Generic placeholder image

Current Reviews in Clinical and Experimental Pharmacology

Editor-in-Chief

ISSN (Print): 2772-4328
ISSN (Online): 2772-4336

Mini-Review Article

Drug Sensitivity Testing for Cancer Therapy, Technique Analysis and Trends

Author(s): Da-Yong Lu* and Ting-Ren Lu

Volume 18, Issue 1, 2023

Published on: 23 November, 2021

Page: [3 - 11] Pages: 9

DOI: 10.2174/2772432816666210910104649

Price: $65

Open Access Journals Promotions 2
Abstract

The techniques and qualities of drug sensitivity testing (DST) for anticancer treatment have grown rapidly in the past two decades worldwide. Much of DST progress came from advanced systems of technical versatility (faster, highly-throughput, highly-sensitive, and smaller in tumor quantity). As the earliest drug selective system, biomedical knowledge and technical advances for DST are mutually supported. More importantly, many pharmacological controversies are resolved by these technical advances. With this technical stride, the clinical landscape of DST entered into a new phase (>500 samples per testing and extremely low quantity of tumor cells). As a forerunner of the drug selection system, DST awaits a new version that can adapt to complicated therapeutic situations and diverse tumor categories in the clinic. By upholding this goal of pathogenic and therapeutic diversity, DST could eventually cure more cancer patients by establishing high-quality drug selection systems. To smoothen DST development, there is a need to increase the understanding of cancer biology, pathology and pharmacology (cancer heterogeneity, plasticity, metastasis and drug resistance) with well-informative parameters before chemotherapy. In this article, medicinal and technical insights into DST are especially highlighted.

Keywords: Drug sensitivity testing, cancer pathology, neoplasm metastasis, personalized medicine, drug selection, cancer pharmacology.

Graphical Abstract
[1]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[2]
Mina LA, Sledge GW Jr. Rethinking the metastatic cascade as a therapeutic target. Nat Rev Clin Oncol 2011; 8(6): 325-32.
[http://dx.doi.org/10.1038/nrclinonc.2011.59] [PMID: 21502993]
[3]
Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin 2017; 67(1): 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[4]
Ahmad AS, Ormiston-Smith N, Sasieni PD. Trends in the lifetime risk of developing cancer in Great Britain: Comparison of risk for those born from 1930 to 1960. Br J Cancer 2015; 112(5): 943-7.
[http://dx.doi.org/10.1038/bjc.2014.606] [PMID: 25647015]
[5]
Fojo T. The high cost of ignorance in oncology. Semin Oncol 2016; 43(6): 623-4.
[http://dx.doi.org/10.1053/j.seminoncol.2016.11.010] [PMID: 28061979]
[6]
Ahuja V. New drug approvals by FDA from 2013-2017. EC Pharmacol Toxicol 2018; 6(9): 772-4.
[7]
Meyer UA. Pharmacogenetics - five decades of therapeutic lessons from genetic diversity. Nat Rev Genet 2004; 5(9): 669-76.
[http://dx.doi.org/10.1038/nrg1428] [PMID: 15372089]
[8]
Lu DY, Chen XL, Ding J. Individualized cancer chemotherapy integrating drug sensitivity tests, pathological profile analysis and computational coordination - an effective strategy to improve clinical treatment. Med Hypotheses 2006; 66(1): 45-51.
[http://dx.doi.org/10.1016/j.mehy.2005.07.023] [PMID: 16168568]
[9]
Lu DY, Lu TR, Chen XL, Ding J. Individualized cancer chemotherapy. In: Shoja MM, Agutter PS, Tubbs RS, et al., Eds., Hypotheses in Clinical Medicine. US: Nova Science Publisher 2012; pp. 199-216.
[10]
Lu DY. Personalized cancer chemotherapy, an effective way for enhancing outcomes in clinics. UK: Woodhead Publishing, Elsevier 2014.
[11]
Volm M, Efferth T. Prediction of cancer drug resistance and implications for personalized medicine. Front Oncol 2015; 5: 282.
[http://dx.doi.org/10.3389/fonc.2015.00282] [PMID: 26734568]
[12]
Lu DY, Lu TR, Ding J, Xu B, Che JY, Wu HY. Anticancer drug sensitivity testing, a historical review and future perspectives. Curr Drug Ther 2015; 10(1): 44-55.
[http://dx.doi.org/10.2174/157488551001150825100450]
[13]
Lu DY, Lu TR. Drug sensitivity testing, a unique drug selection strategy. Adv Biomark Sci Technol 2020; 2: 59-66.
[http://dx.doi.org/10.1016/j.abst.2020.11.001]
[14]
Popova AA, Levkin PA. Precision medicine in oncology: In vitro Drug Sensitivity and Resistance Test (DSRT) for selection of personalized anticancer therapy. Adv Ther 2020; 3(2): 1900100.
[http://dx.doi.org/10.1002/adtp.201900100]
[15]
Hyman DM, Taylor BS, Baselga J. Implementing genome-driven oncology. Cell 2017; 168(4): 584-99.
[http://dx.doi.org/10.1016/j.cell.2016.12.015] [PMID: 28187282]
[16]
Huang RS, Ratain MJ. Pharmacogenetics and pharmacogenomics of anticancer agents. CA Cancer J Clin 2009; 59(1): 42-55.
[http://dx.doi.org/10.3322/caac.20002] [PMID: 19147868]
[17]
Lu DY, Lu TR, Cao S. Individualized cancer chemotherapy by detecting cancer biomarkers? Metabolomics 2012; 2(5): e121.
[18]
Lu DY, Lu TR, Chen XL, Chen EH, Ding J, Xu B. Cancer bioinformatics, its impacts on cancer therapy. Metabolomics 2015; 5(2): e133.
[19]
Ocaña A, Pandiella A. Personalized therapies in the cancer “omics” era. Mol Cancer 2010; 9: 202.
[http://dx.doi.org/10.1186/1476-4598-9-202] [PMID: 20670437]
[20]
Stransky B, Galante P. Application of bioinformatics in cancer research. An IMICS Perspective on Cancer Research 2010; 211-33.
[21]
Huang YH, Vakoc CR. A biomarker harvest from one thousand cancer cell lines. Cell 2016; 166(3): 536-7.
[http://dx.doi.org/10.1016/j.cell.2016.07.010] [PMID: 27471963]
[22]
Lu DY, Qu RX, Lu TR, Wu HY. Cancer bioinformatics for update anticancer drug developments and personalized therapeutics. Rev Recent Clin Trials 2017; 12(2): 101-10.
[http://dx.doi.org/10.2174/1574887112666170209161444] [PMID: 28190390]
[23]
Lu DY, Lu TR, Xu B, Ding J. Pharmacogenetics of cancer therapy: Breakthroughs from beyond? Future Sci 2015; 1(4): 80.
[http://dx.doi.org/10.4155/fso.15.80]
[24]
Montero J, Sarosiek KA, DeAngelo JD, et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell 2015; 160(5): 977-89.
[http://dx.doi.org/10.1016/j.cell.2015.01.042] [PMID: 25723171]
[25]
Lu DY, Lu TR, Che JY, Yarla NS. Individualized cancer therapy, what is the next generation? EC Cancer 2018; 2(6): 286-97.
[26]
Lu DY, Lu TR, Che JY, Shen Y, Yarla NS. Individualized cancer therapy, future approaches. Curr Pharmacogenomics Person Med 2018; 16(2): 156-63.
[http://dx.doi.org/10.2174/1875692116666180821095434]
[27]
Damyanov C, Pavlov V, Maslev I. Personalized treatment application in integrative oncology. Indian J Res 2018; 7(1): 222-5.
[28]
Eduati F, Utharala R, Madhavan D, et al. A microfluidics platform for combinatorial drug screening on cancer biopsies. Nat Commun 2018; 9(1): 2434.
[http://dx.doi.org/10.1038/s41467-018-04919-w] [PMID: 29934552]
[29]
Xu Z, Gao Y, Hao Y, et al. Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 2013; 34(16): 4109-17.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.045] [PMID: 23473962]
[30]
Morioka H, Yabe H, Morii T, et al. In vitro chemosensitivity of human soft tissue sarcoma. Anticancer Res 2001; 21(6A): 4147-51.
[PMID: 11911309]
[31]
Tanino H, Oura S, Hoffman RM, et al. Acquisition of multidrug resistance in recurrent breast cancer demonstrated by the histoculture drug response assay. Anticancer Res 2001; 21(6A): 4083-6.
[PMID: 11911296]
[32]
Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science 1977; 197(4302): 461-3.
[http://dx.doi.org/10.1126/science.560061] [PMID: 560061]
[33]
Salmon SE, Hamburger AW, Soehnlen B, Durie BG, Alberts DS, Moon TE. Quantitation of differential sensitivity of human-tumor stem cells to anticancer drugs. N Engl J Med 1978; 298(24): 1321-7.
[http://dx.doi.org/10.1056/NEJM197806152982401] [PMID: 77475]
[34]
Takamura Y, Kobayashi H, Taguchi T, Motomura K, Inaji H, Noguchi S. Prediction of chemotherapeutic response by collagen gel droplet embedded culture-drug sensitivity test in human breast cancers. Int J Cancer 2002; 98(3): 450-5.
[http://dx.doi.org/10.1002/ijc.10208] [PMID: 11920599]
[35]
Kawamura H, Ikeda K, Takiyama I, Terashima M. The usefulness of the ATP assay with serum-free culture for chemosensitivity testing of gastrointestinal cancer. Eur J Cancer 1997; 33(6): 960-6.
[http://dx.doi.org/10.1016/S0959-8049(97)00075-0] [PMID: 9291821]
[36]
Kurbacher CM, Cree IA, Bruckner HW, et al. Use of an ex vivo ATP luminescence assay to direct chemotherapy for recurrent ovarian cancer. Anticancer Drugs 1998; 9(1): 51-7.
[http://dx.doi.org/10.1097/00001813-199801000-00006] [PMID: 9491792]
[37]
Efferth T, Konkimalla VB, Wang YF, et al. Prediction of broad spectrum resistance of tumors towards anticancer drugs. Clin Cancer Res 2008; 14(8): 2405-12.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4525] [PMID: 18413831]
[38]
Higashiyama M, Oda K, Okami J, et al. Prediction of chemotherapeutic effect on postoperative recurrence by in vitro anticancer drug sensitivity testing in non-small cell lung cancer patients. Lung Cancer 2010; 68(3): 472-7.
[http://dx.doi.org/10.1016/j.lungcan.2009.07.005] [PMID: 19660825]
[39]
Bodegen AE, Kelton DE, Cobb WR, Esber HJ. A rapid screening method for testing chemotherapeutic agents against human tumor xenograft. In: Houcheus DP, Ovejera AA, Eds. Proceedings of the symposium on the use of athymic (nude) mice in cancer research. New York: Gustav Fischer Inc. 1978.
[40]
Lu DY, Lu TR, Wu HY, Che JY, Qu RX, Xu B. Similarity of drug sensitivity test results on human pulmonary adenocarcinoma xenografts transplanted under the subrenal capsules between normal immunocompetent and immunodeficient athymic mice. Int J Pharm Ther 2010; 1(20): 106-9.
[41]
Sveen A, Bruun J, Eide PW, et al. Colorectal cancer consensus molecular subtypes translated to preclinical models uncover potentially targetable cancer cell dependencies. Clin Cancer Res 2018; 24(4): 794-806.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1234] [PMID: 29242316]
[42]
van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015; 161(4): 933-45.
[http://dx.doi.org/10.1016/j.cell.2015.03.053] [PMID: 25957691]
[43]
Praharaj PP, Bhutia SK, Nagrath S, Bitting RL, Deep G. Circulating tumor cell-derived organoids: Current challenges and promises in medical research and precision medicine. Biochim Biophys Acta Rev Cancer 2018; 1869(2): 117-27.
[http://dx.doi.org/10.1016/j.bbcan.2017.12.005] [PMID: 29360544]
[44]
Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell 2011; 147(2): 275-92.
[http://dx.doi.org/10.1016/j.cell.2011.09.024] [PMID: 22000009]
[45]
Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011; 331(6024): 1559-64.
[http://dx.doi.org/10.1126/science.1203543] [PMID: 21436443]
[46]
Lu DY, Lu TR, Wu HY, Cao S. Cancer metastasis treatments. Curr Drug Ther 2013; 8(1): 24-9.
[http://dx.doi.org/10.2174/1574885511308010003]
[47]
Cristofanilli M. The biological information obtainable from circulating tumor cells. Breast 2009; 18 (Suppl. 3): S38-40.
[http://dx.doi.org/10.1016/S0960-9776(09)70270-X] [PMID: 19914540]
[48]
Guadagni S, Clementi M, Masedu F, et al. A pilot study of the predictive potential of themosensitivity and gene expression assays using circulating tumour cells from patients with recurrent ovarian cancer. Int J Med Sci 2020; 21: 4813.
[49]
van Denderen BJW, Thompson EW. Cancer: The to and fro of tumour spread. Nature 2013; 493(7433): 487-8.
[http://dx.doi.org/10.1038/493487a] [PMID: 23344357]
[50]
Gupta GP, Massagué J. Cancer metastasis: Building a framework. Cell 2006; 127(4): 679-95.
[http://dx.doi.org/10.1016/j.cell.2006.11.001] [PMID: 17110329]
[51]
Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer 2006; 6(6): 449-58.
[http://dx.doi.org/10.1038/nrc1886] [PMID: 16723991]
[52]
Lu DY, Chen EH, Wu HY, Lu TR, Xu B, Ding J. Anticancer drug combination, how far we can go through? Anticancer Agents Med Chem 2017; 17(1): 21-8.
[PMID: 27039923]
[53]
Lu DY, Lu TR, Yarla NS, et al. Drug combination in clinical cancer treatment. Rev Recent Clin Trials 2017; 12(3): 202-11.
[http://dx.doi.org/10.2174/1574887112666170803145955] [PMID: 28782482]
[54]
Zhang Y, Xu J, Yu Y, Shang W, Ye A. Anti-cancer drug sensitivity assay with quantitative heterogeneity testing using single-cell Raman spectroscopy. Molecules 2018; 23(11): 2903.
[http://dx.doi.org/10.3390/molecules23112903] [PMID: 30405051]
[55]
Farge T, Saland E, de Toni F, et al. Acute myeloid leukemia cells are not enriched for leukemia stem cells but require oxidative metabolism. Cancer Discov 2017; 7(7): 716-35.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0441] [PMID: 28416471]
[56]
Lu DY, Lu TR, Xu B, et al. Cancer metastasis, a clinical dilemma for therapeutics. Curr Drug Ther 2016; 11(2): 163-9.
[http://dx.doi.org/10.2174/1574885511666160810143216]
[57]
Franssen LC, Chaplain MAJ. A mathematical multi-organ model for bidirectional epithelial-mesenchymal transitions in the metastatic spread of cancer. IMA J Appl Math 2020; 85(5): 724-61.
[http://dx.doi.org/10.1093/imamat/hxaa022]
[58]
Weidenfeld K, Barkan D. EMT and stemness in tumor dormacy and outgrowth: Are they intertwined processes? Front Oncol 2018; 8: 381.
[http://dx.doi.org/10.3389/fonc.2018.00381] [PMID: 30258818]
[59]
Dvorak HF. Tumor stroma, tumor blood vessels, and anti-angiogenesis therapy. Cancer J 2015; 21(4): 237-43.
[http://dx.doi.org/10.1097/PPO.0000000000000124] [PMID: 26222073]
[60]
Dvorak HF, Weaver VM, Tlsty TD, Bergers G. Tumor microenvironment and progression. J Surg Oncol 2011; 103(6): 468-74.
[http://dx.doi.org/10.1002/jso.21709] [PMID: 21480238]
[61]
Lu DY, Chen XL, Ding J. Treatment of solid tumors and metastases by fibrinogen-targeted anticancer drug therapy. Med Hypotheses 2007; 68(1): 188-93.
[http://dx.doi.org/10.1016/j.mehy.2006.06.045] [PMID: 16956730]
[62]
Bobek V. Anticoagulant and fibrinolytic drugs - possible agents in treatment of lung cancer? Anticancer Agents Med Chem 2012; 12(6): 580-8.
[http://dx.doi.org/10.2174/187152012800617687] [PMID: 22292773]
[63]
Lu DY, Lu TR. Antimetastatic activities and mechanisms of bisdioxopiperazine compounds. Anticancer Agents Med Chem 2010; 10(7): 564-70.
[http://dx.doi.org/10.2174/187152010793498654] [PMID: 20950258]
[64]
Lu DY, Lu TR. Anticancer activities and mechanisms of bisdioxopiperazine compounds probimane and MST-16. Anticancer Agents Med Chem 2010; 10(1): 78-91.
[http://dx.doi.org/10.2174/1871520611009010078] [PMID: 19845502]
[65]
Zhu H, Liao SD, Shi JJ, et al. DJ-1 mediates the resistance of cancer cells to dihydroarteminisinin through cancer cells through reactive oxygen species removal. Free Radic Biol Med 2014; 71: 121-32.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.026] [PMID: 24681255]
[66]
Lu DY, Lu TR, Wu HY. Development of antimetastatic drugs by targeting tumor sialic acids. Sci Pharm 2012; 80(3): 497-508.
[http://dx.doi.org/10.3797/scipharm.1205-01] [PMID: 23008802]
[67]
Lu DY, Lu TR, Xu B, et al. Anti-metastatic drug development, work out towards new direction. Med Chemistry 2018; 8(7): 512.
[68]
Lu DY, Lu TR, Ding J, et al. Anti-metastatic therapy at aberrant sialylation in cancer cells, a potential hotspot. Clin Proteom Bioinform 2017; 2(1): 118.
[http://dx.doi.org/10.15761/CPB.1000118]
[69]
Herter-Sprie GS, Kung AL, Wong KK. New cast for a new era: Preclinical cancer drug development revisited. J Clin Invest 2013; 123(9): 3639-45.
[http://dx.doi.org/10.1172/JCI68340] [PMID: 23999436]
[70]
Kuman M, Liu CH, Wu WC, Wang CC. Gene delivery using layer-by-layer functionalized multi-walled carbon nanotubes: design, characterization, cell line evaluation. J Mater Sci 2021; 56: 7022-33.
[http://dx.doi.org/10.1007/s10853-020-05648-6]
[71]
Barani M, Mukhtar M, Rahdar A, Sargazi S, Pandey S, Kang M. Recent advances in nanotechnology-based diagnosis and treatments of human osteosarcoma. Biosensors (Basel) 2021; 11(2): 55.
[http://dx.doi.org/10.3390/bios11020055] [PMID: 33672770]
[72]
Ganipineni LP, Danhier F, Préat V. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J Control Release 2018; 281: 42-57.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.008] [PMID: 29753958]
[73]
Suggitt M, Bibby MC. 50 years of preclinical anticancer drug screening: Empirical to target-driven approaches. Clin Cancer Res 2005; 11(3): 971-81.
[PMID: 15709162]
[74]
Lu DY, Lu TR, Wu HY. Cost-effectiveness considerations of individualized cancer chemotherapy. Adv Pharmacoepidemiol Drug Saf 2013; 2(5): e121.
[75]
Franssen LC, Lorenzi T, Burgess AEF, Chaplain MAJ. A mathematical framework for modeling the metastatic spread of cancer. Bull Math Biol 2019; 81(6): 1965-2010.
[http://dx.doi.org/10.1007/s11538-019-00597-x] [PMID: 30903592]
[76]
Gerlee P, Johansson M. Inferring rates of metastatic dissemination using stochastic network models. PLOS Comput Biol 2019; 15(4): e1006868.
[http://dx.doi.org/10.1371/journal.pcbi.1006868] [PMID: 30933969]
[77]
Lu DY, Shen Y, Xu B, Lu TR. Anatomic approaches for cancer metastatic study. EC Clin Exp Anatomy 2020; 3(9): 32-4.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy