Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Natural Molecules as Talented Inhibitors of Nucleotide Pyrophosphatases/ Phosphodiesterases (PDEs)

Author(s): Ilkay Erdogan Orhan*, Abdur Rauf*, Muhammad Saleem and Anees Ahmed Khalil

Volume 22, Issue 3, 2022

Published on: 09 September, 2021

Page: [209 - 228] Pages: 20

DOI: 10.2174/1568026621666210909164118

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Phosphodiesterases (PDEs) are a wide group of enzymes with multiple therapeutic actions, including vasorelaxation, cardiotonic, antidepressant, anti-inflammatory, antithrombotic, anti-spasmolytic, memory-enhancing, and anti-asthmatic. PDEs with eleven subtypes from PDE-1 to PDE-11 typically catalyze the cleavage of the phosphodiester bond and, hence, degrades either cyclic adenosine monophosphate (cAMP) or cyclic guanosine monophosphate (cGMP).

Objective: Several selective or non-selective inhibitors of the PDE subtypes are used clinically, i.e. sildenafil, rolipram, cysteine, etc. Recently, interest in plant-based pharmacologically bioactive compounds having potent PDEs inhibitory potential has increased. Purposely, extensive research has been carried out on natural products to explore new inhibitors of various PDEs. Therefore, this review summarizes the published data on natural PDEs inhibitors and their potential therapeutic applications.

Methods: For this purpose, natural compounds with PDE inhibitory potential have been surveyed through several databases, including PubMed, Web of Sciences (WoS), Scopus, and Google Scholar.

Results: According to a detailed literature survey, the most promising class of herbal compounds with PDE-inhibiting property has been found to belong to phenolics, including flavonoids (luteolin, kaempferol, icariin, etc.). Many other encouraging inhibitors from plants have also been identified, such as coumarins (23, 24) (licoarylcoumarin and glycocoumarin,), saponins (agapanthussaponins), lignans (31, 33) [(±)-schizandrin and kobusin], terpenes (28, 29, 31) (perianradulcin A, quinovic acid, and ursolic acid), anthraquinones (18, 19) (emodin and chrysophanol), and alkaloids (Sanjoinine-D) (36).

Conclusion: In this review, studies have revealed the PDE-inhibitory potential of natural plant extracts and their bioactive constituents in treating various diseases; however, further clinical studies comprising synergistic use of different therapies (synthetic & natural) to acquire multi-targeted results might also be a promising option.

Keywords: Phosphodiesterase, Enzyme inhibitors, Secondary metabolites, Natural molecules, CAMP, cGMP.

[1]
Soderling, S.H.; Beavo, J.A. Regulation of cAMP and cGMP signaling: New phosphodiesterases and new functions. Curr. Opin. Cell Biol., 2000, 12(2), 174-179.
[http://dx.doi.org/10.1016/S0955-0674(99)00073-3] [PMID: 10712916]
[2]
Francis, S.H.; Blount, M.A.; Corbin, J.D. Mammalian cyclic nucleotide phosphodiesterases: Molecular mechanisms and physiological functions. Physiol. Rev., 2011, 91(2), 651-690.
[http://dx.doi.org/10.1152/physrev.00030.2010] [PMID: 21527734]
[3]
Keravis, T.; Lugnier, C. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: Benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br. J. Pharmacol., 2012, 165(5), 1288-1305.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01729.x] [PMID: 22014080]
[4]
Kritzer, M.D.; Li, J.; Dodge-Kafka, K.; Kapiloff, M.S. AKAPs: The architectural underpinnings of local cAMP signaling. J. Mol. Cell. Cardiol., 2012, 52(2), 351-358.
[http://dx.doi.org/10.1016/j.yjmcc.2011.05.002] [PMID: 21600214]
[5]
Azevedo, M.F.; Faucz, F.R.; Bimpaki, E.; Horvath, A.; Levy, I.; de Alexandre, R.B.; Ahmad, F.; Manganiello, V.; Stratakis, C.A. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr. Rev., 2014, 35(2), 195-233.
[http://dx.doi.org/10.1210/er.2013-1053] [PMID: 24311737]
[6]
Mehats, C.; Andersen, C.B.; Filopanti, M.; Jin, S.L.; Conti, M. Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol. Metab., 2002, 13(1), 29-35.
[http://dx.doi.org/10.1016/S1043-2760(01)00523-9] [PMID: 11750860]
[7]
Bashir, B.A.; Rauf, A.; Bawazeer, S.; Rahman, K.U.; Rehman, T.; Saleem, M.; Ahmed, R.S.; Linfang, H.; Ikram, R. Urease inhibition potential and molecular docking of dihydroquercetin and dihydromyricetin isolated from Picea smithiana (wall) Boiss. Biomed. Res. (Aligarh), 2018, 28(22)
[8]
Ahmad, F.; Murata, T.; Shimizu, K.; Degerman, E.; Maurice, D.; Manganiello, V. Cyclic nucleotide phosphodiesterases: Important signaling modulators and therapeutic targets. Oral Dis., 2015, 21(1), e25-e50.
[http://dx.doi.org/10.1111/odi.12275] [PMID: 25056711]
[9]
Abusnina, A.; Lugnier, C. Therapeutic potentials of natural compounds acting on cyclic nucleotide phosphodiesterase families. Cell. Signal., 2017, 39, 55-65.
[http://dx.doi.org/10.1016/j.cellsig.2017.07.018] [PMID: 28754627]
[10]
Wells, J.N.; Garst, J.E.; Kramer, G.L. Inhibition of separated forms of cyclic nucleotide phosphodiesterase from pig coronary arteries by 1,3-disubstituted and 1,3,8-trisubstituted xanthines. J. Med. Chem., 1981, 24(8), 954-958.
[http://dx.doi.org/10.1021/jm00140a008] [PMID: 6276544]
[11]
Card, G.L.; England, B.P.; Suzuki, Y.; Fong, D.; Powell, B.; Lee, B.; Luu, C.; Tabrizizad, M.; Gillette, S.; Ibrahim, P.N.; Artis, D.R.; Bollag, G.; Milburn, M.V.; Kim, S.H.; Schlessinger, J.; Zhang, K.Y. Structural basis for the activity of drugs that inhibit phosphodiesterases. Structure, 2004, 12(12), 2233-2247.
[http://dx.doi.org/10.1016/j.str.2004.10.004] [PMID: 15576036]
[12]
Schudt, C.; Hatzelman, A.; Beume, R.; Tenor, H. Phosphodiesterase inhibitors: History of pharmacology. In: Phosphodiesterases as drug targets; Francis, S.H.; Conti, M.; Houslay, M.D., Eds.; Handbook of Experimental Pharmacology (E-book). Springer, 2011, 204, pp. 1-46.
[http://dx.doi.org/10.1007/978-3-642-17969-3_1]
[13]
Shaeer, O. The Global Online Sexuality Survey (GOSS): The United States of America in 2011 chapter II: Phosphodiesterase inhibitors utilization among English speakers. J. Sex. Med., 2013, 10(2), 532-540.
[http://dx.doi.org/10.1111/j.1743-6109.2012.02972.x] [PMID: 23088586]
[14]
Baillie, G.S.; Tejeda, G.S.; Kelly, M.P. Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: Inhibition and beyond. Nat. Rev. Drug Discov., 2019, 18(10), 770-796.
[http://dx.doi.org/10.1038/s41573-019-0033-4] [PMID: 31388135]
[15]
Xu, R.X.; Hassell, A.M.; Vanderwall, D. Atomic structure of PDE 4: Insights into mechanism and specificity. Science, 2000, 288, 1822-1825.
[http://dx.doi.org/10.1126/science.288.5472.1822] [PMID: 10846163]
[16]
Epstein, P.M.; Fiss, K.; Hachisu, R.; Andrenyak, D.M. Interaction of calcium antagonists with cyclic AMP phosphodiesterases and calmodulin. Biochem. Biophys. Res. Commun., 1982, 105(3), 1142-1149.
[http://dx.doi.org/10.1016/0006-291X(82)91089-0] [PMID: 6284165]
[17]
Hagiwara, M.; Endo, T.; Hidaka, H. Effects of vinpocetine on cyclic nucleotide metabolism in vascular smooth muscle. Biochem. Pharmacol., 1984, 33(3), 453-457.
[http://dx.doi.org/10.1016/0006-2952(84)90240-5] [PMID: 6322804]
[18]
Podzuweit, T.; Mu¨ller, A.; Nennstiel, P. Selective inhibition of the cGMP stimulated cyclic nucleotide phosphodiesterase from pig and human myocardium. J. Mol. Cell. Cardiol., 1992, 24, 102.
[http://dx.doi.org/10.1016/0022-2828(92)91794-6]
[19]
Podzuweit, T.; Nennstiel, P.; Müller, A. Isozyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine. Cell. Signal., 1995, 7(7), 733-738.
[http://dx.doi.org/10.1016/0898-6568(95)00042-N] [PMID: 8519602]
[20]
Francis, S.H.; Corbin, J.D.; Bischoff, E. Cyclic GMP-hydrolyzing phosphodiesterases. Handb. Exp. Pharmacol., 2009, 191(191), 367-408.
[http://dx.doi.org/10.1007/978-3-540-68964-5_16] [PMID: 19089337]
[21]
Scapin, G.; Patel, S.B.; Chung, C.; Varnerin, J.P.; Edmondson, S.D.; Mastracchio, A.; Parmee, E.R.; Singh, S.B.; Becker, J.W.; Van der Ploeg, L.H.; Tota, M.R. Crystal structure of human phosphodiesterase 3B: Atomic basis for substrate and inhibitor specificity. Biochemistry, 2004, 43(20), 6091-6100.
[http://dx.doi.org/10.1021/bi049868i] [PMID: 15147193]
[22]
Ishiwata, N.; Noguchi, K.; Kawanishi, M.; Asakura, Y.; Hori, M.; Mitani, A.; Ito, Y.; Takahashi, K.; Nishiyama, H.; Shudo, N.; Takahashi, S.; Takahashi, K.; Tsuruzoe, N.; Nakaike, S. NT-702 (parogrelil hydrochloride, NM-702), a novel and potent phosphodiesterase inhibitor, improves reduced walking distance and lowered hindlimb plantar surface temperature in a rat experimental intermittent claudication model. Life Sci., 2007, 81(12), 970-978.
[http://dx.doi.org/10.1016/j.lfs.2007.07.025] [PMID: 17850826]
[23]
Cruickshank, J.M. Phosphodiesterase III inhibitors: Long-term risks and short-term benefits. Cardiovasc. Drugs Ther., 1993, 7(4), 655-660.
[http://dx.doi.org/10.1007/BF00877818] [PMID: 8241008]
[24]
Liu, S.; Laliberté, F.; Bobechko, B.; Bartlett, A.; Lario, P.; Gorseth, E.; Van Hamme, J.; Gresser, M.J.; Huang, Z. Dissecting the cofactor-dependent and independent bindings of PDE4 inhibitors. Biochemistry, 2001, 40(34), 10179-10186.
[http://dx.doi.org/10.1021/bi010096p] [PMID: 11513595]
[25]
Liu, Y.; Shakur, Y.; Yoshitake, M.; Kambayashi Ji, J. Cilostazol (pletal): A dual inhibitor of cyclic nucleotide phosphodiesterase type 3 and adenosine uptake. Cardiovasc. Drug Rev., 2001, 19(4), 369-386.
[http://dx.doi.org/10.1111/j.1527-3466.2001.tb00076.x] [PMID: 11830753]
[26]
Schwabe, U.; Miyake, M.; Ohga, Y.; Daly, J.W. 4-(3-Cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone (ZK 62711): A potent inhibitor of adenosine cyclic 3′,5′-monophosphate phosphodiesterases in homogenates and tissue slices from rat brain. Mol. Pharmacol., 1976, 12(6), 900-910.
[PMID: 187926]
[27]
Hatzelmann, A.; Schudt, C. Anti-inflammatory and immunomodulatory potential of the novel PDE4 inhibitor roflumilast in vitro. J. Pharmacol. Exp. Ther., 2001, 297(1), 267-279.
[PMID: 11259554]
[28]
Lugnier, C.; Schoeffter, P.; Le Bec, A.; Strouthou, E.; Stoclet, J.C. Selective inhibition of cyclic nucleotide phosphodiesterases of human, bovine and rat aorta. Biochem. Pharmacol., 1986, 35(10), 1743-1751.
[http://dx.doi.org/10.1016/0006-2952(86)90333-3] [PMID: 2423089]
[29]
Coste, H.; Grondin, P. Characterization of a novel potent and specific inhibitor of type V phosphodiesterase. Biochem. Pharmacol., 1995, 50(10), 1577-1585.
[http://dx.doi.org/10.1016/0006-2952(95)02031-4] [PMID: 7503759]
[30]
Boolell, M.; Allen, M.J.; Ballard, S.A.; Gepi-Attee, S.; Muirhead, G.J.; Naylor, A.M.; Osterloh, I.H.; Gingell, C. Sildenafil: An orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int. J. Impot. Res., 1996, 8(2), 47-52.
[PMID: 8858389]
[31]
Bischoff, E.; Niewoehner, U.; Haning, H.; Es Sayed, M.; Schenke, T.; Schlemmer, K.H. The oral efficacy of vardenafil hydrochloride for inducing penile erection in a conscious rabbit model. J. Urol., 2001, 165(4), 1316-1318.
[http://dx.doi.org/10.1016/S0022-5347(01)69891-4] [PMID: 11257708]
[32]
Padma-Nathan, H.; McMurray, J.G.; Pullman, W.E.; Whitaker, J.S.; Saoud, J.B.; Ferguson, K.M.; Rosen, R.C. On-demand IC351 (Cialis) enhances erectile function in patients with erectile dysfunction. Int. J. Impot. Res., 2001, 13(1), 2-9.
[http://dx.doi.org/10.1038/sj.ijir.3900631] [PMID: 11313831]
[33]
Smith, S.J.; Cieslinski, L.B.; Newton, R.; Donnelly, L.E.; Fenwick, P.S.; Nicholson, A.G.; Barnes, P.J.; Barnette, M.S.; Giembycz, M.A. Discovery of BRL 50481 [3-(N,N-dimethylsulfonamido)-4-methyl-nitrobenzene], a selective inhibitor of phosphodiesterase 7: In vitro studies in human monocytes, lung macrophages, and CD8+ T-lymphocytes. Mol. Pharmacol., 2004, 66(6), 1679-1689.
[http://dx.doi.org/10.1124/mol.104.002246] [PMID: 15371556]
[34]
Lee, M.E.; Markowitz, J.; Lee, J.O.; Lee, H. Crystal structure of phosphodiesterase 4D and inhibitor complex(1). FEBS Lett., 2002, 530(1-3), 53-58.
[http://dx.doi.org/10.1016/S0014-5793(02)03396-3] [PMID: 12387865]
[35]
Vang, A.G.; Ben-Sasson, S.Z.; Dong, H.; Kream, B.; DeNinno, M.P.; Claffey, M.M.; Housley, W.; Clark, R.B.; Epstein, P.M.; Brocke, S. PDE8 regulates rapid Teff cell adhesion and proliferation independent of ICER. PLoS One, 2010, 5(8), e12011.
[http://dx.doi.org/10.1371/journal.pone.0012011] [PMID: 20711499]
[36]
Tsai, L.C.; Shimizu-Albergine, M.; Beavo, J.A. The high-affinity cAMP-specific phosphodiesterase 8B controls steroidogenesis in the mouse adrenal gland. Mol. Pharmacol., 2011, 79(4), 639-648.
[http://dx.doi.org/10.1124/mol.110.069104] [PMID: 21187369]
[37]
Wunder, F.; Tersteegen, A.; Rebmann, A.; Erb, C.; Fahrig, T.; Hendrix, M. Characterization of the first potent and selective PDE9 inhibitor using a cGMP reporter cell line. Mol. Pharmacol., 2005, 68(6), 1775-1781.
[http://dx.doi.org/10.1124/mol.105.017608] [PMID: 16150925]
[38]
Hutson, P.H.; Finger, E.N.; Magliaro, B.C.; Smith, S.M.; Converso, A.; Sanderson, P.E.; Mullins, D.; Hyde, L.A.; Eschle, B.K.; Turnbull, Z.; Sloan, H.; Guzzi, M.; Zhang, X.; Wang, A.; Rindgen, D.; Mazzola, R.; Vivian, J.A.; Eddins, D.; Uslaner, J.M.; Bednar, R.; Gambone, C.; Le-Mair, W.; Marino, M.J.; Sachs, N.; Xu, G.; Parmentier-Batteur, S. The selective phosphodiesterase 9 (PDE9) inhibitor PF-04447943 (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-pyran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one) enhances synaptic plasticity and cognitive function in rodents. Neuropharmacology, 2011, 61(4), 665-676.
[http://dx.doi.org/10.1016/j.neuropharm.2011.05.009] [PMID: 21619887]
[39]
Siuciak, J.A.; Chapin, D.S.; Harms, J.F.; Lebel, L.A.; McCarthy, S.A.; Chambers, L.; Shrikhande, A.; Wong, S.; Menniti, F.S.; Schmidt, C.J. Inhibition of the striatum-enriched phosphodiesterase PDE10A: A novel approach to the treatment of psychosis. Neuropharmacology, 2006, 51(2), 386-396.
[http://dx.doi.org/10.1016/j.neuropharm.2006.04.013] [PMID: 16780899]
[40]
Grauer, S.M.; Pulito, V.L.; Navarra, R.L.; Kelly, M.P.; Kelley, C.; Graf, R.; Langen, B.; Logue, S.; Brennan, J.; Jiang, L.; Charych, E.; Egerland, U.; Liu, F.; Marquis, K.L.; Malamas, M.; Hage, T.; Comery, T.A.; Brandon, N.J. Phosphodiesterase 10A inhibitor activity in preclinical models of the positive, cognitive, and negative symptoms of schizophrenia. J. Pharmacol. Exp. Ther., 2009, 331(2), 574-590.
[http://dx.doi.org/10.1124/jpet.109.155994] [PMID: 19661377]
[41]
Beavo, J.A.; Brunton, L.L. Cyclic nucleotide research -- still expanding after half a century. Nat. Rev. Mol. Cell Biol., 2002, 3(9), 710-718.
[http://dx.doi.org/10.1038/nrm911] [PMID: 12209131]
[42]
Sung, B.J.; Hwang, K.Y.; Jeon, Y.H.; Lee, J.I.; Heo, Y.S.; Kim, J.H.; Moon, J.; Yoon, J.M.; Hyun, Y.L.; Kim, E.; Eum, S.J.; Park, S.Y.; Lee, J.O.; Lee, T.G.; Ro, S.; Cho, J.M. Structure of the catalytic domain of human phosphodiesterase 5 with bound drug molecules. Nature, 2003, 425(6953), 98-102.
[http://dx.doi.org/10.1038/nature01914] [PMID: 12955149]
[43]
Huai, Q.; Colicelli, J.; Ke, H. The crystal structure of AMP-bound PDE4 suggests a mechanism for phosphodiesterase catalysis. Biochemistry, 2003, 42(45), 13220-13226.
[http://dx.doi.org/10.1021/bi034653e] [PMID: 14609333]
[44]
Huai, Q.; Wang, H.; Sun, Y.; Kim, H.Y.; Liu, Y.; Ke, H. Three-dimensional structures of PDE4D in complex with roliprams and implication on inhibitor selectivity. Structure, 2003, 11(7), 865-873.
[http://dx.doi.org/10.1016/S0969-2126(03)00123-0] [PMID: 12842049]
[45]
Huai, Q.; Liu, Y.; Francis, S.H.; Corbin, J.D.; Ke, H. Crystal structures of phosphodiesterases 4 and 5 in complex with inhibitor 3-isobutyl-1-methylxanthine suggest a conformation determinant of inhibitor selectivity. J. Biol. Chem., 2004, 279(13), 13095-13101.
[http://dx.doi.org/10.1074/jbc.M311556200] [PMID: 14668322]
[46]
Huai, Q.; Wang, H.; Zhang, W.; Colman, R.W.; Robinson, H.; Ke, H. Crystal structure of phosphodiesterase 9 shows orientation variation of inhibitor 3-isobutyl-1-methylxanthine binding. Proc. Natl. Acad. Sci. USA, 2004, 101(26), 9624-9629.
[http://dx.doi.org/10.1073/pnas.0401120101] [PMID: 15210993]
[47]
Xu, R.X.; Rocque, W.J.; Lambert, M.H.; Vanderwall, D.E.; Luther, M.A.; Nolte, R.T. Crystal structures of the catalytic domain of phosphodiesterase 4B complexed with AMP, 8-Br-AMP, and rolipram. J. Mol. Biol., 2004, 337(2), 355-365.
[http://dx.doi.org/10.1016/j.jmb.2004.01.040] [PMID: 15003452]
[48]
Zhang, K.Y.J.; Card, G.L.; Suzuki, Y.; Artis, D.R.; Fong, D.; Gillette, S.; Hsieh, D.; Neiman, J.; West, B.L.; Zhang, C.; Milburn, M.V.; Kim, S.H.; Schlessinger, J.; Bollag, G. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Mol. Cell, 2004, 15(2), 279-286.
[http://dx.doi.org/10.1016/j.molcel.2004.07.005] [PMID: 15260978]
[49]
Nabavi, S.M.; Talarek, S.; Listos, J.; Nabavi, S.F.; Devi, K.P.; Roberto de Oliveira, M.; Tewari, D.; Argüelles, S.; Mehrzadi, S.; Hosseinzadeh, A.; D’onofrio, G.; Orhan, I.E.; Sureda, A.; Xu, S.; Momtaz, S.; Farzaei, M.H. Phosphodiesterase inhibitors say NO to Alzheimer’s disease. Food Chem. Toxicol., 2019, 134, 110822.
[http://dx.doi.org/10.1016/j.fct.2019.110822] [PMID: 31536753]
[50]
Conti, M. Phosphodiesterases and cyclic nucleotide signaling in endocrine cells. Mol. Endocrinol., 2000, 14(9), 1317-1327.
[http://dx.doi.org/10.1210/mend.14.9.0534] [PMID: 10976911]
[51]
Cristina, R.T.; Dehelean, C.; Dumitrescu, E.; Netotea, A.; Gurban, A. Pharmacologic activity of phosphodiesterases and their inhibitors. Lucrari Stiinłifice. Med. Vet., 2010, 43(2), 300-314.
[52]
Lugnier, C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: A new target for the development of specific therapeutic agents. Pharmacol. Ther., 2006, 109(3), 366-398.
[http://dx.doi.org/10.1016/j.pharmthera.2005.07.003] [PMID: 16102838]
[53]
Zimmermann, H. Ectonucleotidases: Some recent developments and a note on nomenclature. Drug Dev. Res., 2001, 52(1-2), 44-56.
[http://dx.doi.org/10.1002/ddr.1097]
[54]
Heckman, P.R.; Wouters, C.; Prickaerts, J. Phosphodiesterase inhibitors as a target for cognition enhancement in aging and Alzheimer’s disease: A translational overview. Curr. Pharm. Des., 2015, 21(3), 317-331.
[http://dx.doi.org/10.2174/1381612820666140826114601] [PMID: 25159073]
[55]
Lee, S.Y.; Müller, C.E. Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) and its inhibitors. MedChemComm, 2017, 8(5), 823-840.
[http://dx.doi.org/10.1039/C7MD00015D] [PMID: 30108800]
[56]
Zalatan, J.G.; Fenn, T.D.; Brunger, A.T.; Herschlag, D. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: Implications for mechanism and evolution. Biochemistry, 2006, 45(32), 9788-9803.
[http://dx.doi.org/10.1021/bi060847t] [PMID: 16893180]
[57]
Nidhyanandan, S.; Boreddy, T.S.; Chandrasekhar, K.B.; Reddy, N.D.; Kulkarni, N.M.; Narayanan, S. Phosphodiesterase inhibitor, pentoxifylline enhances anticancer activity of histone deacetylase inhibitor, MS-275 in human breast cancer in vitro and in vivo. Eur. J. Pharmacol., 2015, 764, 508-519.
[http://dx.doi.org/10.1016/j.ejphar.2015.07.048] [PMID: 26209365]
[58]
Gijsbers, R.; Ceulemans, H.; Stalmans, W.; Bollen, M. Structural and catalytic similarities between nucleotide pyrophosphatases/phosphodiesterases and alkaline phosphatases. J. Biol. Chem., 2001, 276(2), 1361-1368.
[http://dx.doi.org/10.1074/jbc.M007552200] [PMID: 11027689]
[59]
Jansen, S.; Perrakis, A.; Ulens, C.; Winkler, C.; Andries, M.; Joosten, R.P.; Van Acker, M.; Luyten, F.P.; Moolenaar, W.H.; Bollen, M. Structure of NPP1, an ectonucleotide pyrophosphatase/phosphodiesterase involved in tissue calcification. Structure, 2012, 20(11), 1948-1959.
[http://dx.doi.org/10.1016/j.str.2012.09.001] [PMID: 23041369]
[60]
Belli, S.I.; Goding, J.W. Biochemical characterization of human PC-1, an enzyme possessing alkaline phosphodiesterase I and nucleotide pyrophosphatase activities. Eur. J. Biochem., 1994, 226(2), 433-443.
[http://dx.doi.org/10.1111/j.1432-1033.1994.tb20068.x] [PMID: 8001561]
[61]
Jin-Hua, P.; Goding, J.W.; Nakamura, H.; Sano, K. Molecular cloning and chromosomal localization of PD-Ibeta (PDNP3), a new member of the human phosphodiesterase I genes. Genomics, 1997, 45(2), 412-415.
[http://dx.doi.org/10.1006/geno.1997.4949] [PMID: 9344668]
[62]
Rajagopalan, N.; Pung, Y.F.; Zhu, Y.Z.; Wong, P.T.H.; Kumar, P.P.; Kini, R.M. Beta-cardiotoxin: A new three-finger toxin from Ophiophagus hannah (king cobra) venom with beta-blocker activity. FASEB J., 2007, 21(13), 3685-3695.
[http://dx.doi.org/10.1096/fj.07-8658com] [PMID: 17616557]
[63]
Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex cocktails: The evolutionary novelty of venoms. Trends Ecol. Evol., 2013, 28(4), 219-229.
[http://dx.doi.org/10.1016/j.tree.2012.10.020] [PMID: 23219381]
[64]
Saldarriaga, M.M.; Otero, R.; Núñez, V.; Toro, M.F.; Díaz, A.; Gutiérrez, J.M. Ontogenetic variability of Bothrops atrox and Bothrops asper snake venoms from Colombia. Toxicon, 2003, 42(4), 405-411.
[http://dx.doi.org/10.1016/S0041-0101(03)00171-5] [PMID: 14505941]
[65]
Alwaal, A.; Al-Mannie, R.; Carrier, S. Future prospects in the treatment of erectile dysfunction: Focus on avanafil. Drug Des. Devel. Ther., 2011, 5(5), 435-443.
[PMID: 22087063]
[66]
Tan, N.H.; Fung, S.Y. Snake venom L-amino acid oxidases and their potential biomedical applications. Malaysian J. Biochem. Mol. Biol., 2008, 16, 1-10.
[67]
Alhathal, N.; Elshal, A.M.; Carrier, S. Synergetic effect of testosterone and phophodiesterase-5 inhibitors in hypogonadal men with erectile dysfunction: A systematic review. Can. Urol. Assoc. J., 2012, 6(4), 269-274.
[http://dx.doi.org/10.5489/cuaj.11291] [PMID: 23093538]
[68]
Vergeles, J.M.; García-Díaz, M.; Cameselle, J.C. High efficiency of glycerol 2-phosphate and sn-glycerol 3-phosphate as nucleotidyl acceptors in snake venom phosphodiesterase esterifications. Formation of primary and secondary AMP-O-glyceryl and AMP-O-glycerophosphoryl esters and evidence for an acceptor-binding enzyme site. Eur. J. Biochem., 1995, 233(2), 442-447.
[http://dx.doi.org/10.1111/j.1432-1033.1995.442_2.x] [PMID: 7588786]
[69]
García-Díaz, M.; Avalos, M.; Cameselle, J.C. Alcohol esterification reactions and mechanisms of snake venom 5′-nucleotide phosphodiesterase. Eur. J. Biochem., 1993, 213(3), 1139-1148.
[http://dx.doi.org/10.1111/j.1432-1033.1993.tb17864.x] [PMID: 8389294]
[70]
Clair, T.; Lee, H.Y.; Liotta, L.A.; Stracke, M.L. Autotaxin is an exoenzyme possessing 5′-nucleotide phosphodiesterase/ATP pyrophosphatase and ATPase activities. J. Biol. Chem., 1997, 272(2), 996-1001.
[http://dx.doi.org/10.1074/jbc.272.2.996] [PMID: 8995394]
[71]
Rahimi, R.; Ghiasi, S.; Azimi, H.; Fakhari, S.; Abdollahi, M. A review of the herbal phosphodiesterase inhibitors; future perspective of new drugs. Cytokine, 2010, 49(2), 123-129.
[http://dx.doi.org/10.1016/j.cyto.2009.11.005] [PMID: 20005737]
[72]
Nikaido, T.; Sung, Y.; Ohmoto, T.; Sankawa, U. Inhibitors of cyclic adenosine 3′,5′-monophosphate phosphodiesterase in Phyllostachys nigra Munro var. henonis Stapf. and Phragmites communis Trin., and inhibition by related compounds. Chem. Pharm. Bull. (Tokyo), 1984, 32(2), 578-584.
[http://dx.doi.org/10.1248/cpb.32.578] [PMID: 6329531]
[73]
Orallo, F.; Camiña, M.; Alvarez, E.; Basaran, H.; Lugnier, C. Implication of cyclic nucleotide phosphodiesterase inhibition in the vasorelaxant activity of the citrus-fruits flavonoid (+/-)-naringenin. Planta Med., 2005, 71(2), 99-107.
[http://dx.doi.org/10.1055/s-2005-837774] [PMID: 15729616]
[74]
Nikaido, T.; Ohmoto, T.; Noguchi, H.; Kinoshita, T.; Saitoh, H.; Sankawa, U. Inhibitors of cyclic AMP phosphodiesterase in medicinal plants. Planta Med., 1981, 43(1), 18-23.
[http://dx.doi.org/10.1055/s-2007-971466] [PMID: 6285403]
[75]
Nikaido, T.; Ohmoto, T.; Saitoh, H.; Sankawa, U.; Sakuma, S.; Shoji, J. Inhibitors of cyclic adenosine monophosphate phosphodiesterase in Polygala tenuifolia. Chem. Pharm. Bull. (Tokyo), 1982, 30(6), 2020-2024.
[http://dx.doi.org/10.1248/cpb.30.2020] [PMID: 6290090]
[76]
Nikaido, T.; Ohmoto, T.; Sankawa, U.; Kitanaka, S.; Takido, M. Inhibitors of adenosine 3′,5′-cyclic monophosphate phosphodiesterase in Cassia seed. Chem. Pharm. Bull. (Tokyo), 1984, 32(8), 3075-3078.
[http://dx.doi.org/10.1248/cpb.32.3075] [PMID: 6097364]
[77]
Nikaido, T.; Ohmoto, T.; Sankawa, U.; Tanaka, O.; Kasai, R.; Shoji, J.; Sanada, S.; Hiai, S.; Yokoyama, H.; Oura, H.; Kawashima, Y. Inhibitors of cyclic AMP phosphodiesterase in Panax ginseng C. A. Meyer and Panax japonicus C. A. Meyer. Chem. Pharm. Bull. (Tokyo), 1984, 32(4), 1477-1483.
[http://dx.doi.org/10.1248/cpb.32.1477] [PMID: 6088096]
[78]
Nikaido, T.; Ohmoto, T.; Sankawa, U. Inhibitors of adenosine 3′,5′-cyclic monophosphate phosphodiesterase in Daphne genkwa Sieb. et Zucc. Chem. Pharm. Bull. (Tokyo), 1987, 35(2), 675-681.
[http://dx.doi.org/10.1248/cpb.35.675] [PMID: 3036384]
[79]
Abdalla, S.; Abu Zarga, M.; Sabri, S. Effects of the flavone luteolin, isolated from Colchicum richii, on guinea-pig isolated smooth muscle and heart and on blood pressure and blood flow. Phytother. Res., 1994, 8(5), 265-270.
[http://dx.doi.org/10.1002/ptr.2650080503]
[80]
Schüssler, M.; Hölzl, J.; Rump, A.F.; Fricke, U. Functional and antiischaemic effects of Monoacetyl-vitexinrhamnoside in different in vitro models. Gen. Pharmacol., 1995, 26(7), 1565-1570.
[http://dx.doi.org/10.1016/0306-3623(95)00051-8] [PMID: 8690247]
[81]
Tsai, W.J.; Lin, Y.L.; Ho, Y.C.; Kuo, Y.C. Inhibition of cyclic AMP phosphodiesterase and blockage of arachidonate metabolism by antiplatelet principles from the seed hulls of Arachis hypogaea L. Chung Kuo Yao Hsueh Tsa Chih, 2003, 55, 335-345.
[82]
Maschi, O.; Cero, E.D.; Galli, G.V.; Caruso, D.; Bosisio, E.; Dell’Agli, M. Inhibition of human cAMP-phosphodiesterase as a mechanism of the spasmolytic effect of Matricaria recutita L. J. Agric. Food Chem., 2008, 56(13), 5015-5020.
[http://dx.doi.org/10.1021/jf800051n] [PMID: 18553893]
[83]
Dell’Agli, M.; Galli, G.V.; Dal Cero, E.; Belluti, F.; Matera, R.; Zironi, E.; Pagliuca, G.; Bosisio, E. Potent inhibition of human phosphodiesterase-5 by icariin derivatives. J. Nat. Prod., 2008, 71(9), 1513-1517.
[http://dx.doi.org/10.1021/np800049y] [PMID: 18778098]
[84]
Liao, H.; Jacob, R. [Chinese herbal drugs for erectile dysfunction through NO-cGMP-PDE5 signaling pathway]. Zhonghua Nan Ke Xue, 2012, 18(3), 260-265.
[PMID: 22474995]
[85]
Jin, F.; Gong, Q.H.; Xu, Y.S.; Wang, L.N.; Jin, H.; Li, F.; Li, L.S.; Ma, Y.M.; Shi, J.S. Icariin, a phosphodiesterase-5 inhibitor, improves learning and memory in APP/PS1 transgenic mice by stimulation of NO/cGMP signalling. Int. J. Neuropsychopharmacol., 2014, 17(6), 871-881.
[http://dx.doi.org/10.1017/S1461145713001533] [PMID: 24513083]
[86]
Dell’Agli, M.; Maschi, O.; Galli, G.V.; Fagnani, R.; Dal Cero, E.; Caruso, D.; Bosisio, E. Inhibition of platelet aggregation by olive oil phenols via cAMP-phosphodiesterase. Br. J. Nutr., 2008, 99(5), 945-951.
[http://dx.doi.org/10.1017/S0007114507837470] [PMID: 17927845]
[87]
Rauf, A.; Saleem, M.; Uddin, G.; Siddiqui, B.S.; Khan, H.; Raza, M.; Hamid, S.Z.; Khan, A.; Maione, F.; Mascolo, N.; De Feo, V. Phosphodiesterase-1 inhibitory activity of two flavonoids isolated from Pistacia integerrima J. L. Stewart galls. Evid-Based Complement. Evid. Based Complement. Alternat. Med., 2015, 2015, 506564.
[http://dx.doi.org/10.1155/2015/506564] [PMID: 25945110]
[88]
Saponara, R.; Bosisio, E. Inhibition of cAMP-phosphodiesterase by biflavones of Ginkgo biloba in rat adipose tissue. J. Nat. Prod., 1998, 61(11), 1386-1387.
[http://dx.doi.org/10.1021/np970569m] [PMID: 9834158]
[89]
Dell’Agli, M.; Galli, G.V.; Bosisio, E. Inhibition of cGMP-phosphodiesterase-5 by biflavones of Ginkgo biloba. Planta Med., 2006, 72(5), 468-470.
[http://dx.doi.org/10.1055/s-2005-916236] [PMID: 16557462]
[90]
Bagga, S.; Straney, D. Modulation of cAMP and phosphodiesterase activity by flavonoids which induce spore germination of Nectria haematococca MP VI (Fusarium solani). Physiol. Mol. Plant Pathol., 2000, 56(2), 51-61.
[http://dx.doi.org/10.1006/pmpp.1999.0247]
[91]
Ko, W.C.; Wang, H.L.; Lei, C.B.; Shih, C.H.; Chung, M.I.; Lin, C.N. Mechanisms of relaxant action of 3-O-methylquercetin in isolated guinea pig trachea. Planta Med., 2002, 68(1), 30-35.
[http://dx.doi.org/10.1055/s-2002-20059] [PMID: 11842323]
[92]
Ko, W.C.; Chen, M.C.; Wang, S.H.; Lai, Y.H.; Chen, J.H.; Lin, C.N. 3-O-methylquercetin more selectively inhibits phosphodiesterase subtype 3. Planta Med., 2003, 69(4), 310-315.
[http://dx.doi.org/10.1055/s-2003-38874] [PMID: 12709896]
[93]
Liu, Y.N.; Huang, Y.Y.; Bao, J.M.; Cai, Y.H.; Guo, Y.Q.; Liu, S.N.; Luo, H.B.; Yin, S. Natural phosphodiesterase-4 (PDE4) inhibitors from Crotalaria ferruginea. Fitoterapia, 2014, 94, 177-182.
[http://dx.doi.org/10.1016/j.fitote.2014.02.010] [PMID: 24594242]
[94]
Fontenele, J.B.; Leal, L.K.A.M.; Ferreira, M.A.D.; Silveira, E.R.; Viana, G.S.B. Antiplatelet effect of lonchocarpin and derricin isolated from Lonchocarpus sericeus. Pharm. Biol., 2005, 43(8), 726-731.
[http://dx.doi.org/10.1080/13880200500387406]
[95]
Nagai, H.; He, J.X.; Tani, T.; Akao, T. Antispasmodic activity of licochalcone A, a species-specific ingredient of Glycyrrhiza inflata roots. J. Pharm. Pharmacol., 2007, 59(10), 1421-1426.
[http://dx.doi.org/10.1211/jpp.59.10.0013] [PMID: 17910818]
[96]
Matsunaga, K.; Shibuya, M.; Ohizumi, Y. Imperanene, a novel phenolic compound with platelet aggregation inhibitory activity from Imperata cylindrica. J. Nat. Prod., 1995, 58(1), 138-139.
[http://dx.doi.org/10.1021/np50115a022] [PMID: 7760071]
[97]
Yu, S.M.; Cheng, Z.J.; Kuo, S.C. Endothelium-dependent relaxation of rat aorta by butein, a novel cyclic AMP-specific phosphodiesterase inhibitor. Eur. J. Pharmacol., 1995, 280(1), 69-77.
[http://dx.doi.org/10.1016/0014-2999(95)00190-V] [PMID: 7498256]
[98]
Ahmad, V.U.; Abbasi, M.A.; Zubair, M.; Fatima, N.; Farooq, U.; Choudhary, M.I. Phosphodiesterase-inhibiting glycosides from Symplocos racemosa. Helv. Chim. Acta, 2004, 87(1), 67-72.
[http://dx.doi.org/10.1002/hlca.200490018]
[99]
Abbasi, M.A.; Ahmad, V.U.; Zubair, M.; Fatima, N.; Farooq, U.; Hussain, S.; Lodhi, M.A.; Choudhary, M.I. Phosphodiesterase and thymidine phosphorylase-inhibiting salirepin derivatives from Symplocos racemosa. Planta Med., 2004, 70(12), 1189-1194.
[http://dx.doi.org/10.1055/s-2004-835850] [PMID: 15643556]
[100]
Chai, X.Y.; Li, F.F.; Bai, C.C.; Xu, Z.R.; Shi, H.M.; Tu, P.F. Three new acylated glycosides from the stems of Casearia velutina and their protective effect against H2O2-induced impairment in PC12 cells. Planta Med., 2010, 76(1), 91-93.
[http://dx.doi.org/10.1055/s-0029-1185902] [PMID: 19591090]
[101]
Lu, Y.N.; Chai, X.Y.; Xu, Z.R.; Bi, D.; Ren, H.Y.; Zhao, M.; Tu, P.F. Three new phenolic glycosides and a new triterpenoid from the stems of Scolopia chinensis. Planta Med., 2010, 76(4), 358-361.
[http://dx.doi.org/10.1055/s-0029-1186157] [PMID: 19790034]
[102]
Atta-ur-, Rahman; Naz, H.; Fadimatou, .; Makhmoor, T.; Yasin, A.; Fatima, N.; Ngounou, F.A.; Kimbu, S.F.; Sondengam, B.L.; Choudhary, M.I. Bioactive constituents from Boswellia papyrifera. J. Nat. Prod., 2005, 68(2), 189-193.
[http://dx.doi.org/10.1021/np040142x] [PMID: 15730241]
[103]
Dell’Agli, M.; Galli, G.V.; Vrhovsek, U.; Mattivi, F.; Bosisio, E. In vitro inhibition of human cGMP-specific phosphodiesterase-5 by polyphenols from red grapes. J. Agric. Food Chem., 2005, 53(6), 1960-1965.
[http://dx.doi.org/10.1021/jf048497+] [PMID: 15769121]
[104]
Zhu, X.; Li, W.; Li, Y.; Xu, W.; Yuan, Y.; Zheng, V.; Zhang, H.; O’Donnell, J.M.; Xu, Y.; Yin, X. The antidepressant- and anxiolytic-like effects of resveratrol: Involvement of phosphodiesterase-4D inhibition. Neuropharmacology, 2019, 153, 20-31.
[http://dx.doi.org/10.1016/j.neuropharm.2019.04.022] [PMID: 31026437]
[105]
Chen, S.K.; Zhao, P.; Shao, Y.X.; Li, Z.; Zhang, C.; Liu, P.; He, X.; Luo, H.B.; Hu, X. Moracin M from Morus alba L. is a natural phosphodiesterase-4 inhibitor. Bioorg. Med. Chem. Lett., 2012, 22(9), 3261-3264.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.026] [PMID: 22483586]
[106]
Tian, L.W.; Feng, Y.; Tran, T.D.; Shimizu, Y.; Pfeifer, T.; Forster, P.I.; Quinn, R.J. Tyrosyl-DNA phosphodiesterase inhibitors from the Australian plant Macropteranthes leichhardtii. J. Nat. Prod., 2015, 78(7), 1756-1760.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00211] [PMID: 26149757]
[107]
Rauf, A.; Orhan, I.E.; Ertas, A.; Temel, H.; Hadda, T.B.; Saleem, M.; Raza, M.; Khan, H. Elucidation of phosphodiesterase-1 inhibitory effect of some selected natural polyphenolics using in vitro and in silico methods. Curr. Top. Med. Chem., 2017, 17(4), 412-417.
[http://dx.doi.org/10.2174/1568026616666160824103615] [PMID: 27558680]
[108]
Sharma, R.K.; Kalra, J. Ginsenosides are potent and selective inhibitors of some calmodulin-dependent phosphodiesterase isozymes. Biochemistry, 1993, 32(19), 4975-4978.
[http://dx.doi.org/10.1021/bi00070a001] [PMID: 8388250]
[109]
Stancheva, S.L.; Alova, L.G. Ginsenoside Rg1 inhibits the brain cAMP phosphodiesterase activity in young and aged rats. Gen. Pharmacol., 1993, 24(6), 1459-1462.
[http://dx.doi.org/10.1016/0306-3623(93)90435-Z] [PMID: 8112520]
[110]
Nakamura, O.; Mimaki, Y.; Sashida, Y.; Nikaido, T.; Ohmoto, T. Agapanthussaponins A-D, new potent cAMP phosphodiesterase inhibitors from the underground parts of Agapanthus inapertus. Chem. Pharm. Bull. (Tokyo), 1993, 41(10), 1784-1789.
[http://dx.doi.org/10.1248/cpb.41.1784] [PMID: 8281575]
[111]
Nakamura, O.; Mimaki, Y.; Sashida, Y.; Nikaido, T.; Ohmoto, T. Three new furostanol saponins from the bulbs of Ipheion uniflorum. Chem. Pharm. Bull. (Tokyo), 1994, 42(5), 1116-1122.
[http://dx.doi.org/10.1248/cpb.42.1116] [PMID: 8069965]
[112]
Mimaki, Y.; Takaashi, Y.; Kuroda, M.; Sashida, Y.; Nikaido, T. Steroidal saponins from Nolina recurvata stems and their inhibitory activity on cyclic AMP phosphodiesterase. Phytochemistry, 1996, 42(6), 1609-1615.
[http://dx.doi.org/10.1016/0031-9422(96)00107-0] [PMID: 8783838]
[113]
José Luis Ríos, J.L.; Giner, R.M.; Prieto, J.M. New findings on the bioactivity of lignans. Studies in Natural Products Chemistry; Atta-ur-, Rahman, Ed.; Elsevier 2002, 26, p. 237.
[http://dx.doi.org/10.1016/S1572-5995(02)80008-4]
[114]
Zhong, J.; Huang, Y.; Ding, W.; Wu, X.; Wan, J.; Luo, H. Chemical constituents of Aloe barbadensis Miller and their inhibitory effects on phosphodiesterase-4D. Fitoterapia, 2013, 91, 159-165.
[http://dx.doi.org/10.1016/j.fitote.2013.08.027] [PMID: 24028970]
[115]
Zhong, J.S.; Huang, Y.Y.; Zhang, T.H.; Liu, Y.P.; Ding, W.J.; Wu, X.F.; Xie, Z.Y.; Luo, H.B.; Wan, J.Z. Natural phosphodiesterase-4 inhibitors from the leaf skin of Aloe barbadensis Miller. Fitoterapia, 2015, 100, 68-74.
[http://dx.doi.org/10.1016/j.fitote.2014.11.018] [PMID: 25449426]
[116]
Tawata, M.; Yoda, Y.; Aida, K.; Shindo, H.; Sasaki, H.; Chin, M.; Onaya, T. Anti-platelet action of GU-7, a 3-arylcoumarin derivative, purified from glycyrrhizae radix. Planta Med., 1990, 56(3), 259-263.
[http://dx.doi.org/10.1055/s-2006-960951] [PMID: 2392489]
[117]
Kusano, A.; Nikaido, T.; Kuge, T.; Ohmoto, T.; Delle Monache, G.; Botta, B.; Botta, M.; Saitoh, T. Inhibition of adenosine 3′,5′-cyclic monophosphate phosphodiesterase by flavonoids from licorice roots and 4-arylcoumarins. Chem. Pharm. Bull. (Tokyo), 1991, 39(4), 930-933.
[http://dx.doi.org/10.1248/cpb.39.930] [PMID: 1654220]
[118]
Teng, C.M.; Lin, C.H.; Ko, F.N.; Wu, T.S.; Huang, T.F. The relaxant action of osthole isolated from Angelica pubescens in guinea-pig trachea. Naunyn Schmiedebergs Arch. Pharmacol., 1994, 349(2), 202-208.
[http://dx.doi.org/10.1007/BF00169838] [PMID: 8170504]
[119]
Wei, X.H.; Zhang, S.J.; Xia, G.X.; Fu, S.; Wang, W.; Shen, J.S.; Ji, R.Y. Inhibitation of coumarins in Cnidium monnieri Cusson and Angelian dahurica on PDE5. Chung Kuo Yao Hsueh Tsa Chih, 2006, 41, 100-102.
[120]
Kawamura, M.; Kagata, M.; Masaki, E.; Nishi, H. Phyllodulcin, a constituent of “Amacha”, inhibits phosphodiesterase in bovine adrenocortical cells. Pharmacol. Toxicol., 2002, 90(2), 106-108.
[http://dx.doi.org/10.1034/j.1600-0773.2002.900209.x] [PMID: 12071425]
[121]
Sato, Y.; Akao, T.; He, J.X.; Nojima, H.; Kuraishi, Y.; Morota, T.; Asano, T.; Tani, T. Glycycoumarin from Glycyrrhizae Radix acts as a potent antispasmodic through inhibition of phosphodiesterase 3. J. Ethnopharmacol., 2006, 105(3), 409-414.
[http://dx.doi.org/10.1016/j.jep.2005.11.017] [PMID: 16387459]
[122]
Lin, T.T.; Huang, Y.Y.; Tang, G.H.; Cheng, Z.B.; Liu, X.; Luo, H.B.; Yin, S. Prenylated coumarins: Natural phosphodiesterase-4 inhibitors from Toddalia asiatica. J. Nat. Prod., 2014, 77(4), 955-962.
[http://dx.doi.org/10.1021/np401040d] [PMID: 24597921]
[123]
Ikeda, Y.; Sugiura, M.; Fukaya, C.; Yokoyama, K.; Hashimoto, Y.; Kawanishi, K.; Moriyasu, M. Periandradulcins A, B and C: Phosphodiesterase inhibitors from Periandra dulcis Mart. Chem. Pharm. Bull. (Tokyo), 1991, 39(3), 566-571.
[http://dx.doi.org/10.1248/cpb.39.566] [PMID: 2070439]
[124]
Jia, Z.; Koike, K.; Nikaido, T.; Ohmoto, T. Two novel triterpenoid pentasaccharides with an unusual glycosyl glycerol side chain from Ardisia crenata. Tetrahedron, 1994, 50(41), 11853-11864.
[http://dx.doi.org/10.1016/S0040-4020(01)89300-5]
[125]
Fatima, N.; Tapondjou, L.A.; Lontsi, D.; Sondengam, B.L.; Atta-Ur-Rahman, ; Choudhary, M.I. Quinovic acid glycosides from Mitragyna stipulosa--first examples of natural inhibitors of snake venom phosphodiesterase I. Nat. Prod. Lett., 2002, 16(6), 389-393.
[http://dx.doi.org/10.1080/10575630290033169] [PMID: 12462343]
[126]
Mostafa, M.; Nahar, N.; Mosihuzzaman, M.; Sokeng, S.D.; Fatima, N.; Atta-Ur-Rahman, ; Choudhary, M.I. Phosphodiesterase-I inhibitor quinovic acid glycosides from Bridelia ndellensis. Nat. Prod. Res., 2006, 20(7), 686-692.
[http://dx.doi.org/10.1080/14786410600661658] [PMID: 16901813]
[127]
Weniger, B.; Lobstein, A.; Um, B.H.; Vonthron-Sénéchau, C.; Anton, R.; Usuga, N.J.; Basaran, H.; Lugnier, C. Bioactive triterpenoids from Vochysia pacifica interact with cyclic nucleotide phosphodiesterase isozyme PDE4. Phytother. Res., 2005, 19(1), 75-77.
[http://dx.doi.org/10.1002/ptr.1613] [PMID: 15798995]
[128]
Kim, J.; Jang, D.S.; Kim, H.; Kim, J.S. Anti-lipase and lipolytic activities of ursolic acid isolated from the roots of Actinidia arguta. Arch. Pharm. Res., 2009, 32(7), 983-987.
[http://dx.doi.org/10.1007/s12272-009-1702-3] [PMID: 19641878]
[129]
Sakurai, H.; Nikaido, T.; Ohmoto, T.; Ikeya, Y.; Mitsuhashi, H. Inhibitors of adenosine 3′,5′-cyclic monophosphate phosphodiesterase from Schisandra chinensis and the structure activity relationship of lignans. Chem. Pharm. Bull. (Tokyo), 1992, 40(5), 1191-1195.
[http://dx.doi.org/10.1248/cpb.40.1191]
[130]
Rojas, S.; Acevedo, L.; Macías, M.; Toscano, R.A.; Bye, R.; Timmermann, B.; Mata, R. Calmodulin inhibitors from Leucophyllum ambiguum. J. Nat. Prod., 2003, 66(2), 221-224.
[http://dx.doi.org/10.1021/np020346i] [PMID: 12608853]
[131]
Cheng, Z.B.; Lu, X.; Bao, J.M.; Han, Q.H.; Dong, Z.; Tang, G.H.; Gan, L.S.; Luo, H.B.; Yin, S. (±)-Torreyunlignans A-D, rare 8-9′ linked neolignan enantiomers as phosphodiesterase-9A inhibitors from Torreya yunnanensis. J. Nat. Prod., 2014, 77(12), 2651-2657.
[http://dx.doi.org/10.1021/np500528u] [PMID: 25495612]
[132]
Sung, Y.; Koike, K.; Nikaido, T.; Ohmoto, T.; Sankawa, U. Inhibitors of cyclic AMP phosphodiesterase in Picrasma quassioides Bennet, and inhibitory activities of related β-carboline alkaloids. Chem. Pharm. Bull. (Tokyo), 1984, 32(5), 1872-1877.
[http://dx.doi.org/10.1248/cpb.32.1872] [PMID: 6088097]
[133]
Lin, C.H.; Ko, F.N.; Wu, Y.C.; Lu, S.T.; Teng, C.M. The relaxant actions on guinea-pig trachealis of atherosperminine isolated from Fissistigma glaucescens. Eur. J. Pharmacol., 1993, 237(1), 109-116.
[http://dx.doi.org/10.1016/0014-2999(93)90099-4] [PMID: 8395388]
[134]
Wang, J.; Zhao, Z.; Yao, W.; Jiang, M. Effects of lotusine on the action potentials in myocardium and slow inward current in cardiac purkinje fibers. Chin. Pharmacol. Bull., 1999, 15, 524-527.
[135]
Hwang, K.H.; Han, Y.N.; Han, B.H. Inhibition of calmodulin-dependent calcium-ATPase and phosphodiesterase by various cyclopeptides and peptide alkaloids from the Zizyphus species. Arch. Pharm. Res., 2001, 24(3), 202-206.
[http://dx.doi.org/10.1007/BF02978257] [PMID: 11440077]
[136]
Hsu, Y.T.; Liao, G.; Bi, X.; Oka, T.; Tamura, S.; Baudry, M. The PDE10A inhibitor, papaverine, differentially activates ERK in male and female rat striatal slices. Neuropharmacology, 2011, 61(8), 1275-1281.
[http://dx.doi.org/10.1016/j.neuropharm.2011.07.030] [PMID: 21816164]
[137]
Deshmukh, R.; Sharma, V.; Mehan, S.; Sharma, N.; Bedi, K.L. Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine -- a PDE1 inhibitor. Eur. J. Pharmacol., 2009, 620(1-3), 49-56.
[http://dx.doi.org/10.1016/j.ejphar.2009.08.027] [PMID: 19699735]
[138]
Sutherland, E.W.; Rall, T.W. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J. Biol. Chem., 1958, 232(2), 1077-1091.
[http://dx.doi.org/10.1016/S0021-9258(19)77423-7] [PMID: 13549488]
[139]
Butcher, R.W.; Sutherland, E.W. Adenosine 3′,5′-phosphate in biological materials. I. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine. J. Biol. Chem., 1962, 237(4), 1244-1250.
[http://dx.doi.org/10.1016/S0021-9258(18)60316-3] [PMID: 13875173]
[140]
Ardlie, N.G.; Glew, G.; Schultz, B.G.; Schwartz, C.J. Inhibition and reversal of platelet aggregation by methyl xanthines. Thromb. Diath. Haemorrh., 1967, 18(3-4), 670-673.
[http://dx.doi.org/10.1055/s-0038-1655076] [PMID: 4968854]
[141]
Mills, D.C.B.; Smith, J.B. The influence on platelet aggregation of drugs that affect the accumulation of adenosine 3′:5′-cyclic monophosphate in platelets. Biochem. J., 1971, 121(2), 185-196.
[http://dx.doi.org/10.1042/bj1210185] [PMID: 4330088]
[142]
Varani, K.; Portaluppi, F.; Merighi, S.; Ongini, E.; Belardinelli, L.; Borea, P.A. Caffeine alters A2A adenosine receptors and their function in human platelets. Circulation, 1999, 99(19), 2499-2502.
[http://dx.doi.org/10.1161/01.CIR.99.19.2499] [PMID: 10330379]
[143]
Jackson, M.R.; Clagett, G.P. Antithrombotic therapy in peripheral arterial occlusive disease. Chest, 2001, 119(1)(Suppl.), 283S-299S.
[http://dx.doi.org/10.1378/chest.119.1_suppl.283S] [PMID: 11157655]
[144]
Nenci, G.G.; Gresele, P.; Agnelli, G.; Ballatori, E. Effect of pentoxifylline on platelet aggregation. Pharmatherapeutica, 1981, 2(8), 532-538.
[PMID: 7255510]
[145]
Weithmann, K.U. The influence of pentoxifylline on interaction between blood vessel wall and platelets. IRCS Med. Sci., 1980, 8, 293-294.
[146]
Manrique, R.V.; Manrique, V. Platelet resistance to prostacyclin. Enhancement of the antiaggregatory effect of prostacyclin by pentoxifylline. Angiology, 1987, 38(2 Pt 1), 101-108.
[http://dx.doi.org/10.1177/000331978703800202] [PMID: 3030162]
[147]
Ribaudo, G.; Pagano, M.A.; Pavan, V.; Redaelli, M.; Zorzan, M.; Pezzani, R.; Mucignat-Caretta, C.; Vendrame, T.; Bova, S.; Zagotto, G. Semi-synthetic derivatives of natural isoflavones from Maclura pomifera as a novel class of PDE-5A inhibitors. Fitoterapia, 2015, 105, 132-138.
[http://dx.doi.org/10.1016/j.fitote.2015.06.020] [PMID: 26136059]
[148]
Ongaro, A.; Zagotto, G.; Memo, M.; Gianoncelli, A.; Ribaudo, G. Natural phosphodiesterase 5 (PDE5) inhibitors: A computational approach. Nat. Prod. Res., 2021, 35(10), 1648-1653.
[http://dx.doi.org/10.1080/14786419.2019.1619726] [PMID: 31140295]
[149]
Kumar, A.; Sharma, V.; Singh, V.P.; Kaundal, M.; Gupta, M.K.; Bariwal, J.; Deshmukh, R. Herbs to curb cyclic nucleotide phosphodiesterase and their potential role in Alzheimer’s disease. Mech. Ageing Dev., 2015, 149, 75-87.
[http://dx.doi.org/10.1016/j.mad.2015.05.009] [PMID: 26050556]
[150]
Ribaudo, G.; Ongaro, A.; Zagotto, G.; Memo, M.; Gianoncelli, A. Therapeutic potential of phosphodiesterase (PDE) inhibitors against neurodegeneration: The perspective of the medicinal chemist. ACS Chem. Neurosci., 2020, 11(12), 1726-1739.
[http://dx.doi.org/10.1021/acschemneuro.0c00244] [PMID: 32401481]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy