Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Disease Burden and Current Therapeutical Status of Leprosy with Special Emphasis on Phytochemicals

Author(s): Shasank Sekhar Swain, Gunanidhi Sahoo, Pravati Kumari Mahapatra and Sujogya Kumar Panda*

Volume 22, Issue 19, 2022

Published on: 09 September, 2021

Page: [1611 - 1625] Pages: 15

DOI: 10.2174/1568026621666210909162435

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Leprosy (Hansen’s disease) is a neglected tropical disease affecting millions of people globally. The combined formulations of dapsone, rifampicin and clofazimine (multidrug therapy, MDT) is only supportive in the early stage of detection, while “reemergence” is a significant problem. Thus, there is still a need to develop newer antileprosy molecules either of natural or semi-synthetic origin.

Objectives: The review intends to present the latest developments in the disease prevalence, available therapeutic interventions and the possibility of identifying new molecules from phytoextracts.

Methods: Literature on the use of plant extracts and their active components to treat leprosy was searched. Selected phytoconstituents were subjected to molecular docking study on both wild and mutant types of the Mycobacterium leprae. Since the M. leprae dihydropteroate synthase (DHPS) is not available in the protein data bank (PDB), it was modelled by the homology model method and validated with the Ramachandran plot along with other bioinformatics approaches. Two mutations were introduced at codons 53 (Thr to Ile) and 55 (Pro to Leu) for docking against twenty-five selected phytoconstituents reported from eight plants that recorded effective anti-leprosy activity. The chemical structure of phytochemicals and the standard dapsone structure were retrieved from the PubChem database and prepared accordingly for docking study with the virtual-screening platform of PyRx-AutoDock 4.1.

Results: Based on the docking score (kcal/mol), most of the phytochemicals exhibited a higher docking score than dapsone. Asiaticoside, an active saponin (-11.3, -11.2 and -11.2 kcal/mol), was proved to be the lead phytochemical against both wild and mutant types DHPS. Some other useful phytoconstituents include echinocystic acid (-9.6, -9.5 and -9.5 kcal/mol), neobavaisoflavone (-9.2, -9.0 and -9.0 kcal/mol), boswellic acid (-8.90, -8.90 and -8.90 kcal/mol), asiatic acid (-8.9, -8.8 and -8.9 kcal/mol), corylifol A (-8.8, 8.0, and -8.0), etc. Overall, the computational predictions support the previously reported active phytoextracts of Centella asiatica (L.) Urban, Albizia amara (Roxb.) Boivin, Boswellia serrata Roxb. and Psoralea corylifolia L. to be effective against leprosy.

Conclusion: A very small percentage of well-known plants have been evaluated scientifically for antileprosy activity. Further in vivo experiments are essential to confirm anti-leprosy properties of such useful phytochemicals.

Keywords: Anti-leprosy, Dapsone, Ethnomedicinal plants, Hansen’s disease, Molecular docking, Phytochemicals.

Graphical Abstract
[1]
WHO. Leprosy: new data show steady decline in new cases. 2019. Available from: https://www.who.int/neglected_diseases/news/Leprosy-new-data-show-steady-decline-in-new-cases/en/ (Assessed on 24 April 2021)
[2]
Gelber, R.H.; Grosset, J. The chemotherapy of leprosy: An interpretive history. Lepr. Rev., 2012, 83(3), 221-240.
[http://dx.doi.org/10.47276/lr.83.3.221] [PMID: 23356023]
[3]
Cambau, E.; Perani, E.; Guillemin, I.; Jamet, P.; Ji, B. Multidrug-resistance to dapsone, rifampicin, and ofloxacin in Mycobacterium leprae. Lancet, 1997, 349(9045), 103-104.
[http://dx.doi.org/10.1016/S0140-6736(05)60888-4] [PMID: 8996430]
[4]
Polycarpou, A.; Walker, S.L.; Lockwood, D.N.J. New findings in the pathogenesis of leprosy and implications for the management of leprosy. Curr. Opin. Infect. Dis., 2013, 26(5), 413-419.
[http://dx.doi.org/10.1097/QCO.0b013e3283638b04] [PMID: 23982232]
[5]
Cogen, A.L.; Walker, S.L.; Roberts, C.H.; Hagge, D.A.; Neupane, K.D.; Khadge, S.; Lockwood, D.N. Human beta-defensin 3 is up-regulated in cutaneous leprosy type 1 reactions. PLoS Negl. Trop. Dis., 2012, 6(11), e1869.
[http://dx.doi.org/10.1371/journal.pntd.0001869] [PMID: 23133681]
[6]
Graham, A.; Furlong, S.; Margoles, L.M. Clinical management of leprosy reactions. Infect. Dis. Clin. Pract., 2010, 18, 235-238.
[http://dx.doi.org/10.1097/IPC.0b013e3181deba2a]
[7]
Parkash, O. Classification of leprosy into multibacillary and paucibacillary groups: An analysis. FEMS Immunol. Med. Microbiol., 2009, 55(1), 1-5.
[http://dx.doi.org/10.1111/j.1574-695X.2008.00491.x] [PMID: 19040664]
[8]
Kumaran, S.M.; Bhat, I.P.; Madhukara, J.; Rout, P.; Elizabeth, J. Comparison of bacillary index on slit skin smear with bacillary index of granuloma in leprosy and its relevance to present therapeutic regimens. Indian J. Dermatol., 2015, 60(1), 51-54.
[http://dx.doi.org/10.4103/0019-5154.147791] [PMID: 25657397]
[9]
Pinheiro, R.O.; de Souza Salles, J.; Sarno, E.N.; Sampaio, E.P. Mycobacterium leprae-host-cell interactions and genetic determinants in leprosy: An overview. Future Microbiol., 2011, 6(2), 217-230.
[http://dx.doi.org/10.2217/fmb.10.173] [PMID: 21366421]
[10]
Franzblau, S.G. Drug susceptibility testing of Mycobacterium leprae in the BACTEC 460 system. Antimicrob. Agents Chemother., 1989, 33(12), 2115-2117.
[http://dx.doi.org/10.1128/AAC.33.12.2115] [PMID: 2694952]
[11]
Franzblau, S.G.; Biswas, A.N.; Jenner, P.; Colston, M.J. Double-blind evaluation of BACTEC and Buddemeyer-type radiorespirometric assays for in vitro screening of antileprosy agents. Lepr. Rev., 1992, 63(2), 125-133.
[http://dx.doi.org/10.5935/0305-7518.19920016] [PMID: 1640779]
[12]
Sengupta, U. Recent laboratory advances in diagnostics and monitoring response to treatment in leprosy. Indian Dermatol. Online J., 2019, 10(2), 106-114.
[PMID: 30984583]
[13]
Martinez, A.N.; Talhari, C.; Moraes, M.O.; Talhari, S. PCR-based techniques for leprosy diagnosis: from the laboratory to the clinic. PLoS Negl. Trop. Dis., 2014, 8(4), e2655.
[http://dx.doi.org/10.1371/journal.pntd.0002655] [PMID: 24722358]
[14]
WHO. Global leprosy update, 2018: moving towards a leprosy free world 2018. Available from: https://apps.who.int/iris/bitstream/handle/10665/326775/WER9435-36-en-fr.pdf?ua=1(Assessed on 24 April 2021)
[15]
WHO. Leprosy (Hansen’s disease). , 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/leprosy
[16]
Rao, P.N.; Suneetha, S. Situation of leprosy in India and its future implications. Indian Dermatol. Online J., 2018, 9(2), 83-89.
[http://dx.doi.org/10.4103/idoj.IDOJ_282_17] [PMID: 29644191]
[17]
Jing, Z.; Zhang, R.; Zhou, D.; Chen, J. Twenty five years follow up of MB leprosy patients retreated with a modified MDT regimen after a full course of dapsone mono-therapy. Lepr. Rev., 2009, 80(2), 170-176.
[PMID: 19743621]
[18]
Cambau, E.; Saunderson, P.; Matsuoka, M.; Cole, S.T.; Kai, M.; Suffys, P.; Rosa, P.S.; Williams, D.; Gupta, U.D.; Lavania, M.; Cardona-Castro, N.; Miyamoto, Y.; Hagge, D.; Srikantam, A.; Hongseng, W.; Indropo, A.; Vissa, V.; Johnson, R.C.; Cauchoix, B.; Pannikar, V.K.; Cooreman, E.A.W.D.; Pemmaraju, V.R.R.; Gillini, L. Antimicrobial resistance in leprosy: Results of the first prospective open survey conducted by a WHO surveillance network for the period 2009-15. Clin. Microbiol. Infect., 2018, 24(12), 1305-1310.
[http://dx.doi.org/10.1016/j.cmi.2018.02.022] [PMID: 29496597]
[19]
Williams, D.L.; Lewis, C.; Sandoval, F.G.; Robbins, N.; Keas, S.; Gillis, T.P.; Scollard, D.M. Drug resistance in patients with leprosy in the United States. Clin. Infect. Dis., 2014, 58(1), 72-73.
[http://dx.doi.org/10.1093/cid/cit628] [PMID: 24065328]
[20]
da Silva Rocha, A.; Cunha, Md.; Diniz, L.M.; Salgado, C.; Aires, M.A.; Nery, J.A.; Gallo, E.N.; Miranda, A.; Magnanini, M.M.; Matsuoka, M.; Sarno, E.N.; Suffys, P.N.; de Oliveira, M.L. Drug and multidrug resistance among Mycobacterium leprae isolates from Brazilian relapsed leprosy patients. J. Clin. Microbiol., 2012, 50(6), 1912-1917.
[http://dx.doi.org/10.1128/JCM.06561-11] [PMID: 22495562]
[21]
Swain, S.S.; Paidesetty, S.K.; Dehury, B.; Sahoo, J.; Vedithi, S.C.; Mahapatra, N.; Hussain, T.; Padhy, R.N. Molecular docking and simulation study for synthesis of alternative dapsone derivative as a newer antileprosy drug in multidrug therapy. J. Cell. Biochem., 2018, 119(12), 9838-9852.
[http://dx.doi.org/10.1002/jcb.27304] [PMID: 30125973]
[22]
Nakata, N.; Kai, M.; Makino, M. Mutation analysis of the Mycobacterium leprae folP1 gene and dapsone resistance. Antimicrob. Agents Chemother., 2011, 55(2), 762-766.
[http://dx.doi.org/10.1128/AAC.01212-10] [PMID: 21115799]
[23]
Kai, M.; Matsuoka, M.; Nakata, N.; Maeda, S.; Gidoh, M.; Maeda, Y.; Hashimoto, K.; Kobayashi, K.; Kashiwabara, Y. Diaminodiphenylsulfone resistance of Mycobacterium leprae due to mutations in the dihydropteroate synthase gene. FEMS Microbiol. Lett., 1999, 177(2), 231-235.
[http://dx.doi.org/10.1111/j.1574-6968.1999.tb13737.x] [PMID: 10474189]
[24]
Lavania, M.; Jadhav, R.S.; Chaitanya, V.S.; Turankar, R.; Selvasekhar, A.; Das, L.; Darlong, F.; Hambroom, U.K.; Kumar, S.; Sengupta, U. Drug resistance patterns in Mycobacterium leprae isolates from relapsed leprosy patients attending The Leprosy Mission (TLM) Hospitals in India. Lepr. Rev., 2014, 85(3), 177-185.
[http://dx.doi.org/10.47276/lr.85.3.177] [PMID: 25509718]
[25]
Mahajan, N.P.; Lavania, M.; Singh, I.; Nashi, S.; Preethish-Kumar, V.; Vengalil, S.; Polavarapu, K.; Pradeep-Chandra-Reddy, C.; Keerthipriya, M.; Mahadevan, A.; Yasha, T.C.; Nandeesh, B.N.; Gnanakumar, K.; Parry, G.J.; Sengupta, U.; Nalini, A. Evidence for Mycobacterium leprae drug resistance in a large cohort of leprous neuropathy patients from India. Am. J. Trop. Med. Hyg., 2020, 102(3), 547-552.
[http://dx.doi.org/10.4269/ajtmh.19-0390] [PMID: 31933458]
[26]
Zhang, L.; Namisato, M.; Matsuoka, M. A mutation at codon 516 in the rpoB gene of Mycobacterium leprae confers resistance to rifampin. Int. J. Lepr. Other Mycobact. Dis., 2004, 72(4), 468-472.
[http://dx.doi.org/10.1489/1544-581X(2004)72<468:AMACIT>2.0.CO;2] [PMID: 15755201]
[27]
Sekar, B.; Arunagiri, K.; Kumar, B.N.; Narayanan, S.; Menaka, K.; Oommen, P.K. Detection of mutations in folp1, rpoB and gyrA genes of M. leprae by PCR- direct sequencing--a rapid tool for screening drug resistance in leprosy. Lepr. Rev., 2011, 82(1), 36-45.
[PMID: 21644470]
[28]
Vedithi, S.C.; Malhotra, S.; Das, M.; Daniel, S.; Kishore, N.; George, A.; Arumugam, S.; Rajan, L.; Ebenezer, M.; Ascher, D.B.; Arnold, E.; Blundell, T.L. Structural implications of mutations conferring rifampin resistance in Mycobacterium leprae. Sci. Rep., 2018, 8(1), 5016.
[http://dx.doi.org/10.1038/s41598-018-23423-1] [PMID: 29567948]
[29]
Yokoyama, K.; Kim, H.; Mukai, T.; Matsuoka, M.; Nakajima, C.; Suzuki, Y. Amino acid substitutions at position 95 in GyrA can add fluoroquinolone resistance to Mycobacterium leprae. Antimicrob. Agents Chemother., 2012, 56(2), 697-702.
[http://dx.doi.org/10.1128/AAC.05890-11] [PMID: 22106221]
[30]
Matsuoka, M.; Kashiwabara, Y.; Namisato, M. A Mycobacterium leprae isolate resistant to dapsone, rifampin, ofloxacin and sparfloxacin. Int. J. Lepr. Other Mycobact. Dis., 2000, 68(4), 452-455.
[PMID: 11332288]
[31]
Williams, D.L.; Araujo, S.; Stryjewska, B.M.; Scollard, D. Dapsone resistance in leprosy patients originally from American Samoa, United States, 2010-2012. Emerg. Infect. Dis., 2018, 24(8), 1584-1585.
[http://dx.doi.org/10.3201/eid2408.180033] [PMID: 30016255]
[32]
Lazo-Porras, M.; Prutsky, G.J.; Barrionuevo, P.; Tapia, J.C.; Ugarte-Gil, C.; Ponce, O.J.; Acuña-Villaorduña, A.; Domecq, J.P.; De la Cruz-Luque, C.; Prokop, L.J.; Málaga, G. World Health Organization (WHO) antibiotic regimen against other regimens for the treatment of leprosy: A systematic review and meta-analysis. BMC Infect. Dis., 2020, 20(1), 62.
[http://dx.doi.org/10.1186/s12879-019-4665-0] [PMID: 31959113]
[33]
Smith, W.C. Leprosy: Making good progress but hidden challenges remain. Indian J. Med. Res., 2013, 137(1), 1-3.
[PMID: 23481044]
[34]
Naaz, F.; Mohanty, P.S.; Bansal, A.K.; Kumar, D.; Gupta, U.D. Challenges beyond elimination in leprosy. Int. J. Mycobacteriol., 2017, 6(3), 222-228.
[http://dx.doi.org/10.4103/ijmy.ijmy_70_17] [PMID: 28776519]
[35]
Cambau, E.; Bonnafous, P.; Perani, E.; Sougakoff, W.; Ji, B.; Jarlier, V. Molecular detection of rifampin and ofloxacin resistance for patients who experience relapse of multibacillary leprosy. Clin. Infect. Dis., 2002, 34(1), 39-45.
[http://dx.doi.org/10.1086/324623] [PMID: 11731943]
[36]
You, E.Y.; Kang, T.J.; Kim, S.K.; Lee, S.B.; Chae, G.T. Mutations in genes related to drug resistance in Mycobacterium leprae isolates from leprosy patients in Korea. J. Infect., 2005, 50(1), 6-11.
[http://dx.doi.org/10.1016/j.jinf.2004.03.012] [PMID: 15603834]
[37]
Malathi, M.; Thappa, D.M. Fixed-duration therapy in leprosy: Limitations and opportunities. Indian J. Dermatol., 2013, 58(2), 93-100.
[http://dx.doi.org/10.4103/0019-5154.108029] [PMID: 23716796]
[38]
Parascandola, J. Chaulmoogra oil and the treatment of leprosy. Pharm. Hist., 2003, 45(2), 47-57.
[PMID: 12894769]
[39]
Bhat, R.M.; Prakash, C. Leprosy: An overview of pathophysiology. Interdiscip. Perspect. Infect. Dis., 2012., 2012181089.
[http://dx.doi.org/10.1155/2012/181089] [PMID: 22988457]
[40]
White, C.; Franco-Paredes, C. Leprosy in the 21st century. Clin. Microbiol. Rev., 2015, 28(1), 80-94.
[http://dx.doi.org/10.1128/CMR.00079-13] [PMID: 25567223]
[41]
Deps, P.D.; Nasser, S.; Guerra, P.; Simon, M. Birshner, Rde.C.; Rodrigues, L.C. Adverse effects from multi-drug therapy in leprosy: A Brazilian study. Lepr. Rev., 2007, 78(3), 216-222.
[http://dx.doi.org/10.47276/lr.78.3.216] [PMID: 18035772]
[42]
Guragain, S.; Upadhayay, N.; Bhattarai, B.M. Adverse reactions in leprosy patients who underwent dapsone multidrug therapy: A retrospective study. Clin. Pharmacol., 2017, 9, 73-78.
[http://dx.doi.org/10.2147/CPAA.S135846] [PMID: 28721106]
[43]
Gomes Lima Santos, N.; Perez Pereira Ramos, K.; Shanmugam, S.; Oliveira de Carvalho, F.; Garcez Barreto Teixeira, L.; Ramos Silva, É.; de Vasconcelos Cerqueira-Braz, J.; Santos Nunes, P.; Antunes de Souza Araújo, A. New therapeutic patents used for the treatment of leprosy: A review. Epidemiol. Infect., 2018, 146(14), 1746-1749.
[http://dx.doi.org/10.1017/S0950268818002145] [PMID: 30081970]
[44]
Richardus, J.H.; Oskam, L. Protecting people against leprosy: chemoprophylaxis and immunoprophylaxis. Clin. Dermatol., 2015, 33(1), 19-25.
[http://dx.doi.org/10.1016/j.clindermatol.2014.07.009] [PMID: 25432807]
[45]
Setia, M.S.; Steinmaus, C.; Ho, C.S.; Rutherford, G.W. The role of BCG in prevention of leprosy: A meta-analysis. Lancet Infect. Dis., 2006, 6(3), 162-170.
[http://dx.doi.org/10.1016/S1473-3099(06)70412-1] [PMID: 16500597]
[46]
Merle, C.S.; Cunha, S.S.; Rodrigues, L.C. BCG vaccination and leprosy protection: Review of current evidence and status of BCG in leprosy control. Expert Rev. Vaccines, 2010, 9(2), 209-222.
[http://dx.doi.org/10.1586/erv.09.161] [PMID: 20109030]
[47]
Zodpey, S.P.; Ambadekar, N.N.; Thakur, A. Effectiveness of Bacillus Calmette Guerin (BCG) vaccination in the prevention of leprosy: A population-based case-control study in Yavatmal District, India. Public Health, 2005, 119(3), 209-216.
[http://dx.doi.org/10.1016/j.puhe.2004.04.007] [PMID: 15661132]
[48]
Rodrigues, L.C.; Kerr-Pontes, L.R.S.; Frietas, M.V.C.; Barreto, M.L. Long lasting BCG protection against leprosy. Vaccine, 2007, 25(39-40), 6842-6844.
[http://dx.doi.org/10.1016/j.vaccine.2007.07.032] [PMID: 17728023]
[49]
Duthie, M.S.; Pena, M.T.; Ebenezer, G.J.; Gillis, T.P.; Sharma, R.; Cunningham, K.; Polydefkis, M.; Maeda, Y.; Makino, M.; Truman, R.W.; Reed, S.G. LepVax, a defined subunit vaccine that provides effective pre-exposure and post-exposure prophylaxis of M. leprae infection. NPJ Vaccines, 2018, 3, 12.
[http://dx.doi.org/10.1038/s41541-018-0050-z] [PMID: 29619252]
[50]
Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]
[51]
WHO. WHO traditional medicine strategy: 2014-2023 2013. Available from: https://www.who.int/medicines/publications/traditional/trm_strategy14_23/en/ (Assessed on 24 April 2021)
[52]
Ghosh, G. Traditional use of plants against leprosy in India: A review of the recent literature. J. Innov. Pharm. Biol. Sci., 2017, 4, 55-64.
[53]
Dhevi, V.V. Potential medicinal plants to treat leprosy-A review. Res J Pharm Tech, 2018, 11, 813-821.
[http://dx.doi.org/10.5958/0974-360X.2018.00153.1]
[54]
Holzhey, M.; Roth, H.H.; Hoepfner, V. Use of Allicin - urotopin as internal drug for the treatment of infections and cancer PatentGer Offen - 4,024,155, 1992.
[55]
White, R.J.; Martinelli, E.; Lancini, G. Ansamycin biogenesis: studies on a novel rifamycin isolated from a mutant strain of Nocardia mediterranei. Proc. Natl. Acad. Sci. USA, 1974, 71(8), 3260-3264.
[http://dx.doi.org/10.1073/pnas.71.8.3260] [PMID: 4528428]
[56]
Han, S.S.; Chung, S.T.; Robertson, D.A.; Ranjan, D.; Bondada, S. Curcumin causes the growth arrest and apoptosis of B cell lymphoma by downregulation of egr-1, c-myc, bcl-XL, NF-kappa B, and p53. Clin. Immunol., 1999, 93(2), 152-161.
[http://dx.doi.org/10.1006/clim.1999.4769] [PMID: 10527691]
[57]
Naik, S.R.; Thakare, V.N.; Patil, S.R. Protective effect of curcumin on experimentally induced inflammation, hepatotoxicity and cardiotoxicity in rats: Evidence of its antioxidant property. Exp. Toxicol. Pathol., 2011, 63(5), 419-431.
[http://dx.doi.org/10.1016/j.etp.2010.03.001] [PMID: 20363603]
[58]
Shao, Y.; Ho, C.T.; Chin, C.K.; Badmaev, V.; Ma, W.; Huang, M.T. Inhibitory activity of boswellic acids from Boswellia serrata against human leukemia HL-60 cells in culture. Planta Med., 1998, 64(4), 328-331.
[http://dx.doi.org/10.1055/s-2006-957444] [PMID: 9619114]
[59]
Swain, S.S.; Paidesetty, S.K.; Dehury, B.; Das, M.; Vedithi, S.C.; Padhy, R.N. Computer-aided synthesis of dapsone-phytochemical conjugates against dapsone-resistant Mycobacterium leprae. Sci. Rep., 2020, 10(1), 6839.
[http://dx.doi.org/10.1038/s41598-020-63913-9] [PMID: 32322091]
[60]
Gupta, U.D.; Katoch, K.; Katoch, V.M. Study of rifampicin resistance and comparison of dapsone resistance of M. leprae in pre- and post-MDT era. Indian J. Lepr., 2009, 81(3), 131-134.
[PMID: 20509341]
[61]
Roset Bahmanyar, E.; Smith, W.C.; Brennan, P.; Cummings, R.; Duthie, M.; Richardus, J.H.; Saunderson, P.; Shwe, T.; Rosen, S.; Geluk, A. Leprosy diagnostic test development as a prerequisite towards elimination: Requirements from the user’s perspective. PLoS Negl. Trop. Dis., 2016, 10(2), e0004331.
[http://dx.doi.org/10.1371/journal.pntd.0004331] [PMID: 26866699]
[62]
Khare, C.P. Indian medicinal plants: An illustrated dictionary; Springer-Verlag: New York, USA, 2007, pp. 199-201.
[http://dx.doi.org/10.1007/978-0-387-70638-2]
[63]
Shukla, A.; Rasik, A.M.; Jain, G.K.; Shankar, R.; Kulshrestha, D.K.; Dhawan, B.N. In vitro and in vivo wound healing activity of asiaticoside isolated from Centella asiatica. J. Ethnopharmacol., 1999, 65(1), 1-11.
[http://dx.doi.org/10.1016/S0378-8741(98)00141-X] [PMID: 10350364]
[64]
Chaudhuri, S.; Ghosh, S.; Chakraborty, T.; Kundu, S.; Hazra, S.K. Use of a common Indian herb “Mandukaparni” in the treatment of leprosy (preliminary report). J. Indian Med. Assoc., 1978, 70(8), 177-180.
[PMID: 690465]
[65]
Tra, N.H.; Nagan, T.B.; Huong, D.T.M. Chemical constituents from fruits of Hydnocarpus hainanensis Merr. (Flacourtiaceae) in Vietnam. Vietnam J. Chem., 2015, 53, 116-119.
[66]
Yin, S.; Fan, C.Q.; Wang, Y.; Dong, L.; Yue, J.M. Antibacterial prenylflavone derivatives from Psoralea corylifolia, and their structure-activity relationship study. Bioorg. Med. Chem., 2004, 12(16), 4387-4392.
[http://dx.doi.org/10.1016/j.bmc.2004.06.014] [PMID: 15265490]
[67]
Zhao, L.H.; Wu, M.H.; Xiang, B.R. Analysis of Psoralea corylifolia L. fruits in different regions. Chem. Pharm. Bull. (Tokyo), 2005, 53(8), 1054-1057.
[http://dx.doi.org/10.1248/cpb.53.1054] [PMID: 16079549]
[68]
Rajput, S.J.; Vijaya, Z.; Pallavi, R. Studies on extraction, isolation and estimation of Psoralea corylifolia. Pharmacogn. Mag., 2008, 4, 13-18.
[69]
Shinde, A.N.; Malpathak, N.; Fulzele, D.P. Induced high frequency shoot regeneration and enhanced isoflevonces productin in Psoralea corylifolia. Rec. Nat. Prod., 2009, 3, 38-45.
[70]
Swain, S.S.; Singh, S.R.; Sahoo, A.; Hussain, T.; Pati, S. Anti-HIV-drug and phyto-flavonoid combination against SARS-CoV-2: A molecular docking-simulation base assessment. J. Biomol. Struct. Dyn., 2021, 1-14.
[http://dx.doi.org/10.1080/07391102.2021.1885495] [PMID: 33583350]
[71]
Aqil, F.; Munagala, R.; Jeyabalan, J.; Vadhanam, M.V. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett., 2013, 334(1), 133-141.
[http://dx.doi.org/10.1016/j.canlet.2013.02.032] [PMID: 23435377]
[72]
Rathaur, P. S R, J.K. Metabolism and Pharmacokinetics of Phytochemicals in the Human Body. Curr. Drug Metab., 2019, 20(14), 1085-1102.
[http://dx.doi.org/10.2174/1389200221666200103090757] [PMID: 31902349]
[73]
Franzblau, S.G.; Chan, G.P.; Garcia-Ignacio, B.G.; Chavez, V.E.; Livelo, J.B.; Jimenez, C.L.; Parrilla, M.L.; Calvo, R.F.; Williams, D.L.; Gillis, T.P. Clinical trial of fusidic acid for lepromatous leprosy. Antimicrob. Agents Chemother., 1994, 38(7), 1651-1654.
[http://dx.doi.org/10.1128/AAC.38.7.1651] [PMID: 7979302]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy