Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

Curcumin-based Nanoformulations to Target Breast Cancer: Current Trends and Challenges

Author(s): Adnan Badran, Joelle Mesmar, Nadine Wehbe, Riham El Kurdi, Digambara Patra* and Elias Baydoun*

Volume 8, Issue 1, 2023

Published on: 16 November, 2021

Page: [3 - 22] Pages: 20

DOI: 10.2174/2405461506666210831145230

Open Access Journals Promotions 2
Abstract

Breast cancer remains one of the most common cancers in women worldwide, and despite significant improvements in treatment modalities, the prognosis of this cancer is still poor. Herbs and plant extracts have been associated with various health benefits, and traditional folk medicine is still receiving great interest among patients as proven by accumulated records, tolerable side effects of herbal compounds compared to their synthetic counterparts, and low cost. Curcumin is a polyphenol identified as the main active ingredient in turmeric and has been used in the treatment of various diseases and ailments. Additionally, the pharmacological activities of curcumin on many cancers have been investigated substantially due to its ability to regulate many signaling pathways involved in cancer tumorigenesis and metastasis. However, the low solubility and bioavailability of curcumin limit its benefits, urging the need for new curcumin formulations and delivery systems. Nanotechnology has been widely publicized in cancer treatment not only to overcome the limitations of poorly soluble and physiologically unstable compounds but also to improve the delivery of the drug to the diseased site and cellular uptake. In this review, we summarized the main anti-tumor effect of curcumin and its mode of action on breast cancer and focused on the anticancer efficacy of various and recent curcumin nanoformulations and delivery systems. Such nanotechnological systems could pave the way to address a new future direction in this research area, enhancing the therapeutic potential of curcumin in the treatment of breast cancer. In the next few years, there will be more focus on developing curcumin-based materials for breast cancer treatment.

Keywords: Curcumin, breast cancer, delivery, nanoformulation, nanotechnology, therapeutic potential.

Graphical Abstract
[1]
WHO. Cancer fact sheet 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
[2]
Keklikoglou I, Cianciaruso C, Güç E, et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol 2019; 21(2): 190-202.
[http://dx.doi.org/10.1038/s41556-018-0256-3] [PMID: 30598531]
[3]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012; 75(3): 311-35.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[4]
Kooti W, Servatyari K, Behzadifar M, et al. Effective medicinal plant in cancer treatment, Part 2: Review study. J Evid Based Complementary Altern Med 2017; 22(4): 982-95.
[http://dx.doi.org/10.1177/2156587217696927] [PMID: 28359161]
[5]
Cassidy A. Are herbal remedies and dietary supplements safe and effective for breast cancer patients? Breast Cancer Res 2003; 5(6): 300-2.
[http://dx.doi.org/10.1186/bcr724] [PMID: 14580245]
[6]
Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 2007; 595: 105-25.
[http://dx.doi.org/10.1007/978-0-387-46401-5_3] [PMID: 17569207]
[7]
Yeung AWK, Tzvetkov NT, El-Tawil OS, Bungǎu SG, Abdel- Daim MM, Atanasov AG. Antioxidants: Scientific literature landscape analysis. Oxid Med Cell Longev 2019; 2019: 8278454.
[http://dx.doi.org/10.1155/2019/8278454] [PMID: 30728893]
[8]
Akram M, Riaz M, Wadood AWC, et al. Medicinal plants with anti-mutagenic potential. Biotechnol Biotechnol Equip 2020; 34(1): 309-18.
[http://dx.doi.org/10.1080/13102818.2020.1749527]
[9]
Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int 2014; 2014: 186864.
[PMID: 24877064]
[10]
Basnet P, Skalko-Basnet N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 2011; 16(6): 4567-98.
[http://dx.doi.org/10.3390/molecules16064567] [PMID: 21642934]
[11]
Zheng J, Zhou Y, Li Y, Xu DP, Li S, Li HB. Spices for prevention and treatment of cancers. Nutrients 2016; 8(8): E495.
[http://dx.doi.org/10.3390/nu8080495] [PMID: 27529277]
[12]
Nabavi SM, Russo GL, Tedesco I, et al. Curcumin and melanoma: From chemistry to medicine. Nutr Cancer 2018; 70(2): 164-75.
[http://dx.doi.org/10.1080/01635581.2018.1412485] [PMID: 29300102]
[13]
Wang Y, Yu J, Cui R, Lin J, Ding X. Curcumin in treating breast cancer: A review. J Lab Autom 2016; 21(6): 723-31.
[http://dx.doi.org/10.1177/2211068216655524] [PMID: 27325106]
[14]
Song X, Zhang M, Dai E, Luo Y. Molecular targets of curcumin in breast cancer (Review). Mol Med Rep 2019; 19(1): 23-9.
[PMID: 30483727]
[15]
Bimonte S, Barbieri A, Leongito M, et al. Curcumin anticancer studies in pancreatic cancer. Nutrients 2016; 8(7): E433.
[http://dx.doi.org/10.3390/nu8070433] [PMID: 27438851]
[16]
Nagaraju GP, Benton L, Bethi SR, Shoji M, El-Rayes BF. Curcumin analogs: Their roles in pancreatic cancer growth and metastasis. Int J Cancer 2019; 145(1): 10-9.
[http://dx.doi.org/10.1002/ijc.31867] [PMID: 30226272]
[17]
Liu LD, Pang YX, Zhao XR, et al. Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells. Arch Gynecol Obstet 2019; 299(6): 1627-39.
[http://dx.doi.org/10.1007/s00404-019-05058-3] [PMID: 31006841]
[18]
Chen QH. Curcumin-based anti-prostate cancer agents. Anticancer Agents Med Chem 2015; 15(2): 138-56.
[http://dx.doi.org/10.2174/1871520615666150116102442] [PMID: 25594891]
[19]
Selvam C, Prabu SL, Jordan BC, et al. Molecular mechanisms of curcumin and its analogs in colon cancer prevention and treatment. Life Sci 2019; 239: 117032.
[http://dx.doi.org/10.1016/j.lfs.2019.117032] [PMID: 31704450]
[20]
Giordano A, Tommonaro G. Curcumin and cancer. Nutrients 2019; 11(10): E2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[21]
Mansouri K, Rasoulpoor S, Daneshkhah A, et al. Clinical effects of curcumin in enhancing cancer therapy: A systematic review. BMC Cancer 2020; 20(1): 791.
[http://dx.doi.org/10.1186/s12885-020-07256-8] [PMID: 32838749]
[22]
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharm 2007; 4(6): 807-18.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[23]
Metzler M, Pfeiffer E, Schulz SI, Dempe JS. Curcumin uptake and metabolism. Biofactors 2013; 39(1): 14-20.
[http://dx.doi.org/10.1002/biof.1042] [PMID: 22996406]
[24]
Mouslmani M, Rosenholm J, Prabhakar N, Peurla M, Baydoun E, Patra D. Curcumin associated poly (allylamine hydrochloride)-phosphate self-assembled hierarchically ordered nanocapsules: size dependent investigation on release and DPPH scavenging activity of curcumin. RSC Adv 2015; 5: 18740-50.
[http://dx.doi.org/10.1039/C4RA12831A]
[25]
Patra D, Sleem F. A new method for pH triggered curcumin release by applying poly(L-lysine) mediated nanoparticle-congregation. Anal Chim Acta 2013; 795: 60-8.
[http://dx.doi.org/10.1016/j.aca.2013.07.063] [PMID: 23998538]
[26]
Yang R, Zhang S, Kong D, Gao X, Zhao Y, Wang Z. Biodegradable polymer-curcumin conjugate micelles enhance the loading and delivery of low-potency curcumin. Pharm Res 2012; 29(12): 3512-25.
[http://dx.doi.org/10.1007/s11095-012-0848-8] [PMID: 22961588]
[27]
Sahu A, Kasoju N, Goswami P, Bora U. Encapsulation of curcumin in Pluronic block copolymer micelles for drug delivery applications. J Biomater Appl 2011; 25(6): 619-39.
[http://dx.doi.org/10.1177/0885328209357110] [PMID: 20207782]
[28]
Nasrallah O, El kurdi R, Mouslmani M, Patra D. Synthesis of curcumin conjugated ZnO nanomaterials for pH dependent release and dpph scavenging activity. Curr Nanomat 2018; 3: 1-6.
[29]
Justin C, Samrot AV, P DS, Sahithya CS, Bhavya KS, Saipriya C. Preparation, characterization and utilization of coreshell super paramagnetic iron oxide nanoparticles for curcumin delivery. PLoS One 2018; 13(7): e0200440.
[http://dx.doi.org/10.1371/journal.pone.0200440] [PMID: 30021002]
[30]
Slika L, Moubarak A, Borjac J, Baydoun E, Patra D. Preparation of curcumin-poly (allyl amine) hydrochloride based nanocapsules: piperine in nanocapsules accelerates encapsulation and release of curcumin and effectiveness against colon cancer cells. Mater Sci Eng C 2020; 109: 110550.
[http://dx.doi.org/10.1016/j.msec.2019.110550] [PMID: 32228916]
[31]
Ipar VS, Dsouza A, Devarajan PV. Enhancing curcumin oral bioavailability through nanoformulations. Eur J Drug Metab Pharmacokinet 2019; 44(4): 459-80.
[http://dx.doi.org/10.1007/s13318-019-00545-z] [PMID: 30771095]
[32]
Xie X, Tao Q, Zou Y, et al. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: Characterizations and mechanisms. J Agric Food Chem 2011; 59(17): 9280-9.
[http://dx.doi.org/10.1021/jf202135j] [PMID: 21797282]
[33]
Moballegh Nasery M, Abadi B, Poormoghadam D, et al. Curcumin delivery mediated by bio-based nanoparticles: A review. Molecules 2020; 25(3): E689.
[http://dx.doi.org/10.3390/molecules25030689] [PMID: 32041140]
[34]
Bechnak L, Khalil C, Kurdi RE, Khnayzer RS, Patra D. Curcumin encapsulated colloidal amphiphilic block co-polymeric nanocapsules: colloidal nanocapsules enhance photodynamic and anticancer activities of curcumin. Photochem Photobiol Sci 2020; 19(8): 1088-98.
[http://dx.doi.org/10.1039/D0PP00032A] [PMID: 32638825]
[35]
Yallapu MM, Khan S, Maher DM, et al. Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials 2014; 35(30): 8635-48.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.040] [PMID: 25028336]
[36]
Patil S, Choudhary B, Rathore A, Roy K, Mahadik K. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells. Phytomed Int J Phytother Phytopharmacol 2015; 22(12): 1103-11.
[http://dx.doi.org/10.1016/j.phymed.2015.08.006]
[37]
Yallapu MM, Nagesh PK, Jaggi M, Chauhan SC. Therapeutic applications of curcumin nanoformulations. AAPS J 2015; 17(6): 1341-56.
[http://dx.doi.org/10.1208/s12248-015-9811-z] [PMID: 26335307]
[38]
De Silva L, Goh B-H, Lee L-H, Chuah L-H. Curcumin-loaded nanoparticles and their potential as anticancer agents in breast cancer. In: Sinha RP, Häder D-P, Eds. Natural bio-active compounds. Germany: Springer 2019; pp. 147-78.
[40]
Hon JD, Singh B, Sahin A, et al. Breast cancer molecular subtypes: from TNBC to QNBC. Am J Cancer Res 2016; 6(9): 1864-72.
[PMID: 27725895]
[41]
Andre F, Pusztai L. Molecular classification of breast cancer: Implications for selection of adjuvant chemotherapy. Nat Clin Pract Oncol 2006; 3(11): 621-32.
[http://dx.doi.org/10.1038/ncponc0636] [PMID: 17080180]
[42]
Dwivedi S, Purohit P, Misra R, et al. Application of single-cell omics in breast cancer. In: Barh D, Azevedo V, Eds. Single-cell omics. United States: Academic Press 2019; pp. 69-103.
[http://dx.doi.org/10.1016/B978-0-12-817532-3.00005-0]
[43]
Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 2016; 13(11): 674-90.
[http://dx.doi.org/10.1038/nrclinonc.2016.66] [PMID: 27184417]
[44]
Fahad Ullah M. Breast cancer: Current perspectives on the disease status. In: Ahmad A, Ed. Breast cancer metastasis and drug resistance: Challenges and progress. Cham: Springer International Publishing 2019; pp. 51-64.
[http://dx.doi.org/10.1007/978-3-030-20301-6_4]
[45]
Fisusi FA, Akala EO. Drug combinations in breast cancer therapy. Pharm Nanotechnol 2019; 7(1): 3-23.
[http://dx.doi.org/10.2174/2211738507666190122111224] [PMID: 30666921]
[46]
Hainaut P, Plymoth A. Targeting the hallmarks of cancer: Towards a rational approach to next-generation cancer therapy. Curr Opin Oncol 2013; 25(1): 50-1.
[http://dx.doi.org/10.1097/CCO.0b013e32835b651e] [PMID: 23150341]
[47]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[48]
Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res 2017; 7(5): 1016-36.
[PMID: 28560055]
[49]
Kuttan R, Bhanumathy P, Nirmala K, George MC. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett 1985; 29(2): 197-202.
[http://dx.doi.org/10.1016/0304-3835(85)90159-4] [PMID: 4075289]
[50]
Witkin JM, Li X. Curcumin, an active constiuent of the ancient medicinal herb Curcuma longa L.: Some uses and the establishment and biological basis of medical efficacy. CNS Neurol Disord Drug Targets 2013; 12(4): 487-97.
[http://dx.doi.org/10.2174/1871527311312040007] [PMID: 23574161]
[51]
Ghosh S, Banerjee S, Sil PC. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update. Food Chem Toxicol 2015; 83: 111-24.
[http://dx.doi.org/10.1016/j.fct.2015.05.022]
[52]
Grabowska W, Mosieniak G, Achtabowska N, et al. Curcumin induces multiple signaling pathways leading to vascular smooth muscle cell senescence. Biogerontology 2019; 20(6): 783-98.
[http://dx.doi.org/10.1007/s10522-019-09825-2] [PMID: 31372798]
[53]
Javeri I, Chand N. Curcumin. In: Gupta RC, Ed. Nutraceuticals. Boston: Academic Press 2016; pp. 435-45.
[http://dx.doi.org/10.1016/B978-0-12-802147-7.00031-0]
[54]
Kunnumakkara AB, Bordoloi D, Harsha C, Banik K, Gupta SC, Aggarwal BB. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin Sci (Lond) 2017; 131(15): 1781-99.
[http://dx.doi.org/10.1042/CS20160935] [PMID: 28679846]
[55]
Lai HW, Chien SY, Kuo SJ, et al. The potential utility of curcumin in the treatment of HER-2-overexpressed breast cancer: An in vitro and in vivo comparison study with herceptin. Evid Based Complement Alternat Med 2012; 2012: 486568.
[56]
Zaidi D, Singh N, Ahmad IZ, Sharma R, Balapure AK. Antiproliferative effects of curcumin plus centchroman in MCF-7 and MDA MB-231 cells. Int J Pharm Pharmaceut Sci 2011; 3(2)
[57]
Syng-Ai C, Kumari AL, Khar A. Effect of curcumin on normal and tumor cells: role of glutathione and bcl-2. Mol Cancer Ther 2004; 3(9): 1101-8.
[PMID: 15367704]
[58]
Schmidt B, Passos CLA, Ferreira C, da Silva JL, Fialho E. Synergistic effect of curcumin, piperine and resveratrol in MCF-7 and MDA MB-231 breast cancer cells. Biomed Res 2020; 31(5): 113-8.
[59]
Zou J, Zhu L, Jiang X, et al. Curcumin increases breast cancer cell sensitivity to cisplatin by decreasing FEN1 expression. Oncotarget 2018; 9(13): 11268-78.
[http://dx.doi.org/10.18632/oncotarget.24109] [PMID: 29541412]
[60]
Tabatabaei Mirakabad FS, Akbarzadeh A, Milani M, et al. A Comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line. Artif Cells Nanomed Biotechnol 2016; 44(1): 423-30.
[http://dx.doi.org/10.3109/21691401.2014.955108] [PMID: 25229832]
[61]
Altharawi A, Rahman KM, Chan KLA. Identifying the responses from the estrogen receptor-expressed MCF7 cells treated in anticancer drugs of different modes of action using live-cell FTIR spectroscopy. ACS Omega 2020; 5(22): 12698-706.
[http://dx.doi.org/10.1021/acsomega.9b04369] [PMID: 32548453]
[62]
Banerjee M, Singh P, Panda D. Curcumin suppresses the dynamic instability of microtubules, activates the mitotic checkpoint and induces apoptosis in MCF-7 cells. FEBS J 2010; 277(16): 3437-48.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07750.x] [PMID: 20646066]
[63]
Hu S, Xu Y, Meng L, Huang L, Sun H. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp Ther Med 2018; 16(2): 1266-72.
[http://dx.doi.org/10.3892/etm.2018.6345] [PMID: 30116377]
[64]
Liu Q, Loo WT, Sze SC, Tong Y. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFkappaB, cyclinD and MMP-1 transcription. Phytomed Int J Phytother Phytopharmacol 2009; 16(10): 916-22.
[65]
Liu JL, Pan YY, Chen O, et al. Curcumin inhibits MCF-7 cells by modulating the NF-κB signaling pathway. Oncol Lett 2017; 14(5): 5581-4.
[http://dx.doi.org/10.3892/ol.2017.6860] [PMID: 29142607]
[66]
Saini KS, Loi S, de Azambuja E, et al. Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat Rev 2013; 39(8): 935-46.
[http://dx.doi.org/10.1016/j.ctrv.2013.03.009] [PMID: 23643661]
[67]
Guan F, Ding Y, Zhang Y, Zhou Y, Li M, Wang C. Curcumin suppresses proliferation and migration of MDA-MB-231 breast cancer cells through autophagy-dependent Akt degradation. PLoS One 2016; 11(1): e0146553.
[http://dx.doi.org/10.1371/journal.pone.0146553] [PMID: 26752181]
[68]
Hua WF, Fu YS, Liao YJ, et al. Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells. Eur J Pharmacol 2010; 637(1-3): 16-21.
[http://dx.doi.org/10.1016/j.ejphar.2010.03.051] [PMID: 20385124]
[69]
Chen B, Zhang Y, Wang Y, Rao J, Jiang X, Xu Z. Curcumin inhibits proliferation of breast cancer cells through Nrf2-mediated down-regulation of Fen1 expression. J Steroid Biochem Mol Biol 2014; 143: 11-8.
[http://dx.doi.org/10.1016/j.jsbmb.2014.01.009] [PMID: 24486718]
[70]
Ashrafizadeh M, Ahmadi Z, Mohamamdinejad R, et al. Curcumin therapeutic modulation of the Wnt signaling pathway. Curr Pharm Biotechnol 2020; 21(11): 1006-15.
[http://dx.doi.org/10.2174/1389201021666200305115101] [PMID: 32133961]
[71]
Prasad CP, Rath G, Mathur S, Bhatnagar D, Ralhan R. Potent growth suppressive activity of curcumin in human breast cancer cells: modulation of Wnt/beta-catenin signaling. Chem Biol Interact 2009; 181(2): 263-71.
[http://dx.doi.org/10.1016/j.cbi.2009.06.012] [PMID: 19573523]
[72]
Sun XD, Liu XE, Huang DS. Curcumin induces apoptosis of triple-negative breast cancer cells by inhibition of EGFR expression. Mol Med Rep 2012; 6(6): 1267-70.
[http://dx.doi.org/10.3892/mmr.2012.1103] [PMID: 23023821]
[73]
Ramachandran C, Rodriguez S, Ramachandran R, et al. Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines. Anticancer Res 2005; 25(5): 3293-302.
[PMID: 16101141]
[74]
Talib WH, Al-Hadid SA, Ali MBW, Al-Yasari IH, Ali MRA. Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action. Breast Cancer (Dove Med Press) 2018; 10: 207-17.
[http://dx.doi.org/10.2147/BCTT.S167812] [PMID: 30568488]
[75]
Li M, Wang H, Zhang Z, Hill DL, Zhang R. Curcumin, a multi- functional chemopreventive agent, inhibits MDM2 oncogene, which is associated with its anticancer, chemosensitization and radiosensitization effects. Cancer Res 2006; 66(8): 4079-88.
[PMID: 16618727]
[76]
Qin J-J, Li X, Hunt C, Wang W, Wang H, Zhang R. Natural products targeting the p53-MDM2 pathway and mutant p53: Recent advances and implications in cancer medicine. Genes Dis 2018; 5(3): 204-19.
[http://dx.doi.org/10.1016/j.gendis.2018.07.002] [PMID: 30320185]
[77]
Penton AL, Leonard LD, Spinner NB. Notch signaling in human development and disease. Semin Cell Dev Biol 2012; 23(4): 450-7.
[http://dx.doi.org/10.1016/j.semcdb.2012.01.010] [PMID: 22306179]
[78]
Speiser J, Foreman K, Drinka E, et al. Notch-1 and Notch-4 biomarker expression in triple-negative breast cancer. Int J Surg Pathol 2012; 20(2): 139-45.
[http://dx.doi.org/10.1177/1066896911427035] [PMID: 22084425]
[79]
Bae YH, Ryu JH, Park HJ, et al. Mutant p53-notch1 signaling axis is involved in curcumin-induced apoptosis of breast cancer cells. Korean J Physiol Pharmacol 2013; 17(4): 291-7.
[http://dx.doi.org/10.4196/kjpp.2013.17.4.291] [PMID: 23946688]
[80]
Jones SF, Infante JR. Molecular pathways: Fatty acid synthase. Clin Cancer Res 2015; 21(24): 5434-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0126] [PMID: 26519059]
[81]
Fan H, Liang Y, Jiang B, et al. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells. Oncol Rep 2016; 35(5): 2651-6.
[http://dx.doi.org/10.3892/or.2016.4682] [PMID: 26985864]
[82]
Ali MS, Smiley R. Curcumin-induced apoptosis pathways in positive and negative human epidermal growth factor receptor breast cancer cells. FASEB J 2020; 34(S1): 1.
[http://dx.doi.org/10.1096/fasebj.2020.34.s1.02326]
[83]
Ibrahim A, El-Meligy A, Lungu G, et al. Curcumin induces apoptosis in a murine mammary gland adenocarcinoma cell line through the mitochondrial pathway. Eur J Pharmacol 2011; 668(1-2): 127-32.
[http://dx.doi.org/10.1016/j.ejphar.2011.06.048] [PMID: 21762689]
[84]
Patel PB, Thakkar VR, Patel JS. Cellular effect of curcumin and citral combination on breast cancer cells: Induction of apoptosis and cell cycle arrest. J Breast Cancer 2015; 18(3): 225-34.
[http://dx.doi.org/10.4048/jbc.2015.18.3.225] [PMID: 26472972]
[85]
Jafri MA, Ansari SA, Alqahtani MH, Shay JW. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med 2016; 8(1): 69.
[http://dx.doi.org/10.1186/s13073-016-0324-x] [PMID: 27323951]
[86]
Greider CW. Telomerase activation. One step on the road to cancer? Trends Genet 1999; 15(3): 109-12.
[http://dx.doi.org/10.1016/S0168-9525(98)01681-3] [PMID: 10203808]
[87]
Shay JW. Role of telomeres and telomerase in aging and cancer. Cancer Discov 2016; 6(6): 584-93.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0062] [PMID: 27029895]
[88]
Ramachandran C, Fonseca HB, Jhabvala P, Escalon EA, Melnick SJ. Curcumin inhibits telomerase activity through human telomerase reverse transcritpase in MCF-7 breast cancer cell line. Cancer Lett 2002; 184(1): 1-6.
[http://dx.doi.org/10.1016/S0304-3835(02)00192-1] [PMID: 12104041]
[89]
Nasiri M, Zarghami N, Koshki KN, et al. Curcumin and silibinin inhibit telomerase expression in T47D human breast cancer cells. APJCP 2013; 14(6): 3449-53.
[PMID: 23886126]
[90]
Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011; 331(6024): 1559-64.
[http://dx.doi.org/10.1126/science.1203543] [PMID: 21436443]
[91]
Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112(12): 1776-84.
[http://dx.doi.org/10.1172/JCI200320530] [PMID: 14679171]
[92]
Gallardo M, Calaf GM. Curcumin and epithelial-mesenchymal transition in breast cancer cells transformed by low doses of radiation and estrogen. Int J Oncol 2016; 48(6): 2534-42.
[http://dx.doi.org/10.3892/ijo.2016.3477] [PMID: 27082017]
[93]
Gallardo M, Kemmerling U, Aguayo F, Bleak TC, Muñoz JP, Calaf GM. Curcumin rescues breast cells from epithelial-mesenchymal transition and invasion induced by anti-miR-34a. Int J Oncol 2020; 56(2): 480-93.
[PMID: 31894298]
[94]
Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10(10): 704-14.
[http://dx.doi.org/10.1038/nrg2634] [PMID: 19763153]
[95]
Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ 2010; 17(2): 193-9.
[http://dx.doi.org/10.1038/cdd.2009.56] [PMID: 19461653]
[96]
Zhang L, Liao Y, Tang L. MicroRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res 2019; 38(1): 53.
[97]
Hassan ZK, Daghestani MH. Curcumin effect on MMPs and TIMPs genes in a breast cancer cell line. APJCP 2012; 13(7): 3259-64.
[PMID: 22994744]
[98]
Shao ZM, Shen ZZ, Liu CH, et al. Curcumin exerts multiple suppressive effects on human breast carcinoma cells. Int J Cancer 2002; 98(2): 234-40.
[http://dx.doi.org/10.1002/ijc.10183] [PMID: 11857414]
[99]
Mantovani A. Molecular pathways linking inflammation and cancer. Curr Mol Med 2010; 10(4): 369-73.
[http://dx.doi.org/10.2174/156652410791316968] [PMID: 20455855]
[100]
Mohamed SIA, Jantan I, Haque MA. Naturally occurring immunomodulators with antitumor activity: An insight on their mechanisms of action. Int Immunopharmacol 2017; 50: 291-304.
[http://dx.doi.org/10.1016/j.intimp.2017.07.010] [PMID: 28734166]
[101]
Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G. Inflammation and cancer: how hot is the link? Biochem Pharmacol 2006; 72(11): 1605-21.
[http://dx.doi.org/10.1016/j.bcp.2006.06.029] [PMID: 16889756]
[102]
Lyons TR, O’Brien J, Borges VF, et al. Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2. Nat Med 2011; 17(9): 1109-15.
[http://dx.doi.org/10.1038/nm.2416] [PMID: 21822285]
[103]
Lyons TR, Borges VF, Betts CB, et al. Cyclooxygenase-2-dependent lymphangiogenesis promotes nodal metastasis of postpartum breast cancer. J Clin Invest 2014; 124(9): 3901-12.
[http://dx.doi.org/10.1172/JCI73777] [PMID: 25133426]
[104]
Minn AJ, Gupta GP, Siegel PM, et al. Genes that mediate breast cancer metastasis to lung. Nature 2005; 436(7050): 518-24.
[http://dx.doi.org/10.1038/nature03799] [PMID: 16049480]
[105]
Lee YK, Lee WS, Hwang JT, Kwon DY, Surh YJ, Park OJ. Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells. J Agric Food Chem 2009; 57(1): 305-10.
[http://dx.doi.org/10.1021/jf802737z] [PMID: 19093868]
[106]
Bachmeier BE, Mohrenz IV, Mirisola V, et al. Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFkappaB. Carcinogenesis 2008; 29(4): 779-89.
[http://dx.doi.org/10.1093/carcin/bgm248] [PMID: 17999991]
[107]
Vaughan RA, Garcia-Smith R, Dorsey J, Griffith JK, Bisoffi M, Trujillo KA. Tumor necrosis factor alpha induces Warburg-like metabolism and is reversed by anti-inflammatory curcumin in breast epithelial cells. Int J Cancer 2013; 133(10): 2504-10.
[http://dx.doi.org/10.1002/ijc.28264] [PMID: 23661584]
[108]
Li X, Lewis MT, Huang J, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100(9): 672-9.
[http://dx.doi.org/10.1093/jnci/djn123] [PMID: 18445819]
[109]
Wang S. The promise of cancer therapeutics targeting the TNF-related apoptosis-inducing ligand and TRAIL receptor pathway. Oncogene 2008; 27(48): 6207-15.
[http://dx.doi.org/10.1038/onc.2008.298] [PMID: 18931688]
[110]
Hu C, Li M, Guo T, et al. Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT. Phytomed Int J Phytother Phytopharmacol 2019; 58: 152740.
[http://dx.doi.org/10.1016/j.phymed.2018.11.001]
[111]
Chung SS, Vadgama JV. Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling. Anticancer Res 2015; 35(1): 39-46.
[PMID: 25550533]
[112]
Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1(5): 555-67.
[http://dx.doi.org/10.1016/j.stem.2007.08.014] [PMID: 18371393]
[113]
Kakarala M, Brenner DE, Korkaya H, et al. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat 2010; 122(3): 777-85.
[http://dx.doi.org/10.1007/s10549-009-0612-x] [PMID: 19898931]
[114]
Mukherjee S, Mazumdar M, Chakraborty S, et al. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop. Stem Cell Res Ther 2014; 5(5): 116.
[http://dx.doi.org/10.1186/scrt506] [PMID: 25315241]
[115]
Charpentier MS, Whipple RA, Vitolo MI, et al. Curcumin targets breast cancer stem-like cells with microtentacles that persist in mammospheres and promote reattachment. Cancer Res 2014; 74(4): 1250-60.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1778] [PMID: 24371229]
[116]
Vareed SK, Kakarala M, Ruffin MT, et al. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomarkers Prev 2008; 17(6): 1411-7.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-2693] [PMID: 18559556]
[117]
Yang K-Y, Lin L-C, Tseng T-Y, Wang S-C, Tsai T-H. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 853(1-2): 183-9.
[http://dx.doi.org/10.1016/j.jchromb.2007.03.010] [PMID: 17400527]
[118]
Wang Y-J, Pan M-H, Cheng A-L, et al. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 1997; 15(12): 1867-76.
[http://dx.doi.org/10.1016/S0731-7085(96)02024-9] [PMID: 9278892]
[119]
Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: A future nanomedicine for cancer. Drug Discov Today 2012; 17(1-2): 71-80.
[http://dx.doi.org/10.1016/j.drudis.2011.09.009] [PMID: 21959306]
[120]
Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 2020; 25(16): 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[121]
Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Target 2008; 16(2): 108-23.
[http://dx.doi.org/10.1080/10611860701794353] [PMID: 18274932]
[122]
Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci 2010; 351(1): 19-29.
[http://dx.doi.org/10.1016/j.jcis.2010.05.022] [PMID: 20627257]
[123]
Verderio P, Bonetti P, Colombo M, Pandolfi L, Prosperi D. Intracellular drug release from curcumin-loaded PLGA nanoparticles induces G2/M block in breast cancer cells. Biomacromolecules 2013; 14(3): 672-82.
[http://dx.doi.org/10.1021/bm3017324] [PMID: 23350530]
[124]
Jin H, Pi J, Zhao Y, et al. EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale 2017; 9(42): 16365-74.
[http://dx.doi.org/10.1039/C7NR06898K] [PMID: 29052674]
[125]
Prabhuraj R, Kartik B, Rohit S, Rajdip B. Selection of superior targeting ligands using PEGylated PLGA nanoparticles for delivery of curcumin in the treatment of triple-negative breast cancer cells. J Drug Deliv Sci Technol 2020; 101722.
[http://dx.doi.org/10.1016/j.jddst.2020.101722]
[126]
Sampath M, Pichaimani A, Kumpati P, Sengottuvelan B. The remarkable role of emulsifier and chitosan, dextran and PEG as capping agents in the enhanced delivery of curcumin by nanoparticles in breast cancer cells. Int J Biol Macromol 2020; 162: 748-61.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.188] [PMID: 32585267]
[127]
Meena R, Kumar S, Kumar R, Gaharwar US, Rajamani P. PLGA-CTAB curcumin nanoparticles: Fabrication, characterization and molecular basis of anticancer activity in triple negative breast cancer cell lines (MDA-MB-231 cells). Biomed Pharmacother 2017; 94: 944-54.
[http://dx.doi.org/10.1016/j.biopha.2017.07.151] [PMID: 28810532]
[128]
Shanmuganathan R, Edison TNJI, LewisOscar F, Kumar P, Shanmugam S, Pugazhendhi A. Chitosan nanopolymers: an overview of drug delivery against cancer. Int J Biol Macromol 2019; 130: 727-36.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.060] [PMID: 30771392]
[129]
Li J, Cai C, Li J, et al. Chitosan-based nanomaterials for drug delivery. Molecules 2018; 23(10): 2661.
[http://dx.doi.org/10.3390/molecules23102661] [PMID: 30332830]
[130]
Rejinold NS, Sreerekha PR, Chennazhi KP, Nair SV, Jayakumar R. Biocompatible, biodegradable and thermo-sensitive chitosan-g-poly (N-isopropylacrylamide) nanocarrier for curcumin drug delivery. Int J Biol Macromol 2011; 49(2): 161-72.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.04.008] [PMID: 21536066]
[131]
Song W, Su X, Gregory DA, Li W, Cai Z, Zhao X. Magnetic alginate/chitosan nanoparticles for targeted delivery of curcumin into human breast cancer cells. Nanomaterials (Basel) 2018; 8(11): 907.
[http://dx.doi.org/10.3390/nano8110907] [PMID: 30400634]
[132]
Yoon I-S, Park J-H, Kang HJ, et al. Poly(D,L-lactic acid)-glycerol-based nanoparticles for curcumin delivery. Int J Pharm 2015; 488(1-2): 70-7.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.046] [PMID: 25900098]
[133]
Zeighamian V, Darabi M, Akbarzadeh A, et al. PNIPAAm-MAA nanoparticles as delivery vehicles for curcumin against MCF-7 breast cancer cells. Artif Cells Nanomed Biotechnol 2016; 44(2): 735-42.
[http://dx.doi.org/10.3109/21691401.2014.982803] [PMID: 25819738]
[134]
Liang H, Friedman JM, Nacharaju P. Fabrication of biodegradable PEG-PLA nanospheres for solubility, stabilization, and delivery of curcumin. Artif Cells Nanomed Biotechnol 2017; 45(2): 297-304.
[http://dx.doi.org/10.3109/21691401.2016.1146736] [PMID: 26924283]
[135]
Sarika PR, James NR. Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery. Carbohydr Polym 2016; 148: 354-61.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.073] [PMID: 27185149]
[136]
Chun YS, Bisht S, Chenna V, et al. Intraductal administration of a polymeric nanoparticle formulation of curcumin (NanoCurc) significantly attenuates incidence of mammary tumors in a rodent chemical carcinogenesis model: implications for breast cancer chemoprevention in at-risk populations. Carcinogenesis 2012; 33(11): 2242-9.
[http://dx.doi.org/10.1093/carcin/bgs248] [PMID: 22831956]
[137]
Kumari M, Sharma N, Manchanda R, et al. PGMD/curcumin nanoparticles for the treatment of breast cancer. Sci Rep 2021; 11(1): 3824.
[http://dx.doi.org/10.1038/s41598-021-81701-x] [PMID: 33589661]
[138]
Xiong K, Zhang Y, Wen Q, et al. Co-delivery of paclitaxel and curcumin by biodegradable polymeric nanoparticles for breast cancer chemotherapy. Int J Pharm 2020; 589: 119875.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119875] [PMID: 32919003]
[139]
Yuan J-D, ZhuGe D-L, Tong M-Q, Lin M-T, Xu X-F, Tang X. pH-sensitive polymeric nanoparticles of mPEG-PLGA-PGlu with hybrid core for simultaneous encapsulation of curcumin and doxorubicin to kill the heterogeneous tumour cells in breast cancer. Artif Cells Nanomed Biotechnol 2018; 46(sup1): 302-13.
[140]
Vakilinezhad MA, Amini A, Dara T, Alipour S. Methotrexate and Curcumin co-encapsulated PLGA nanoparticles as a potential breast cancer therapeutic system: in vitro and in vivo evaluation. Colloids Surf B Biointerfaces 2019; 184: 110515.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110515] [PMID: 31585308]
[141]
Farajzadeh R, Pilehvar-Soltanahmadi Y, Dadashpour M, et al. Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. Artif Cells Nanomed Biotechnol 2018; 46(5): 917-25.
[http://dx.doi.org/10.1080/21691401.2017.1347879] [PMID: 28678551]
[142]
Prabhuraj R, Bomb K, Srivastava R, Bandyopadhyaya R. Dual drug delivery of curcumin and niclosamide using PLGA nanoparticles for improved therapeutic effect on breast cancer cells. J Polym Res 2020; 27(5)
[http://dx.doi.org/10.1007/s10965-020-02092-7]
[143]
Torchilin VP. Micellar nanocarriers: Pharmaceutical perspectives. Pharm Res 2007; 24(1): 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[144]
Majumder N, G Das N, Das SK. Polymeric micelles for anticancer drug delivery. Ther Deliv 2020; 11(10): 613-35.
[http://dx.doi.org/10.4155/tde-2020-0008] [PMID: 32933425]
[145]
Nasongkla N, Bey E, Ren J, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 2006; 6(11): 2427-30.
[http://dx.doi.org/10.1021/nl061412u] [PMID: 17090068]
[146]
Liu L, Sun L, Wu Q, et al. Curcumin loaded polymeric micelles inhibit breast tumor growth and spontaneous pulmonary metastasis. Int J Pharm 2013; 443(1-2): 175-82.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.032] [PMID: 23287774]
[147]
Guzzarlamudi S, Singh PK, Pawar VK, et al. Synergistic chemotherapeutic activity of curcumin bearing methoxypolyethylene glycol-g-linoleic acid based micelles on breast cancer cells. J Nanosci Nanotechnol 2016; 16(4): 4180-90.
[http://dx.doi.org/10.1166/jnn.2016.11699] [PMID: 27451784]
[148]
Kumari P, Swami MO, Nadipalli SK, Myneni S, Ghosh B, Biswas S. Curcumin delivery by poly (Lactide)-based co-polymeric micelles: an in vitro anticancer study. Pharm Res 2016; 33(4): 826-41.
[http://dx.doi.org/10.1007/s11095-015-1830-z] [PMID: 26597940]
[149]
Rashidzadeh H, Rezaei SJT, Zamani S, Sarijloo E, Ramazani A. pH-sensitive curcumin conjugated micelles for tumor triggered drug delivery. J Biomater Sci Polym Ed 2021; 32(3): 320-36.
[http://dx.doi.org/10.1080/09205063.2020.1833815] [PMID: 33026298]
[150]
Lee W-H, Bebawy M, Loo C-Y, Luk F, Mason RS, Rohanizadeh R. Fabrication of curcumin micellar nanoparticles with enhanced anti-cancer activity. J Biomed Nanotechnol 2015; 11(6): 1093-105.
[http://dx.doi.org/10.1166/jbn.2015.2041] [PMID: 26353597]
[151]
Alizadeh AM, Sadeghizadeh M, Najafi F, et al. Encapsulation of curcumin in diblock copolymer micelles for cancer therapy. BioMed Res Int 2015; 2015: 824746.
[http://dx.doi.org/10.1155/2015/824746]
[152]
Yu Y, Zhang X, Qiu L. The anti-tumor efficacy of curcumin when delivered by size/charge-changing multistage polymeric micelles based on amphiphilic poly(β-amino ester) derivates. Biomaterials 2014; 35(10): 3467-79.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.096] [PMID: 24439418]
[153]
Cai X, Liu M, Zhang C, Sun D, Zhai G. pH-responsive copolymers based on pluronic P123-poly(β-amino ester): Synthesis, characterization and application of copolymer micelles. Colloids Surf B Biointerfaces 2016; 142: 114-22.
[http://dx.doi.org/10.1016/j.colsurfb.2016.02.033] [PMID: 26945163]
[154]
Lv L, Qiu K, Yu X, et al. Amphiphilic copolymeric micelles for doxorubicin and curcumin co-delivery to reverse multidrug resistance in breast cancer. J Biomed Nanotechnol 2016; 12(5): 973-85.
[http://dx.doi.org/10.1166/jbn.2016.2231] [PMID: 27305819]
[155]
Sun L, Deng X, Yang X, et al. Co-delivery of doxorubicin and curcumin by polymeric micelles for improving antitumor efficacy on breast carcinoma. RSC Adv 2014; 4(87): 46737-50.
[http://dx.doi.org/10.1039/C4RA07453J]
[156]
Maherani B, Arab-Tehrany E, Mozafari M R, Gaiani C, Linder M. Liposomes: A review of manufacturing techniques and targeting strategies. Curr Nanosci 2011; 7(3): 436-52.
[http://dx.doi.org/10.2174/157341311795542453]
[157]
Sharma A, Sharma US. Liposomes in drug delivery: Progress and limitations. Int J Pharm 1997; 154(2): 123-40.
[http://dx.doi.org/10.1016/S0378-5173(97)00135-X]
[158]
Dhule SS, Penfornis P, Frazier T, et al. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine 2012; 8(4): 440-51.
[http://dx.doi.org/10.1016/j.nano.2011.07.011] [PMID: 21839055]
[159]
Mahmoudi R, Ashraf Mirahmadi-Babaheidri S, Delaviz H, et al. RGD peptide-mediated liposomal curcumin targeted delivery to breast cancer cells. J Biomater Appl 2020; 35(7): 743-53.
[http://dx.doi.org/10.1177/0885328220949367] [PMID: 32807016]
[160]
Kangarlou S, Ramezanpour S, Balalaie S, Roudbar Mohammadi S, Haririan I. Curcumin-loaded nanoliposomes linked to homing peptides for integrin targeting and neuropilin-1-mediated internalization. Pharm Biol 2017; 55(1): 277-85.
[http://dx.doi.org/10.1080/13880209.2016.1261301] [PMID: 27937055]
[161]
Hasan M, Elkhoury K, Kahn CJF, Arab-Tehrany E, Linder M. Preparation, characterization, and release kinetics of chitosan-coated nanoliposomes encapsulating curcumin in simulated environments. Molecules 2019; 24(10): 2023.
[http://dx.doi.org/10.3390/molecules24102023] [PMID: 31137865]
[162]
Hasan M, Messaoud GB, Michaux F, et al. Chitosan-coated liposomes encapsulating curcumin: Study of lipid-polysaccharide interactions and nanovesicle behavior. RSC Adv 2016; 6(51): 45290-304.
[http://dx.doi.org/10.1039/C6RA05574E]
[163]
Hasan M, Elkhoury K, Belhaj N, et al. Growth-inhibitory effect of chitosan-coated liposomes encapsulating curcumin on MCF-7 breast cancer cells. Mar Drugs 2020; 18(4): 217.
[http://dx.doi.org/10.3390/md18040217] [PMID: 32316578]
[164]
Zhou S, Li J, Yu J, et al. Unique flower-like Cur-metal complexes loaded liposomes for primary and metastatic breast cancer therapy. Mater Sci Eng C 2021; 121: 111835.
[http://dx.doi.org/10.1016/j.msec.2020.111835] [PMID: 33579473]
[165]
Mahmoudi R, Hassandokht F, Ardakani MT, et al. Intercalation of curcumin into liposomal chemotherapeutic agent augments apoptosis in breast cancer cells. J Biomater Appl 2021; 35(8): 1005-18.
[http://dx.doi.org/10.1177/0885328220976331] [PMID: 33283585]
[166]
Bayda S, Hadla M, Palazzolo S, et al. Inorganic nanoparticles for cancer therapy: a transition from lab to clinic. Curr Med Chem 2018; 25(34): 4269-303.
[http://dx.doi.org/10.2174/0929867325666171229141156] [PMID: 29284391]
[167]
Yallapu MM, Othman SF, Curtis ET, et al. Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int J Nanomedicine 2012; 7: 1761-79.
[PMID: 22619526]
[168]
Saikia C, Das MK, Ramteke A, Maji TK. Effect of crosslinker on drug delivery properties of curcumin loaded starch coated iron oxide nanoparticles. Int J Biol Macromol 2016; 93(Pt A): 1121-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.043] [PMID: 27664928]
[169]
Karami S, Rostamizadeh K, Shademani N, Parsa M. Synthesis and investigation of the curcumin-loaded magnetic lipid nanoparticles and their cytotoxicity assessment on human breast carcinoma cell line. Jundishapur J Nat Pharm Prod 2020; 15(2): e91886.
[http://dx.doi.org/10.5812/jjnpp.91886]
[170]
Sawant V, Bamane S. PEG-beta-cyclodextrin functionalized zinc oxide nanoparticles show cell imaging with high drug payload and sustained pH responsive delivery of curcumin in to MCF-7 cells. J Drug Deliv Sci Technol 2018; 43: 397-408.
[http://dx.doi.org/10.1016/j.jddst.2017.11.010]
[171]
Kundu M, Sadhukhan P, Ghosh N, et al. pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy. J Adv Res 2019; 18: 161-72.
[http://dx.doi.org/10.1016/j.jare.2019.02.036] [PMID: 31032117]
[172]
Danafar H, Sharafi A, Kheiri S, Kheiri Manjili H. Co-delivery of sulforaphane and curcumin with pegylated iron oxide-gold core shell nanoparticles for delivery to breast cancer cell line. Iranian journal of pharmaceutical research. Iran J Pharm Res 2018; 17(2): 480-94.
[PMID: 29881406]
[173]
Balasubramanian S, Girija AR, Nagaoka Y, et al. Curcumin and 5-fluorouracil-loaded, folate- and transferrin-decorated polymeric magnetic nanoformulation: A synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia. Int J Nanomedicine 2014; 9: 437-59.
[PMID: 24531392]
[174]
Greish K, Pittalà V, Taurin S, et al. Curcumin-copper complex nanoparticles for the management of triple-negative breast cancer. Nanomaterials (Basel) 2018; 8(11): 884.
[http://dx.doi.org/10.3390/nano8110884] [PMID: 30388728]
[175]
Vemuri SK, Banala RR, Mukherjee S, et al. Novel biosynthesized gold nanoparticles as anti-cancer agents against breast cancer: Synthesis, biological evaluation, molecular modelling studies. Mater Sci Eng C 2019; 99: 417-29.
[http://dx.doi.org/10.1016/j.msec.2019.01.123] [PMID: 30889716]
[176]
Amanlou N, Parsa M, Rostamizadeh K, Sadighian S, Moghaddam F. Enhanced cytotoxic activity of curcumin on cancer cell lines by incorporating into gold/chitosan nanogels. Mater Chem Phys 2019; 226: 151-7.
[http://dx.doi.org/10.1016/j.matchemphys.2018.12.089]
[177]
Dey S, Sherly MCD, Rekha MR, Sreenivasan K. Alginate stabilized gold nanoparticle as multidrug carrier: Evaluation of cellular interactions and hemolytic potential. Carbohydr Polym 2016; 136: 71-80.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.016] [PMID: 26572330]
[178]
Sheikh E, Bhatt MB, Tripathi M. Bio-based synthesised and characterized monodispersed Curcuma longa silver nanoparticles induces targeted anticancer activity in breast cancer cells. Pharmacogn Mag 2018; 14(57): 340.
[http://dx.doi.org/10.4103/pm.pm_71_18]
[179]
Mittal L, Akther T, Camarillo IG, Sundararajan R. Turmeric-silver-nanoparticles for effective treatment of breast cancer and to break CTX-M-15 mediated antibiotic resistance in Escherichia coli. Inorganic and nano-metal chemistry. 2020; pp. 1-8.
[180]
Kulkarni SB, Betageri GV, Singh M. Factors affecting microencapsulation of drugs in liposomes. J Microencapsul 1995; 12(3): 229-46.
[http://dx.doi.org/10.3109/02652049509010292] [PMID: 7650588]
[181]
Hasan M, Belhaj N, Benachour H, et al. Liposome encapsulation of curcumin: Physico-chemical characterizations and effects on MCF7 cancer cell proliferation. Int J Pharm 2014; 461(1-2): 519-28.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.007] [PMID: 24355620]
[182]
D’Souza S. A review of in vitro drug release test methods for nano-sized dosage forms. Adv Pharm 2014; 2014
[183]
Feng L, Dong Z, Tao D, Zhang Y, Liu Z. The acidic tumor microenvironment: A target for smart cancer nano-theranostics. Natl Sci Rev 2018; 5(2): 269-86.
[http://dx.doi.org/10.1093/nsr/nwx062]
[184]
Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol 2019; 71(8): 1185-98.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[185]
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387-92.
[PMID: 2946403]
[186]
Clemons TD, Singh R, Sorolla A, Chaudhari N, Hubbard A, Iyer KS. Distinction between active and passive targeting of nanoparticles dictate their overall therapeutic efficacy. Langmuir 2018; 34(50): 15343-9.
[http://dx.doi.org/10.1021/acs.langmuir.8b02946] [PMID: 30441895]
[187]
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2020; 1-24.
[PMID: 33277608]

© 2024 Bentham Science Publishers | Privacy Policy