. Nanoscale, 2020, 12(25), 13757-13770.
[http://dx.doi.org/10.1039/D0NR04037A] [PMID: 32573587]
[94]
Gao, F.; Zhao, J.; Liu, P.; Ji, D.; Zhang, L.; Zhang, M.; Li, Y.; Xiao, Y. Preparation and in vitro evaluation of multi-target-directed selenium-chondroitin sulfate nanoparticles in protecting against the Alzheimer’s disease. Int. J. Biol. Macromol., 2020, 142, 265-276.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.098] [PMID: 31593732]
[95]
Sun, D.; Zhang, W.; Yu, Q.; Chen, X.; Xu, M.; Zhou, Y.; Liu, J. Chiral penicillamine-modified selenium nanoparticles enantioselectively inhibit metal-induced amyloid β aggregation for treating Alzheimer’s disease. J. Colloid Interface Sci., 2017, 505, 1001-1010.
[http://dx.doi.org/10.1016/j.jcis.2017.06.083] [PMID: 28693096]
[96]
Arduino, I.; Iacobazzi, R.M.; Riganti, C.; Lopedota, A.A.; Perrone, M.G.; Lopalco, A.; Cutrignelli, A.; Cantore, M.; Laquintana, V.; Franco, M.; Colabufo, N.A.; Luurtsema, G.; Contino, M.; Denora, N. Induced expression of P-gp and BCRP transporters on brain endothelial cells using transferrin functionalized nanostructured lipid carriers: A first step of a potential strategy for the treatment of Alzheimer’s disease. Int. J. Pharm., 2020, 591, 120011.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120011] [PMID: 33115695]
[97]
Mecocci, P.; Tinarelli, C.; Schulz, R.J.; Polidori, M.C. Nutraceuticals in cognitive impairment and Alzheimer’s disease. Front. Pharmacol., 2014, 5, 147.
[http://dx.doi.org/10.3389/fphar.2014.00147] [PMID: 25002849]
[98]
Pinheiro, R.G.R.; Granja, A.; Loureiro, J.A.; Pereira, M.C.; Pinheiro, M.; Neves, A.R.; Reis, S. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. Eur. J. Pharm. Sci., 2020, 148, 105314.
[http://dx.doi.org/10.1016/j.ejps.2020.105314] [PMID: 32200044]
[99]
Yavarpour-Bali, H.; Ghasemi-Kasman, M.; Pirzadeh, M. Curcumin-loaded nanoparticles: a novel therapeutic strategy in treatment of central nervous system disorders. Int. J. Nanomedicine, 2019, 14, 4449-4460.
[http://dx.doi.org/10.2147/IJN.S208332] [PMID: 31417253]
[100]
Tiwari, S.K.; Agarwal, S.; Seth, B.; Yadav, A.; Nair, S.; Bhatnagar, P.; Karmakar, M.; Kumari, M.; Chauhan, L.K.; Patel, D.K.; Srivastava, V.; Singh, D.; Gupta, S.K.; Tripathi, A.; Chaturvedi, R.K.; Gupta, K.C. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano, 2014, 8(1), 76-103.
[http://dx.doi.org/10.1021/nn405077y] [PMID: 24467380]
[101]
Cheng, K.K.; Yeung, C.F.; Ho, S.W.; Chow, S.F.; Chow, A.H.; Baum, L. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J., 2013, 15(2), 324-336.
[http://dx.doi.org/10.1208/s12248-012-9444-4] [PMID: 23229335]
[102]
Loureiro, J.A.; Andrade, S.; Duarte, A.; Neves, A.R.; Queiroz, J.F.; Nunes, C.; Sevin, E.; Fenart, L.; Gosselet, F.; Coelho, M.A.; Pereira, M.C. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of alzheimer’s disease. Molecules, 2017, 22(2), E277.
[http://dx.doi.org/10.3390/molecules22020277] [PMID: 28208831]
[103]
Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol., 2018, 9, 790.
[http://dx.doi.org/10.3389/fphar.2018.00790] [PMID: 30065653]
[104]
Mullane, K.; Williams, M. Preclinical models of alzheimer’s disease: relevance and translational validity. Curr. Protocols Pharmacol., 2019, 84(1), e57.
[http://dx.doi.org/10.1002/cpph.57] [PMID: 30802363]
[105]
Salvioni, L.; Rizzuto, M.A.; Bertolini, J.A.; Pandolfi, L.; Colombo, M.; Prosperi, D. Thirty years of cancer nanomedicine: success, frustration, and hope. Cancers (Basel), 2019, 11(12), E1855.
[http://dx.doi.org/10.3390/cancers11121855] [PMID: 31769416]
[106]
Tekie, F.S.M.; Hajiramezanali, M.; Geramifar, P.; Raoufi, M.; Dinarvand, R.; Soleimani, M.; Atyabi, F. Controlling evolution of protein corona: a prosperous approach to improve chitosan-based nanoparticle biodistribution and half-life. Sci. Rep., 2020, 10(1), 9664.
[http://dx.doi.org/10.1038/s41598-020-66572-y] [PMID: 32541900]
[107]
Topal, G.R.; Mészáros, M.; Porkoláb, G.; Szecskó, A.; Polgár, T.F.; Siklós, L.; Deli, M.A.; Veszelka, S.; Bozkir, A. ApoE-targeting increases the transfer of solid lipid nanoparticles with donepezil cargo across a culture model of the blood-brain barrier. Pharmaceutics, 2020, 13(1), 38.
[http://dx.doi.org/10.3390/pharmaceutics13010038] [PMID: 33383743]
[108]
Nanaki, S.G.; Spyrou, K.; Bekiari, C.; Veneti, P.; Baroud, T.N.; Karouta, N.; Grivas, I.; Papadopoulos, G.C.; Gournis, D.; Bikiaris, D.N. Hierarchical porous carbon-plla and plga hybrid nanoparticles for intranasal delivery of galantamine for alzheimer’s disease therapy. Pharmaceutics, 2020, 12(3), E227.
[http://dx.doi.org/10.3390/pharmaceutics12030227] [PMID: 32143505]
[109]
Sunena, ; Singh, S.K.; Mishra, D.N. Nose to brain delivery of galantamine loaded nanoparticles: in-vivo pharmacodynamic and biochemical study in mice. Curr. Drug Deliv., 2019, 16(1), 51-58.
[http://dx.doi.org/10.2174/1567201815666181004094707] [PMID: 30289074]
[110]
Mohamadpour, H.; Azadi, A.; Rostamizadeh, K.; Andalib, S.; Saghatchi Zanjani, M.R.; Hamidi, M. Preparation, optimization, and evaluation of methoxy poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles loaded by rivastigmine for brain delivery. ACS Chem. Neurosci., 2020, 11(5), 783-795.
[http://dx.doi.org/10.1021/acschemneuro.9b00691] [PMID: 32043866]
[111]
Sánchez-López, E.; Ettcheto, M.; Egea, M.A.; Espina, M.; Cano, A.; Calpena, A.C.; Camins, A.; Carmona, N.; Silva, A.M.; Souto, E.B.; García, M.L. Memantine loaded plga pegylated nanoparticles for alzheimer’s disease: in vitro and in vivo characterization. J. Nanobiotechnology, 2018, 16(1), 32.
[http://dx.doi.org/10.1186/s12951-018-0356-z] [PMID: 29587747]
[112]
Wilson, B.; Samanta, M.K.; Santhi, K.; Kumar, K.P.; Ramasamy, M.; Suresh, B. Chitosan nanoparticles as a new delivery system for the anti-alzheimer drug tacrine. Nanomedicine, 2010, 6(1), 144-152.
[http://dx.doi.org/10.1016/j.nano.2009.04.001] [PMID: 19446656]
[113]
Wilson, B.; Samanta, M.K.; Santhi, K.; Kumar, K.P.; Paramakrishnan, N.; Suresh, B. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm., 2008, 70(1), 75-84.
[http://dx.doi.org/10.1016/j.ejpb.2008.03.009] [PMID: 18472255]
[114]
Luppi, B.; Bigucci, F.; Corace, G.; Delucca, A.; Cerchiara, T.; Sorrenti, M.; Catenacci, L.; Di Pietra, A.M.; Zecchi, V. Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-alzheimer drug tacrine. Eur. J. Pharm. Sci., 2011, 44(4), 559-565.
[http://dx.doi.org/10.1016/j.ejps.2011.10.002] [PMID: 22009109]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy