Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

The Therapeutic Potential of Algal Nanoparticles: A Brief Review

Author(s): Pallavi Singh Chauhan, Dhananjay Yadav* and Jun O. Jin*

Volume 25, Issue 14, 2022

Published on: 10 January, 2022

Page: [2443 - 2451] Pages: 9

DOI: 10.2174/1386207324666210903143832

Price: $65

Open Access Journals Promotions 2
Abstract

Recently, the green synthesis of metallic nanoparticles (NPs) has received tremendous attention as a simple approach. The green pathway of biogenic synthesis of metallic NPs through microbes may provide a sustainable and environmentally friendly protocol. Green technology is the most innovative technology for various biological activities and lacks toxic effects. Reports have shown the algae-mediated synthesis of metal NPs. Algae are widely used for biosynthesis as they grow fast; they produce biomass on average ten times that of plants and are easily utilized experimentally. In the future, the production of metal NPs by different microalgae and their biological activity can be explored in diverse areas such as catalysis, medical diagnosis, and anti-biofilm applications.

Keywords: Algae, algal nanoparticles, metal nanoparticles, biosynthesis, eco-friendly, nanotechnology.

Graphical Abstract
[1]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9(1), 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[2]
Mondal, A.H.; Yadav, D.; Mitra, S.; Mukhopadhyay, K. Biosynthesis of silver nanoparticles using culture supernatant of Shewanella sp. ARY1 and their antibacterial activity. Int. J. Nanomedicine, 2020, 15, 8295-8310.
[http://dx.doi.org/10.2147/IJN.S274535] [PMID: 33149577]
[3]
Mondal, A.H.; Yadav, D.; Ali, A.; Khan, N.; Jin, J.O.; Haq, Q.M.R. Anti-bacterial and anti-candidal activity of silver nanoparticles biosyn-thesized using Citrobacter spp. MS5 culture supernatant. Biomolecules, 2020, 10(6), 944.
[http://dx.doi.org/10.3390/biom10060944] [PMID: 32580522]
[4]
Mohanta, Y.K.; Nayak, D.; Biswas, K.; Singdevsachan, S.K.; Abd Allah, E.F.; Hashem, A.; Alqarawi, A.A.; Yadav, D.; Mohanta, T.K. Silver nanoparticles synthesized using wild mushroom show potential antimicrobial activities against food borne pathogens. Molecules, 2018, 23(3), E655.
[http://dx.doi.org/10.3390/molecules23030655] [PMID: 29538308]
[5]
Soares, S.; Sousa, J.; Pais, A.; Vitorino, C. Nanomedicine: principles, properties, and regulatory issues. Front Chem., 2018, 6, 360.
[http://dx.doi.org/10.3389/fchem.2018.00360] [PMID: 30177965]
[6]
Jonnalagadda, M.; Prasad, V.B.; Raghu, A.V. Synthesis of composite nanopowder through Mn doped ZnS-CdS systems and its structural, optical properties. J. Mol. Struct., 2021, 1230, 129875.
[http://dx.doi.org/10.1016/j.molstruc.2021.129875]
[7]
Hussain, M.Z.; Yang, Z.; Huang, Z.; Jia, Q.; Zhu, Y.; Xia, Y. Recent advances in metal–organic frameworks derived nanocomposites for photocatalytic applications in energy and environment. Advanced Science, 2021, 8(4), 625.
[8]
Lee, S.H.; Jun, B-H. Silver nanoparticles: synthesis and application for nanomedicine. Int. J. Mol. Sci., 2019, 20(4), 865.
[http://dx.doi.org/10.3390/ijms20040865] [PMID: 30781560]
[9]
Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology, 2018, 16(1), 14.
[http://dx.doi.org/10.1186/s12951-018-0334-5] [PMID: 29452593]
[10]
Yang, Z.; Ge, Y.; Zhang, X.; Shangguan, B.; Zhang, Y.; Wang, Y. Effect of particle size on current-carrying friction and wear properties of copper-graphite composites by spark plasma sintering. Materials (Basel), 2019, 12(17), 2825.
[http://dx.doi.org/10.3390/ma12172825] [PMID: 31480715]
[11]
Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact., 2018, 17(1), 36.
[http://dx.doi.org/10.1186/s12934-018-0879-x] [PMID: 29506528]
[12]
Hodala, J.L.; Moon, D.J.; Reddy, K.R.; Reddy, C.V.; Kumar, T.N.; Ahamed, M.I.; Raghu, A.V. Catalyst design for maximizing C5+ yields during Fischer-Tropsch synthesis. Int. J. Hydrogen Energy, 2021, 46(4), 3289-3301.
[http://dx.doi.org/10.1016/j.ijhydene.2019.12.021]
[13]
Fabris, M.; Abbriano, R.M.; Pernice, M.; Sutherland, D.L.; Commault, A.S.; Hall, C.C.; Labeeuw, L.; McCauley, J.I.; Kuzhiuparambil, U.; Ray, P.; Kahlke, T.; Ralph, P.J. Emerging technologies in algal biotechnology: toward the establishment of a sustainable, algae-based bioe-conomy. Front. Plant Sci., 2020, 11, 279.
[http://dx.doi.org/10.3389/fpls.2020.00279] [PMID: 32256509]
[14]
Novoveská, L.; Ross, M.E.; Stanley, M.S.; Pradelles, R.; Wasiolek, V.; Sassi, J-F. Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Mar. Drugs, 2019, 17(11), 640.
[http://dx.doi.org/10.3390/md17110640] [PMID: 31766228]
[15]
Barkia, I.; Saari, N.; Manning, S.R. Microalgae for high-value products towards human health and nutrition. Mar. Drugs, 2019, 17(5), 304.
[http://dx.doi.org/10.3390/md17050304] [PMID: 31137657]
[16]
Reddy, K.R.; Jyothi, M.S.; Raghu, A.V.; Sadhu, V.; Naveen, S.; Aminabhavi, T.M. Nanocarbons-supported and polymers-supported tita-nium dioxide nanostructures as efficient photocatalysts for remediation of contaminated wastewater and hydrogen production. In: Nano-photocatalysis and Environmental Applications: Detoxification and Disinfection; Inamuddin; Asiri, A.M.; Lichtfouse, E., Eds.; Springer International Publishing: Cham, 2020; pp. 139-169.
[http://dx.doi.org/10.1007/978-3-030-12619-3_6]
[17]
Jeyaraj, M.; Gurunathan, S.; Qasim, M.; Kang, M-H.; Kim, J-H. A comprehensive review on the synthesis, characterization, and biomedi-cal application of platinum nanoparticles. Nanomaterials (Basel), 2019, 9(12), 1719.
[http://dx.doi.org/10.3390/nano9121719] [PMID: 31810256]
[18]
El-Naggar, N.E-A.; Hussein, M.H.; Shaaban-Dessuuki, S.A.; Dalal, S.R. Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Sci. Rep., 2020, 10(1), 3011.
[http://dx.doi.org/10.1038/s41598-020-59945-w] [PMID: 32080302]
[19]
Khanna, P.; Kaur, A.; Goyal, D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. J. Microbiol. Methods, 2019, 163, 105656.
[http://dx.doi.org/10.1016/j.mimet.2019.105656] [PMID: 31220512]
[20]
Kannan, K.; Radhika, D.; Nesaraj, A.; Sadasivuni, K.K.; Reddy, K.R.; Kasai, D.; Raghu, A.V. Photocatalytic, antibacterial and electrochemical properties of novel rare earth metal oxides-based nanohybrids. Mater. Sci. Energy Technol., 2020, 3, 853-861.
[http://dx.doi.org/10.1016/j.mset.2020.10.008]
[21]
Nagaraja, A.; Jalageri, M.D.; Puttaiahgowda, Y.M.; Raghava Reddy, K.; Raghu, A.V. A review on various maleic anhydride antimicrobial polymers. J. Microbiol. Methods, 2019, 163, 105650.
[http://dx.doi.org/10.1016/j.mimet.2019.105650] [PMID: 31176650]
[22]
Jin, J-O.; Chauhan, P.S.; Arukha, A.P.; Chavda, V.; Dubey, A.; Yadav, D. The therapeutic potential of the anticancer activity of fucoidan: current advances and hurdles. Mar. Drugs, 2021, 19(5), 265.
[http://dx.doi.org/10.3390/md19050265] [PMID: 34068561]
[23]
Lu, Y.; Zhang, E.; Yang, J.; Cao, Z. Strategies to improve micelle stability for drug delivery. Nano Res., 2018, 11(10), 4985-4998.
[http://dx.doi.org/10.1007/s12274-018-2152-3] [PMID: 30370014]
[24]
Trivedi, R.; Kompella, U.B. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine (Lond.), 2010, 5(3), 485-505.
[http://dx.doi.org/10.2217/nnm.10.10] [PMID: 20394539]
[25]
Hanafy, N.A.N.; El-Kemary, M.; Leporatti, S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers (Basel), 2018, 10(7), 238.
[http://dx.doi.org/10.3390/cancers10070238] [PMID: 30037052]
[26]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[27]
Yellepeddi, V.K.; Ghandehari, H. Poly(amido amine) dendrimers in oral delivery. Tissue Barriers, 2016, 4(2), e1173773.
[http://dx.doi.org/10.1080/21688370.2016.1173773] [PMID: 27358755]
[28]
Zhu, Y.; Liu, C.; Pang, Z. Dendrimer-based drug delivery systems for brain targeting. Biomolecules, 2019, 9(12), 790.
[http://dx.doi.org/10.3390/biom9120790] [PMID: 31783573]
[29]
Chenthamara, D.; Subramaniam, S.; Ramakrishnan, S.G.; Krishnaswamy, S.; Essa, M.M.; Lin, F-H.; Qoronfleh, M.W. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res., 2019, 23(1), 20.
[http://dx.doi.org/10.1186/s40824-019-0166-x] [PMID: 31832232]
[30]
Chauhan, P.S.; Yadav, D.; Tayal, S.; Jin, J.O. Therapeutic Advancements in the Management of Diabetes Mellitus with Special Reference to Nanotechnology. Curr. Pharm. Des., 2020, 26(38), 4909-4916.
[http://dx.doi.org/10.2174/1381612826666200826135401] [PMID: 32851952]
[31]
Chauhan, P.S.; Yadav, D.; Koul, B.; Mohanta, Y.K.; Jin, J.O. Recent Advances in Nanotechnology: A Novel Therapeutic System for the Treatment of Alzheimer’s Disease. Curr. Drug Metab., 2020, 21(14), 1144-1151.
[http://dx.doi.org/10.2174/1389200221666201124140518] [PMID: 33234100]
[32]
Hua, S. Physiological and pharmaceutical considerations for rectal drug formulations. Front. Pharmacol., 2019, 10, 1196.
[http://dx.doi.org/10.3389/fphar.2019.01196] [PMID: 31680970]
[33]
Vazquez-Muñoz, R.; Meza-Villezcas, A.; Fournier, P.G.J.; Soria-Castro, E.; Juarez-Moreno, K.; Gallego-Hernández, A.L.; Bogdanchikova, N.; Vazquez-Duhalt, R.; Huerta-Saquero, A. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS One, 2019, 14(11), e0224904.
[http://dx.doi.org/10.1371/journal.pone.0224904] [PMID: 31703098]
[34]
Liu, T.; Yu, X.; Yin, H.; Möschwitzer, J.P. Advanced modification of drug nanocrystals by using novel fabrication and downstream ap-proaches for tailor-made drug delivery. Drug Deliv., 2019, 26(1), 1092-1103.
[http://dx.doi.org/10.1080/10717544.2019.1682721] [PMID: 31735092]
[35]
Jacob, S.; Nair, A.B.; Shah, J. Emerging role of nanosuspensions in drug delivery systems. Biomater. Res., 2020, 24(1), 3.
[http://dx.doi.org/10.1186/s40824-020-0184-8] [PMID: 31969986]
[36]
Patel, V.R.; Agrawal, Y.K. Nanosuspension: An approach to enhance solubility of drugs. J. Adv. Pharm. Technol. Res., 2011, 2(2), 81-87.
[http://dx.doi.org/10.4103/2231-4040.82950] [PMID: 22171298]
[37]
Bai, X.; Purcell-Milton, F.; Gun’ko, Y.K. Optical properties, synthesis, and potential applications of Cu-based ternary or quaternary aniso-tropic quantum dots, polytypic nanocrystals, and core/shell heterostructures. Nanomaterials (Basel), 2019, 9(1), 85.
[http://dx.doi.org/10.3390/nano9010085] [PMID: 30634642]
[38]
Antolini, F.; Orazi, L. Quantum dots synthesis through direct laser patterning: a review. Front Chem., 2019, 7, 252.
[http://dx.doi.org/10.3389/fchem.2019.00252] [PMID: 31058137]
[39]
Chavda, V.; Patel, V.; Yadav, D.; Shah, J.; Patel, S.; Jin, J.O. Therapeutics and research related to glioblastoma: advancements and future targets. Curr. Drug Metab., 2020, 21(3), 186-198.
[http://dx.doi.org/10.2174/1389200221666200408083950] [PMID: 32268863]
[40]
Lohcharoenkal, W.; Wang, L.; Chen, Y.C.; Rojanasakul, Y. Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res. Internat., 2014, 2014, 805490.
[http://dx.doi.org/10.1155/2014/180549]
[41]
Yoo, J.; Park, C.; Yi, G.; Lee, D.; Koo, H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers (Basel), 2019, 11(5), 640.
[http://dx.doi.org/10.3390/cancers11050640] [PMID: 31072061]
[42]
Nooraei, S.; Bahrulolum, H.; Hoseini, Z.S.; Katalani, C.; Hajizade, A.; Easton, A.J.; Ahmadian, G. Virus-like particles: preparation, immu-nogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnol., 2021, 19(1), 59.
[http://dx.doi.org/10.1186/s12951-021-00806-7] [PMID: 33632278]
[43]
Chung, Y.H.; Cai, H.; Steinmetz, N.F. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv. Drug Deliv. Rev., 2020, 156, 214-235.
[http://dx.doi.org/10.1016/j.addr.2020.06.024] [PMID: 32603813]
[44]
Crețu, B.E-B.; Dodi, G.; Shavandi, A.; Gardikiotis, I.; Șerban, I.L.; Balan, V. Imaging constructs: the rise of iron oxide nanoparticles. Molecules, 2021, 26(11), 3437.
[http://dx.doi.org/10.3390/molecules26113437] [PMID: 34198906]
[45]
Alsheheri, S.Z. Nanocomposites containing titanium dioxide for environmental remediation. Des. Monomers Polym., 2021, 24(1), 22-45.
[http://dx.doi.org/10.1080/15685551.2021.1876322] [PMID: 33536835]
[46]
Veiga, N.; Diesendruck, Y.; Peer, D. Targeted lipid nanoparticles for RNA therapeutics and immunomodulation in leukocytes. Adv. Drug Deliv. Rev., 2020, 159, 364-376.
[http://dx.doi.org/10.1016/j.addr.2020.04.002] [PMID: 32298783]
[47]
Thukral, D.K.; Dumoga, S.; Mishra, A.K. Solid lipid nanoparticles: promising therapeutic nanocarriers for drug delivery. Curr. Drug Deliv., 2014, 11(6), 771-791.
[http://dx.doi.org/10.2174/156720181106141202122335] [PMID: 25469779]
[48]
Thi, T.T.H.; Suys, E.J.A.; Lee, J.S.; Nguyen, D.H.; Park, K.D.; Truong, N.P. Lipid-based nanoparticles in the clinic and clinical trials: from cancer nanomedicine to COVID-19 vaccines. Vaccines (Basel), 2021, 9(4), 359.
[http://dx.doi.org/10.3390/vaccines9040359] [PMID: 33918072]
[49]
Aldosari, B.N.; Alfagih, I.M.; Almurshedi, A.S. Lipid nanoparticles as delivery systems for RNA-based vaccines. Pharmaceutics, 2021, 13(2), 206.
[http://dx.doi.org/10.3390/pharmaceutics13020206] [PMID: 33540942]
[50]
Buschmann, M.D.; Carrasco, M.J.; Alishetty, S.; Paige, M.; Alameh, M.G.; Weissman, D. Nanomaterial delivery systems for mRNA vac-cines. Vaccines (Basel), 2021, 9(1), 65.
[http://dx.doi.org/10.3390/vaccines9010065] [PMID: 33478109]
[51]
Roy, A. Plant Derived Silver Nanoparticles and their Therapeutic Applications. Curr. Pharm. Biotechnol., 2021, 22(14), 1834-1847.
[PMID: 33109040]
[52]
Shirbaghaee, Z.; Bolhassani, A. Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems. Biopolymers, 2016, 105(3), 113-132.
[http://dx.doi.org/10.1002/bip.22759] [PMID: 26509554]
[53]
Le, D.T.; Müller, K.M. In vitro assembly of virus-like particles and their applications. Life (Basel), 2021, 11(4), 334.
[http://dx.doi.org/10.3390/life11040334] [PMID: 33920215]
[54]
Li, Z.; Ye, E.; David; Lakshminarayanan, R.; Loh, X.J. Recent advances of using hybrid nanocarriers in remotely controlled therapeutic delivery. Small, 2016, 12(35), 4782-4806.
[http://dx.doi.org/10.1002/smll.201601129] [PMID: 27482950]
[55]
Pushko, P.; Tretyakova, I. Influenza virus like particles (VLPs): opportunities for H7N9 vaccine development. Viruses, 2020, 12(5), 518.
[http://dx.doi.org/10.3390/v12050518] [PMID: 32397182]
[56]
Kothari, R.; Pandey, A.; Ahmad, S.; Kumar, A.; Pathak, V.V.; Tyagi, V. Microalgal cultivation for value-added products: A critical enviro-economical assessment. 3 Biotech, 2017, 7(4), 1-15.
[57]
Kapahi, M.; Sachdeva, S. Bioremediation Options for Heavy Metal Pollution. J. Health Pollut., 2019, 9(24), 191203.
[http://dx.doi.org/10.5696/2156-9614-9.24.191203] [PMID: 31893164]
[58]
Vingiani, G.M.; De Luca, P.; Ianora, A.; Dobson, A.D.W.; Lauritano, C. Microalgal enzymes with biotechnological applications. Mar. Drugs, 2019, 17(8), 459.
[http://dx.doi.org/10.3390/md17080459] [PMID: 31387272]
[59]
Dahoumane, S.A.; Mechouet, M.; Wijesekera, K.; Filipe, C.D.; Sicard, C.; Bazylinski, D.A.; Jeffryes, C. Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology–a review. Green Chem., 2017, 19(3), 552-587.
[http://dx.doi.org/10.1039/C6GC02346K]
[60]
Papalia, T.; Sidari, R.; Panuccio, M.R. Impact of different storage methods on bioactive compounds in Arthrospira platensis biomass. Molecules, 2019, 24(15), 2810.
[http://dx.doi.org/10.3390/molecules24152810] [PMID: 31374946]
[61]
Yuan, Q.; Bomma, M.; Xiao, Z. Enhanced silver nanoparticle synthesis by Escherichia Coli transformed with Candida Albicans metal-lothionein gene. Materials (Basel), 2019, 12(24), 4180.
[http://dx.doi.org/10.3390/ma12244180] [PMID: 31842386]
[62]
Agarwal, P.; Gupta, R.; Agarwal, N. Advances in synthesis and applications of microalgal nanoparticles for wastewater treatment. J. Nanotechnol., 2019, 2019, 7392713.
[http://dx.doi.org/10.1155/2019/7392713]
[63]
Husain, S.; Afreen, S.; Hemlata; Yasin, D.; Afzal, B.; Fatma, T. Cyanobacteria as a bioreactor for synthesis of silver nanoparticlesan effect of different reaction conditions on the size of nanoparticles and their dye decolorization ability. J. Microbiol. Methods, 2019, 162, 77-82.
[http://dx.doi.org/10.1016/j.mimet.2019.05.011] [PMID: 31132377]
[64]
Liao, C.; Li, Y.; Tjong, S.C. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci., 2019, 20(2), 449.
[http://dx.doi.org/10.3390/ijms20020449] [PMID: 30669621]
[65]
Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as nutritional and functional food sources: revisiting our understanding. J. Appl. Phycol., 2017, 29(2), 949-982.
[http://dx.doi.org/10.1007/s10811-016-0974-5] [PMID: 28458464]
[66]
Bin-Meferij, M.M.; Hamida, R.S. Biofabrication and antitumor activity of silver nanoparticles utilizing novel nostoc sp. Bahar M. Int. J. Nanomedicine, 2019, 14, 9019-9029.
[http://dx.doi.org/10.2147/IJN.S230457] [PMID: 31819416]
[67]
Dlamini, N.G.; Basson, A.K.; Pullabhotla, V.S.R. Optimization and application of bioflocculant passivated copper nanoparticles in the wastewater treatment. Int. J. Environ. Res. Public Health, 2019, 16(12), 2185.
[http://dx.doi.org/10.3390/ijerph16122185] [PMID: 31226768]
[68]
Cunha, L.; Grenha, A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar. Drugs, 2016, 14(3), 42.
[http://dx.doi.org/10.3390/md14030042] [PMID: 26927134]
[69]
Arya, A.; Gupta, K.; Chundawat, T.S.; Vaya, D. Biogenic synthesis of copper and silver nanoparticles using green alga Botryococcus braunii and its antimicrobial activity. Bioinorganic Chemistry and Applications, 2018, 2018
[http://dx.doi.org/10.1155/2018/7879403]
[70]
Ovais, M.; Khalil, A.T.; Ayaz, M.; Ahmad, I.; Nethi, S.K.; Mukherjee, S. Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int. J. Mol. Sci., 2018, 19(12), 4100.
[http://dx.doi.org/10.3390/ijms19124100] [PMID: 30567324]
[71]
Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci., 2014, 9(6), 385-406.
[PMID: 26339255]
[72]
Chauhan, P.S.; Shrivastava, V.; Tomar, R.S. Biofabrication of Copper Nanoparticles: A Next-generation Antibacterial Agent Against Wound-associated Pathogens. Turkish J. Pharma. Sci., 2018, 15(3), 238-247.
[PMID: 32454666]
[73]
Nadeem, M.; Abbasi, B.H.; Younas, M.; Ahmad, W.; Khan, T. A review of the green syntheses and anti-microbial applications of gold nanoparticles. Green Chem. Lett. Rev., 2017, 10(4), 216-227.
[http://dx.doi.org/10.1080/17518253.2017.1349192]
[74]
Hamouda, R.A.; Hussein, M.H.; Abo-Elmagd, R.A.; Bawazir, S.S. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci. Rep., 2019, 9(1), 13071.
[http://dx.doi.org/10.1038/s41598-019-49444-y] [PMID: 31506473]
[75]
Tevan, R.; Govindaraju, M.; Jayakumar, S.; Govindan, N.; Rahim, M.H.A.; Maniam, G.P.; Ichwan, S.J. Antimicrobial activities of silver nanoparticles bio-synthesized from diatom Amphora sp. J. Eng. Sci. Res, 2017, 2, 176-184.
[76]
Adebayo-Tayo, B.; Salaam, A.; Ajibade, A. Green synthesis of silver nanoparticle using Oscillatoria sp. extract, its antibacterial, antibio-film potential and cytotoxicity activity. Heliyon, 2019, 5(10), e02502.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02502] [PMID: 31667375]
[77]
Sudha, S.; Rajamanickam, K.; Rengaramanujam, J. Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J. Exp. Biol., 2013, 51(5), 393-399.
[78]
Mohandass, C.; Vijayaraj, A.S.; Rajasabapathy, R.; Satheeshbabu, S.; Rao, S.V.; Shiva, C.; De-Mello, I. Biosynthesis of silver nanoparticles from marine seaweed Sargassum cinereum and their antibacterial activity. Indian J. Pharm. Sci., 2013, 75(5), 606-610.
[PMID: 24403664]
[79]
Pérez, M.J.; Falqué, E.; Domínguez, H. Antimicrobial action of compounds from marine seaweed. Mar. Drugs, 2016, 14(3), 52.
[http://dx.doi.org/10.3390/md14030052] [PMID: 27005637]
[80]
Shannon, E.; Abu-Ghannam, N. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Mar. Drugs, 2016, 14(4), 81.
[http://dx.doi.org/10.3390/md14040081] [PMID: 27110798]
[81]
Singh, A.; Gautam, P.K.; Verma, A.; Singh, V.; Shivapriya, P.M.; Shivalkar, S.; Sahoo, A.K.; Samanta, S.K. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnol. Rep. (Amst.), 2020, 25, e00427.
[http://dx.doi.org/10.1016/j.btre.2020.e00427] [PMID: 32055457]
[82]
Mahdavi, M.; Namvar, F.; Ahmad, M.B.; Mohamad, R. Green biosynthesis and characterization of magnetic iron oxide (FeO) nanoparti-cles using seaweed (Sargassum muticum) aqueous extract. Molecules, 2013, 18(5), 5954-5964.
[http://dx.doi.org/10.3390/molecules18055954] [PMID: 23698048]
[83]
Katas, H.; Lim, C.S.; Nor Azlan, A.Y.H.; Buang, F.; Mh Busra, M.F. Antibacterial activity of biosynthesized gold nanoparticles using bio-molecules from Lignosus rhinocerotis and chitosan. Saudi Pharm. J., 2019, 27(2), 283-292.
[http://dx.doi.org/10.1016/j.jsps.2018.11.010] [PMID: 30766441]
[84]
Dauthal, P.; Mukhopadhyay, M. Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind. Eng. Chem. Res., 2016, 55(36), 9557-9577.
[http://dx.doi.org/10.1021/acs.iecr.6b00861]
[85]
Guilger-Casagrande, M.; de Lima, R. Synthesis of silver nanoparticles mediated by fungi: a review. Front. Bioeng. Biotechnol., 2019, 7, 287.
[http://dx.doi.org/10.3389/fbioe.2019.00287] [PMID: 31696113]
[86]
Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; Ali, S. Green nanotechnology: a review on green synthesis of silver nanoparticles - an ecofriendly approach. Int. J. Nanomedicine, 2019, 14, 5087-5107.
[http://dx.doi.org/10.2147/IJN.S200254] [PMID: 31371949]
[87]
Ahmed, M.J.; Murtaza, G.; Rashid, F.; Iqbal, J. Eco-friendly green synthesis of silver nanoparticles and their potential applications as antioxidant and anticancer agents. Drug Dev. Ind. Pharm., 2019, 45(10), 1682-1694.
[http://dx.doi.org/10.1080/03639045.2019.1656224] [PMID: 31407925]
[88]
Pozharitskaya, O.N.; Obluchinskaya, E.D.; Shikov, A.N. Mechanisms of bioactivities of fucoidan from the brown seaweed Fucus vesiculosus L. of the barents sea. Mar. Drugs, 2020, 18(5), 275.
[http://dx.doi.org/10.3390/md18050275] [PMID: 32456047]
[89]
Akmal, M.; Wadhwa, R. Alpha Glucosidase Inhibitors; StatPearls, 2020.
[90]
Mabate, B.; Daub, C.D.; Malgas, S.; Edkins, A.L.; Pletschke, B.I. Fucoidan structure and its impact on glucose metabolism: implications for diabetes and cancer therapy. Mar. Drugs, 2021, 19(1), 30.
[http://dx.doi.org/10.3390/md19010030] [PMID: 33440853]
[91]
Kopplin, G.; Rokstad, A.M.; Mélida, H.; Bulone, V.; Skjåk-Bræk, G.; Aachmann, F.L. Structural characterization of fucoidan from laminaria hyperborea: assessment of coagulation and inflammatory properties and their structure–function relationship. ACS Appl. Bio Mater., 2018, 1(6), 1880-1892.
[http://dx.doi.org/10.1021/acsabm.8b00436]
[92]
Khotimchenko, Y. Pharmacological potential of sea cucumbers. Int. J. Mol. Sci., 2018, 19(5), 1342.
[http://dx.doi.org/10.3390/ijms19051342] [PMID: 29724051]
[93]
He, S.; Peng, W-B.; Zhou, H-L. Combination treatment of deep sea water and fucoidan attenuates high glucose-induced insulin-resistance in HepG2 hepatocytes. Mar. Drugs, 2018, 16(2), 48.
[http://dx.doi.org/10.3390/md16020048] [PMID: 29393871]
[94]
Kim, K-J.; Lee, O-H.; Lee, H-C.; Kim, Y-C.; Lee, B-Y. Effect of fucoidan on expression of diabetes mellitus related genes in mouse adipocytes. Food Sci. Biotechnol., 2007, 16(2), 212-217.
[95]
Priyadarshini, E.; Priyadarshini, S.S.; Pradhan, N. Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Appl. Microbiol. Biotechnol., 2019, 103(8), 3297-3316.
[http://dx.doi.org/10.1007/s00253-019-09685-3] [PMID: 30847543]
[96]
Sharma, B.; Purkayastha, D.D.; Hazra, S.; Thajamanbi, M.; Bhattacharjee, C.R.; Ghosh, N.N.; Rout, J. Biosynthesis of fluorescent gold nanoparticles using an edible freshwater red alga, Lemanea fluviatilis (L.) C.Ag. and antioxidant activity of biomatrix loaded nanoparticles. Bioprocess Biosyst. Eng., 2014, 37(12), 2559-2565.
[http://dx.doi.org/10.1007/s00449-014-1233-2] [PMID: 24942533]
[97]
Busi, S.; Rajkumari, J. Microbially synthesized nanoparticles as next generation antimicrobials: scope and applications. In: Nanoparticles in Pharmacotherapy; Elsevier, 2019; pp. 485-524.
[http://dx.doi.org/10.1016/B978-0-12-816504-1.00008-9]
[98]
Alavi, M.; Karimi, N. Antiplanktonic, antibiofilm, antiswarming motility and antiquorum sensing activities of green synthesized Ag–TiO2, TiO2–Ag, Ag–Cu and Cu–Ag nanocomposites against multi-drug-resistant bacteria. Artifici. Cells, Nanomedici., and biotechnology, 2018, 46(3), S399-413.
[99]
Zonaro, E.; Lampis, S.; Turner, R.J.; Qazi, S.J.S.; Vallini, G. Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front. Microbiol., 2015, 6, 584.
[http://dx.doi.org/10.3389/fmicb.2015.00584] [PMID: 26136728]
[100]
Courrol, D.D.S.; Lopes, C.R.B.; Pereira, C.B.P.; Franzolin, M.R.; Silva, F.R.O.; Courrol, L.C. Tryptophan silver nanoparticles synthesized by photoreduction method: characterization and determination of bactericidal and anti-biofilm activities on resistant and susceptible bacteria. Int. J. Tryptophan Res., 2019, 12, 1178646919831677.
[http://dx.doi.org/10.1177/1178646919831677] [PMID: 30833815]
[101]
Bayón-Cordero, L.; Alkorta, I.; Arana, L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel), 2019, 9(3), 474.
[http://dx.doi.org/10.3390/nano9030474] [PMID: 30909401]
[102]
Liu, Q.; Huang, H.; Chen, H.; Lin, J.; Wang, Q. Food-grade nanoemulsions: preparation, stability and application in encapsulation of bio-active compounds. Molecules, 2019, 24(23), 4242.
[http://dx.doi.org/10.3390/molecules24234242] [PMID: 31766473]
[103]
Bellassai, N.; D’Agata, R.; Jungbluth, V.; Spoto, G. Surface plasmon resonance for biomarker detection: advances in non-invasive cancer diagnosis. Front Chem., 2019, 7, 570.
[http://dx.doi.org/10.3389/fchem.2019.00570] [PMID: 31448267]
[104]
Kratz, S.R.A.; Höll, G.; Schuller, P.; Ertl, P.; Rothbauer, M. Latest trends in biosensing for microphysiological organs-on-a-chip and body-on-a-chip systems. Biosensors (Basel), 2019, 9(3), 110.
[http://dx.doi.org/10.3390/bios9030110] [PMID: 31546916]
[105]
Karabiberoğlu, Ş.U.; Koçak, Ç.C.; Koçak, S.; Dursun, Z. Polymer film supported bimetallic Au–Ag catalysts for electrocatalytic oxidation of ammonia borane in alkaline media. Nano-Micro Lett., 2016, 8(4), 358-370.
[http://dx.doi.org/10.1007/s40820-016-0095-3] [PMID: 30460294]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy